Provided by: python-pathlib_1.0.1-2.1build1_all
NAME
pathlib - pathlib Documentation Manipulating filesystem paths as string objects can quickly become cumbersome: multiple calls to os.path.join() or os.path.dirname(), etc. This module offers a set of classes featuring all the common operations on paths in an easy, object-oriented way. This module is best used with Python 3.2 or later, but it is also compatible with Python 2.7. NOTE: This module has been included in the Python 3.4 standard library after PEP 428 acceptance. You only need to install it for Python 3.3 or older. SEE ALSO: PEP 428: Rationale for the final pathlib design and API.
DOWNLOAD
Standalone releases are available on PyPI: http://pypi.python.org/pypi/pathlib/ Main development now takes place in the Python standard library: see the Python developer’s guide. The maintenance repository for this standalone backport module can be found on BitBucket, but activity is expected to be quite low: https://bitbucket.org/pitrou/pathlib/
HIGH-LEVEL VIEW
This module offers classes representing filesystem paths with semantics appropriate for different operating systems. Path classes are divided between pure paths, which provide purely computational operations without I/O, and concrete paths, which inherit from pure paths but also provide I/O operations. [image] If you’ve never used this module before or just aren’t sure which class is right for your task, Path is most likely what you need. It instantiates a concrete path for the platform the code is running on. Pure paths are useful in some special cases; for example: 1. If you want to manipulate Windows paths on a Unix machine (or vice versa). You cannot instantiate a WindowsPath when running on Unix, but you can instantiate PureWindowsPath. 2. You want to make sure that your code only manipulates paths without actually accessing the OS. In this case, instantiating one of the pure classes may be useful since those simply don’t have any OS-accessing operations.
BASIC USE
Importing the module classes: >>> from pathlib import * Listing subdirectories: >>> p = Path('.') >>> [x for x in p.iterdir() if x.is_dir()] [PosixPath('.hg'), PosixPath('docs'), PosixPath('dist'), PosixPath('__pycache__'), PosixPath('build')] Listing Python source files in this directory tree: >>> list(p.glob('**/*.py')) [PosixPath('test_pathlib.py'), PosixPath('setup.py'), PosixPath('pathlib.py'), PosixPath('docs/conf.py'), PosixPath('build/lib/pathlib.py')] Navigating inside a directory tree: >>> p = Path('/etc') >>> q = p / 'init.d' / 'reboot' >>> q PosixPath('/etc/init.d/reboot') >>> q.resolve() PosixPath('/etc/rc.d/init.d/halt') Querying path properties: >>> q.exists() True >>> q.is_dir() False Opening a file: >>> with q.open() as f: f.readline() ... '#!/bin/bash\n'
PURE PATHS
Pure path objects provide path-handling operations which don’t actually access a filesystem. There are three ways to access these classes, which we also call flavours: class pathlib.PurePath(*pathsegments) A generic class that represents the system’s path flavour (instantiating it creates either a PurePosixPath or a PureWindowsPath): >>> PurePath('setup.py') # Running on a Unix machine PurePosixPath('setup.py') Each element of pathsegments can be either a string or bytes object representing a path segment; it can also be another path object: >>> PurePath('foo', 'some/path', 'bar') PurePosixPath('foo/some/path/bar') >>> PurePath(Path('foo'), Path('bar')) PurePosixPath('foo/bar') When pathsegments is empty, the current directory is assumed: >>> PurePath() PurePosixPath('.') When several absolute paths are given, the last is taken as an anchor (mimicking os.path.join()’s behaviour): >>> PurePath('/etc', '/usr', 'lib64') PurePosixPath('/usr/lib64') >>> PureWindowsPath('c:/Windows', 'd:bar') PureWindowsPath('d:bar') However, in a Windows path, changing the local root doesn’t discard the previous drive setting: >>> PureWindowsPath('c:/Windows', '/Program Files') PureWindowsPath('c:/Program Files') Spurious slashes and single dots are collapsed, but double dots ('..') are not, since this would change the meaning of a path in the face of symbolic links: >>> PurePath('foo//bar') PurePosixPath('foo/bar') >>> PurePath('foo/./bar') PurePosixPath('foo/bar') >>> PurePath('foo/../bar') PurePosixPath('foo/../bar') (a naïve approach would make PurePosixPath('foo/../bar') equivalent to PurePosixPath('bar'), which is wrong if foo is a symbolic link to another directory) class pathlib.PurePosixPath(*pathsegments) A subclass of PurePath, this path flavour represents non-Windows filesystem paths: >>> PurePosixPath('/etc') PurePosixPath('/etc') pathsegments is specified similarly to PurePath. class pathlib.PureWindowsPath(*pathsegments) A subclass of PurePath, this path flavour represents Windows filesystem paths: >>> PureWindowsPath('c:/Program Files/') PureWindowsPath('c:/Program Files') pathsegments is specified similarly to PurePath. Regardless of the system you’re running on, you can instantiate all of these classes, since they don’t provide any operation that does system calls. General properties Paths are immutable and hashable. Paths of a same flavour are comparable and orderable. These properties respect the flavour’s case-folding semantics: >>> PurePosixPath('foo') == PurePosixPath('FOO') False >>> PureWindowsPath('foo') == PureWindowsPath('FOO') True >>> PureWindowsPath('FOO') in { PureWindowsPath('foo') } True >>> PureWindowsPath('C:') < PureWindowsPath('d:') True Paths of a different flavour compare unequal and cannot be ordered: >>> PureWindowsPath('foo') == PurePosixPath('foo') False >>> PureWindowsPath('foo') < PurePosixPath('foo') Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: unorderable types: PureWindowsPath() < PurePosixPath() Operators The slash operator helps create child paths, similarly to os.path.join: >>> p = PurePath('/etc') >>> p PurePosixPath('/etc') >>> p / 'init.d' / 'apache2' PurePosixPath('/etc/init.d/apache2') >>> q = PurePath('bin') >>> '/usr' / q PurePosixPath('/usr/bin') The string representation of a path is the raw filesystem path itself (in native form, e.g. with backslashes under Windows), which you can pass to any function taking a file path as a string: >>> p = PurePath('/etc') >>> str(p) '/etc' >>> p = PureWindowsPath('c:/Program Files') >>> str(p) 'c:\\Program Files' Similarly, calling bytes on a path gives the raw filesystem path as a bytes object, as encoded by os.fsencode: >>> bytes(p) b'/etc' Accessing individual parts To access the individual “parts” (components) of a path, use the following property: PurePath.parts A tuple giving access to the path’s various components: >>> p = PurePath('/usr/bin/python3') >>> p.parts ('/', 'usr', 'bin', 'python3') >>> p = PureWindowsPath('c:/Program Files/PSF') >>> p.parts ('c:\\', 'Program Files', 'PSF') (note how the drive and local root are regrouped in a single part) Methods and properties Pure paths provide the following methods and properties: PurePath.drive A string representing the drive letter or name, if any: >>> PureWindowsPath('c:/Program Files/').drive 'c:' >>> PureWindowsPath('/Program Files/').drive '' >>> PurePosixPath('/etc').drive '' UNC shares are also considered drives: >>> PureWindowsPath('//host/share/foo.txt').drive '\\\\host\\share' PurePath.root A string representing the (local or global) root, if any: >>> PureWindowsPath('c:/Program Files/').root '\\' >>> PureWindowsPath('c:Program Files/').root '' >>> PurePosixPath('/etc').root '/' UNC shares always have a root: >>> PureWindowsPath('//host/share').root '\\' PurePath.anchor The concatenation of the drive and root: >>> PureWindowsPath('c:/Program Files/').anchor 'c:\\' >>> PureWindowsPath('c:Program Files/').anchor 'c:' >>> PurePosixPath('/etc').anchor '/' >>> PureWindowsPath('//host/share').anchor '\\\\host\\share\\' PurePath.parents An immutable sequence providing access to the logical ancestors of the path: >>> p = PureWindowsPath('c:/foo/bar/setup.py') >>> p.parents[0] PureWindowsPath('c:/foo/bar') >>> p.parents[1] PureWindowsPath('c:/foo') >>> p.parents[2] PureWindowsPath('c:/') PurePath.parent The logical parent of the path: >>> p = PurePosixPath('/a/b/c/d') >>> p.parent PurePosixPath('/a/b/c') You cannot go past an anchor, or empty path: >>> p = PurePosixPath('/') >>> p.parent PurePosixPath('/') >>> p = PurePosixPath('.') >>> p.parent PurePosixPath('.') NOTE: This is a purely lexical operation, hence the following behaviour: >>> p = PurePosixPath('foo/..') >>> p.parent PurePosixPath('foo') If you want to walk an arbitrary filesystem path upwards, it is recommended to first call Path.resolve() so as to resolve symlinks and eliminate “..” components. PurePath.name A string representing the final path component, excluding the drive and root, if any: >>> PurePosixPath('my/library/setup.py').name 'setup.py' UNC drive names are not considered: >>> PureWindowsPath('//some/share/setup.py').name 'setup.py' >>> PureWindowsPath('//some/share').name '' PurePath.suffix The file extension of the final component, if any: >>> PurePosixPath('my/library/setup.py').suffix '.py' >>> PurePosixPath('my/library.tar.gz').suffix '.gz' >>> PurePosixPath('my/library').suffix '' PurePath.suffixes A list of the path’s file extensions: >>> PurePosixPath('my/library.tar.gar').suffixes ['.tar', '.gar'] >>> PurePosixPath('my/library.tar.gz').suffixes ['.tar', '.gz'] >>> PurePosixPath('my/library').suffixes [] PurePath.stem The final path component, without its suffix: >>> PurePosixPath('my/library.tar.gz').stem 'library.tar' >>> PurePosixPath('my/library.tar').stem 'library' >>> PurePosixPath('my/library').stem 'library' PurePath.as_posix() Return a string representation of the path with forward slashes (/): >>> p = PureWindowsPath('c:\\windows') >>> str(p) 'c:\\windows' >>> p.as_posix() 'c:/windows' PurePath.as_uri() Represent the path as a file URI. ValueError is raised if the path isn’t absolute. >>> p = PurePosixPath('/etc/passwd') >>> p.as_uri() 'file:///etc/passwd' >>> p = PureWindowsPath('c:/Windows') >>> p.as_uri() 'file:///c:/Windows' PurePath.is_absolute() Return whether the path is absolute or not. A path is considered absolute if it has both a root and (if the flavour allows) a drive: >>> PurePosixPath('/a/b').is_absolute() True >>> PurePosixPath('a/b').is_absolute() False >>> PureWindowsPath('c:/a/b').is_absolute() True >>> PureWindowsPath('/a/b').is_absolute() False >>> PureWindowsPath('c:').is_absolute() False >>> PureWindowsPath('//some/share').is_absolute() True PurePath.is_reserved() With PureWindowsPath, return True if the path is considered reserved under Windows, False otherwise. With PurePosixPath, False is always returned. >>> PureWindowsPath('nul').is_reserved() True >>> PurePosixPath('nul').is_reserved() False File system calls on reserved paths can fail mysteriously or have unintended effects. PurePath.joinpath(*other) Calling this method is equivalent to combining the path with each of the other arguments in turn: >>> PurePosixPath('/etc').joinpath('passwd') PurePosixPath('/etc/passwd') >>> PurePosixPath('/etc').joinpath(PurePosixPath('passwd')) PurePosixPath('/etc/passwd') >>> PurePosixPath('/etc').joinpath('init.d', 'apache2') PurePosixPath('/etc/init.d/apache2') >>> PureWindowsPath('c:').joinpath('/Program Files') PureWindowsPath('c:/Program Files') PurePath.match(pattern) Match this path against the provided glob-style pattern. Return True if matching is successful, False otherwise. If pattern is relative, the path can be either relative or absolute, and matching is done from the right: >>> PurePath('a/b.py').match('*.py') True >>> PurePath('/a/b/c.py').match('b/*.py') True >>> PurePath('/a/b/c.py').match('a/*.py') False If pattern is absolute, the path must be absolute, and the whole path must match: >>> PurePath('/a.py').match('/*.py') True >>> PurePath('a/b.py').match('/*.py') False As with other methods, case-sensitivity is observed: >>> PureWindowsPath('b.py').match('*.PY') True PurePath.relative_to(*other) Compute a version of this path relative to the path represented by other. If it’s impossible, ValueError is raised: >>> p = PurePosixPath('/etc/passwd') >>> p.relative_to('/') PurePosixPath('etc/passwd') >>> p.relative_to('/etc') PurePosixPath('passwd') >>> p.relative_to('/usr') Traceback (most recent call last): File "<stdin>", line 1, in <module> File "pathlib.py", line 694, in relative_to .format(str(self), str(formatted))) ValueError: '/etc/passwd' does not start with '/usr' PurePath.with_name(name) Return a new path with the name changed. If the original path doesn’t have a name, ValueError is raised: >>> p = PureWindowsPath('c:/Downloads/pathlib.tar.gz') >>> p.with_name('setup.py') PureWindowsPath('c:/Downloads/setup.py') >>> p = PureWindowsPath('c:/') >>> p.with_name('setup.py') Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/antoine/cpython/default/Lib/pathlib.py", line 751, in with_name raise ValueError("%r has an empty name" % (self,)) ValueError: PureWindowsPath('c:/') has an empty name PurePath.with_suffix(suffix) Return a new path with the suffix changed. If the original path doesn’t have a suffix, the new suffix is appended instead: >>> p = PureWindowsPath('c:/Downloads/pathlib.tar.gz') >>> p.with_suffix('.bz2') PureWindowsPath('c:/Downloads/pathlib.tar.bz2') >>> p = PureWindowsPath('README') >>> p.with_suffix('.txt') PureWindowsPath('README.txt')
CONCRETE PATHS
Concrete paths are subclasses of the pure path classes. In addition to operations provided by the latter, they also provide methods to do system calls on path objects. There are three ways to instantiate concrete paths: class pathlib.Path(*pathsegments) A subclass of PurePath, this class represents concrete paths of the system’s path flavour (instantiating it creates either a PosixPath or a WindowsPath): >>> Path('setup.py') PosixPath('setup.py') pathsegments is specified similarly to PurePath. class pathlib.PosixPath(*pathsegments) A subclass of Path and PurePosixPath, this class represents concrete non-Windows filesystem paths: >>> PosixPath('/etc') PosixPath('/etc') pathsegments is specified similarly to PurePath. class pathlib.WindowsPath(*pathsegments) A subclass of Path and PureWindowsPath, this class represents concrete Windows filesystem paths: >>> WindowsPath('c:/Program Files/') WindowsPath('c:/Program Files') pathsegments is specified similarly to PurePath. You can only instantiate the class flavour that corresponds to your system (allowing system calls on non-compatible path flavours could lead to bugs or failures in your application): >>> import os >>> os.name 'posix' >>> Path('setup.py') PosixPath('setup.py') >>> PosixPath('setup.py') PosixPath('setup.py') >>> WindowsPath('setup.py') Traceback (most recent call last): File "<stdin>", line 1, in <module> File "pathlib.py", line 798, in __new__ % (cls.__name__,)) NotImplementedError: cannot instantiate 'WindowsPath' on your system Methods Concrete paths provide the following methods in addition to pure paths methods. Many of these methods can raise an OSError if a system call fails (for example because the path doesn’t exist): classmethod Path.cwd() Return a new path object representing the current directory (as returned by os.getcwd()): >>> Path.cwd() PosixPath('/home/antoine/pathlib') Path.stat() Return information about this path (similarly to os.stat()). The result is looked up at each call to this method. >>> p = Path('setup.py') >>> p.stat().st_size 956 >>> p.stat().st_mtime 1327883547.852554 Path.chmod(mode) Change the file mode and permissions, like os.chmod(): >>> p = Path('setup.py') >>> p.stat().st_mode 33277 >>> p.chmod(0o444) >>> p.stat().st_mode 33060 Path.exists() Whether the path points to an existing file or directory: >>> from pathlib import * >>> Path('.').exists() True >>> Path('setup.py').exists() True >>> Path('/etc').exists() True >>> Path('nonexistentfile').exists() False Path.glob(pattern) Glob the given pattern in the directory represented by this path, yielding all matching files (of any kind): >>> sorted(Path('.').glob('*.py')) [PosixPath('pathlib.py'), PosixPath('setup.py'), PosixPath('test_pathlib.py')] >>> sorted(Path('.').glob('*/*.py')) [PosixPath('docs/conf.py')] The “**” pattern means “this directory and all subdirectories, recursively”. In other words, it enables recursive globbing: >>> sorted(Path('.').glob('**/*.py')) [PosixPath('build/lib/pathlib.py'), PosixPath('docs/conf.py'), PosixPath('pathlib.py'), PosixPath('setup.py'), PosixPath('test_pathlib.py')] NOTE: Using the “**” pattern in large directory trees may consume an inordinate amount of time. Path.group() Return the name of the group owning the file. KeyError is raised if the file’s gid isn’t found in the system database. Path.is_dir() Return True if the path points to a directory (or a symbolic link pointing to a directory), False if it points to another kind of file. False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission errors) are propagated. Path.is_file() Return True if the path points to a regular file (or a symbolic link pointing to a regular file), False if it points to another kind of file. False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission errors) are propagated. Path.is_symlink() Return True if the path points to a symbolic link, False otherwise. False is also returned if the path doesn’t exist; other errors (such as permission errors) are propagated. Path.is_socket() Return True if the path points to a Unix socket (or a symbolic link pointing to a Unix socket), False if it points to another kind of file. False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission errors) are propagated. Path.is_fifo() Return True if the path points to a FIFO (or a symbolic link pointing to a FIFO), False if it points to another kind of file. False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission errors) are propagated. Path.is_block_device() Return True if the path points to a block device (or a symbolic link pointing to a block device), False if it points to another kind of file. False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission errors) are propagated. Path.is_char_device() Return True if the path points to a character device (or a symbolic link pointing to a character device), False if it points to another kind of file. False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission errors) are propagated. Path.iterdir() When the path points to a directory, yield path objects of the directory contents: >>> p = Path('docs') >>> for child in p.iterdir(): child ... PosixPath('docs/conf.py') PosixPath('docs/_templates') PosixPath('docs/make.bat') PosixPath('docs/index.rst') PosixPath('docs/_build') PosixPath('docs/_static') PosixPath('docs/Makefile') Path.lchmod(mode) Like Path.chmod() but, if the path points to a symbolic link, the symbolic link’s mode is changed rather than its target’s. Path.lstat() Like Path.stat() but, if the path points to a symbolic link, return the symbolic link’s information rather than its target’s. Path.mkdir(mode=0o777, parents=False) Create a new directory at this given path. If mode is given, it is combined with the process’ umask value to determine the file mode and access flags. If the path already exists, OSError is raised. If parents is true, any missing parents of this path are created as needed; they are created with the default permissions without taking mode into account (mimicking the POSIX mkdir -p command). If parents is false (the default), a missing parent raises OSError. Path.open(mode='r', buffering=-1, encoding=None, errors=None, newline=None) Open the file pointed to by the path, like the built-in open() function does: >>> p = Path('setup.py') >>> with p.open() as f: ... f.readline() ... '#!/usr/bin/env python3\n' Path.owner() Return the name of the user owning the file. KeyError is raised if the file’s uid isn’t found in the system database. Path.rename(target) Rename this file or directory to the given target. target can be either a string or another path object: >>> p = Path('foo') >>> p.open('w').write('some text') 9 >>> target = Path('bar') >>> p.rename(target) >>> target.open().read() 'some text' Path.replace(target) Rename this file or directory to the given target. If target points to an existing file or directory, it will be unconditionally replaced. This method is only available with Python 3.3; it will raise NotImplementedError on previous Python versions. Path.resolve() Make the path absolute, resolving any symlinks. A new path object is returned: >>> p = Path() >>> p PosixPath('.') >>> p.resolve() PosixPath('/home/antoine/pathlib') “..” components are also eliminated (this is the only method to do so): >>> p = Path('docs/../setup.py') >>> p.resolve() PosixPath('/home/antoine/pathlib/setup.py') If the path doesn’t exist, an OSError is raised. If an infinite loop is encountered along the resolution path, RuntimeError is raised. Path.rglob(pattern) This is like calling glob() with “**” added in front of the given pattern: >>> sorted(Path().rglob("*.py")) [PosixPath('build/lib/pathlib.py'), PosixPath('docs/conf.py'), PosixPath('pathlib.py'), PosixPath('setup.py'), PosixPath('test_pathlib.py')] Path.rmdir() Remove this directory. The directory must be empty. Path.symlink_to(target, target_is_directory=False) Make this path a symbolic link to target. Under Windows, target_is_directory must be true (default False) if the link’s target is a directory. Under POSIX, target_is_directory’s value is ignored. >>> p = Path('mylink') >>> p.symlink_to('setup.py') >>> p.resolve() PosixPath('/home/antoine/pathlib/setup.py') >>> p.stat().st_size 956 >>> p.lstat().st_size 8 NOTE: The order of arguments (link, target) is the reverse of os.symlink()’s. Path.touch(mode=0o777, exist_ok=True) Create a file at this given path. If mode is given, it is combined with the process’ umask value to determine the file mode and access flags. If the file already exists, the function succeeds if exist_ok is true (and its modification time is updated to the current time), otherwise OSError is raised. Path.unlink() Remove this file or symbolic link. If the path points to a directory, use Path.rmdir() instead.
AUTHOR
Antoine Pitrou
COPYRIGHT
2019, Antoine Pitrou