Provided by: mlpack-bin_3.2.2-3_amd64 

NAME
mlpack_preprocess_imputer - impute data
SYNOPSIS
mlpack_preprocess_imputer -i string -m string -s string [-c double] [-d int] [-V bool] [-o string] [-h -v]
DESCRIPTION
This utility takes a dataset and converts a user-defined missing variable to another to provide more
meaningful analysis.
The program does not modify the original file, but instead makes a separate file to save the output data;
You can save the output by specifying the file name with --output_file (-o).
For example, if we consider 'NULL' in dimension 0 to be a missing variable and want to delete whole row
containing the NULL in the column-wise dataset, and save the result to result.csv, we could run
$ mlpack_preprocess_imputer -i dataset.csv -o result.csv -m NULL -d 0 > -s listwise_deletion
REQUIRED INPUT OPTIONS
--input_file (-i) [string]
File containing data.
--missing_value (-m) [string]
User defined missing value.
--strategy (-s) [string]
imputation strategy to be applied. Strategies should be one of 'custom', 'mean', 'median', and
'listwise_deletion'.
OPTIONAL INPUT OPTIONS
--custom_value (-c) [double] User-defined custom imputation value. Default value 0.
--dimension (-d) [int]
The dimension to apply imputation to. Default value 0.
--help (-h) [bool]
Default help info.
--info [string]
Print help on a specific option. Default value ''.
--verbose (-v) [bool]
Display informational messages and the full list of parameters and timers at the end of execution.
--version (-V) [bool]
Display the version of mlpack.
OPTIONAL OUTPUT OPTIONS
--output_file (-o) [string]
File to save output into. Default value ''.
ADDITIONAL INFORMATION
For further information, including relevant papers, citations, and theory, consult the documentation
found at http://www.mlpack.org or included with your distribution of mlpack.
mlpack-3.2.2 21 February 2020 mlpack_preprocess_imputer(1)