Provided by: grass-doc_7.8.2-1build3_all bug

NAME

       t.rast.aggregate   -  Aggregates  temporally  the  maps  of a space time raster dataset by a user defined
       granularity.

KEYWORDS

       temporal, aggregation, raster, time

SYNOPSIS

       t.rast.aggregate
       t.rast.aggregate --help
       t.rast.aggregate  [-n]  input=name  output=name  basename=string    [suffix=string]    granularity=string
       method=string   [offset=integer]    [nprocs=integer]    [file_limit=integer]   [sampling=name[,name,...]]
       [where=sql_query]   [--overwrite]  [--help]  [--verbose]  [--quiet]  [--ui]

   Flags:
       -n
           Register Null maps

       --overwrite
           Allow output files to overwrite existing files

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       input=name [required]
           Name of the input space time raster dataset

       output=name [required]
           Name of the output space time raster dataset

       basename=string [required]
           Basename of the new generated output maps
           Either a numerical suffix or the start time (s-flag) separated by an underscore will be  attached  to
           create a unique identifier

       suffix=string
           Suffix  to  add  at  basename: set ’gran’ for granularity, ’time’ for the full time format, ’num’ for
           numerical suffix with a specific number of digits (default %05)
           Default: gran

       granularity=string [required]
           Aggregation granularity, format absolute time "x years, x  months,  x  weeks,  x  days,  x  hours,  x
           minutes, x seconds" or an integer value for relative time

       method=string [required]
           Aggregate operation to be performed on the raster maps
           Options:  average, count, median, mode, minimum, min_raster, maximum, max_raster, stddev, range, sum,
           variance, diversity, slope, offset, detcoeff, quart1, quart3, perc90, quantile, skewness, kurtosis
           Default: average

       offset=integer
           Offset that is used to create the output map ids, output map id is generated as: basename_  (count  +
           offset)
           Default: 0

       nprocs=integer
           Number of r.series processes to run in parallel
           Default: 1

       file_limit=integer
           The maximum number of open files allowed for each r.series process
           Default: 1000

       sampling=name[,name,...]
           The method to be used for sampling the input dataset
           Options: equal, overlaps, overlapped, starts, started, finishes, finished, during, contains
           Default: contains

       where=sql_query
           WHERE conditions of SQL statement without ’where’ keyword used in the temporal GIS framework
           Example: start_time > ’2001-01-01 12:30:00’

DESCRIPTION

       t.rast.aggregate  temporally  aggregates  space  time raster datasets by a specific temporal granularity.
       This module support absolute and relative time. The temporal granularity of absolute time can be seconds,
       minutes,  hours,  days,  weeks, months or years. Mixing of granularities eg. "1 year, 3 months 5 days" is
       not supported. In case of relative time the temporal unit of the input space time raster dataset is used.
       The granularity must be specified with an integer value.

       This  module  is  sensitive  to  the  current  region and mask settings, hence spatial extent and spatial
       resolution. In case the registered raster maps of the input space  time  raster  dataset  have  different
       spatial  resolutions,  the  default  nearest  neighbor  resampling  method  is  used  for runtime spatial
       aggregation.

NOTES

       The raster module r.series is used internally. Hence all aggregate methods of r.series are supported. See
       the r.series manual page for details.

       This  module  will  shift  the start date for each aggregation process depending on the provided temporal
       granularity. The following shifts will performed:

           •   granularity years: will start at the first of January, hence 14-08-2012 00:01:30 will be  shifted
               to 01-01-2012 00:00:00

           •   granularity  months:  will start at the first day of a month, hence 14-08-2012 will be shifted to
               01-08-2012 00:00:00

           •   granularity weeks: will start at the first day of a week (Monday), hence 14-08-2012 01:30:30 will
               be shifted to 13-08-2012 01:00:00

           •   granularity  days:  will  start  at  the  first  hour of a day, hence 14-08-2012 00:01:30 will be
               shifted to 14-08-2012 00:00:00

           •   granularity hours: will start at the first minute of a hour, hence 14-08-2012  01:30:30  will  be
               shifted to 14-08-2012 01:00:00

           •   granularity  minutes:  will start at the first second of a minute, hence 14-08-2012 01:30:30 will
               be shifted to 14-08-2012 01:30:00

       The specification of the temporal relation between the aggregation intervals and the raster map layers is
       always  formulated  from  the  aggregation  interval  viewpoint.  Hence,  the relation contains has to be
       specified to aggregate map layer that are temporally located in an aggregation interval.

       Parallel processing is supported in case that  more  than  one  interval  is  available  for  aggregation
       computation.  Internally  several  r.series modules will be started, depending on the number of specified
       parallel processes (nprocs) and the number of intervals to aggregate.

EXAMPLES

   Aggregation of monthly data into yearly data
       In this example the user is going to aggregate monthly data into yearly data, running:
       t.rast.aggregate input=tempmean_monthly output=tempmean_yearly \
                        basename=tempmean_year \
                        granularity="1 years" method=average
       t.support input=tempmean_yearly \
                 title="Yearly precipitation" \
                 description="Aggregated precipitation dataset with yearly resolution"
       t.info tempmean_yearly
        +-------------------- Space Time Raster Dataset -----------------------------+
        |                                                                            |
        +-------------------- Basic information -------------------------------------+
        | Id: ........................ tempmean_yearly@climate_2000_2012
        | Name: ...................... tempmean_yearly
        | Mapset: .................... climate_2000_2012
        | Creator: ................... lucadelu
        | Temporal type: ............. absolute
        | Creation time: ............. 2014-11-27 10:25:21.243319
        | Modification time:.......... 2014-11-27 10:25:21.862136
        | Semantic type:.............. mean
        +-------------------- Absolute time -----------------------------------------+
        | Start time:................. 2009-01-01 00:00:00
        | End time:................... 2013-01-01 00:00:00
        | Granularity:................ 1 year
        | Temporal type of maps:...... interval
        +-------------------- Spatial extent ----------------------------------------+
        | North:...................... 320000.0
        | South:...................... 10000.0
        | East:.. .................... 935000.0
        | West:....................... 120000.0
        | Top:........................ 0.0
        | Bottom:..................... 0.0
        +-------------------- Metadata information ----------------------------------+
        | Raster register table:...... raster_map_register_514082e62e864522a13c8123d1949dea
        | North-South resolution min:. 500.0
        | North-South resolution max:. 500.0
        | East-west resolution min:... 500.0
        | East-west resolution max:... 500.0
        | Minimum value min:.......... 7.370747
        | Minimum value max:.......... 8.81603
        | Maximum value min:.......... 17.111387
        | Maximum value max:.......... 17.915511
        | Aggregation type:........... average
        | Number of registered maps:.. 4
        |
        | Title: Yearly precipitation
        | Monthly precipitation
        | Description: Aggregated precipitation dataset with yearly resolution
        | Dataset with monthly precipitation
        | Command history:
        | # 2014-11-27 10:25:21
        | t.rast.aggregate input="tempmean_monthly"
        |     output="tempmean_yearly" basename="tempmean_year" granularity="1 years"
        |     method="average"
        |
        | # 2014-11-27 10:26:21
        | t.support input=tempmean_yearly \
        |        title="Yearly precipitation" \
        |        description="Aggregated precipitation dataset with yearly resolution"
        +----------------------------------------------------------------------------+

   Different aggregations and map name suffix variants
       Examples of resulting naming schemes for different aggregations when using the suffix option:

   Weekly aggregation
       t.rast.aggregate input=daily_temp output=weekly_avg_temp \
         basename=weekly_avg_temp method=average granularity="1 weeks"
       t.rast.list weekly_avg_temp
       name|mapset|start_time|end_time
       weekly_avg_temp_2003_01|climate|2003-01-03 00:00:00|2003-01-10 00:00:00
       weekly_avg_temp_2003_02|climate|2003-01-10 00:00:00|2003-01-17 00:00:00
       weekly_avg_temp_2003_03|climate|2003-01-17 00:00:00|2003-01-24 00:00:00
       weekly_avg_temp_2003_04|climate|2003-01-24 00:00:00|2003-01-31 00:00:00
       weekly_avg_temp_2003_05|climate|2003-01-31 00:00:00|2003-02-07 00:00:00
       weekly_avg_temp_2003_06|climate|2003-02-07 00:00:00|2003-02-14 00:00:00
       weekly_avg_temp_2003_07|climate|2003-02-14 00:00:00|2003-02-21 00:00:00
       Variant with suffix set to granularity:
       t.rast.aggregate input=daily_temp output=weekly_avg_temp \
         basename=weekly_avg_temp suffix=gran method=average \
         granularity="1 weeks"
       t.rast.list weekly_avg_temp
       name|mapset|start_time|end_time
       weekly_avg_temp_2003_01_03|climate|2003-01-03 00:00:00|2003-01-10 00:00:00
       weekly_avg_temp_2003_01_10|climate|2003-01-10 00:00:00|2003-01-17 00:00:00
       weekly_avg_temp_2003_01_17|climate|2003-01-17 00:00:00|2003-01-24 00:00:00
       weekly_avg_temp_2003_01_24|climate|2003-01-24 00:00:00|2003-01-31 00:00:00
       weekly_avg_temp_2003_01_31|climate|2003-01-31 00:00:00|2003-02-07 00:00:00
       weekly_avg_temp_2003_02_07|climate|2003-02-07 00:00:00|2003-02-14 00:00:00
       weekly_avg_temp_2003_02_14|climate|2003-02-14 00:00:00|2003-02-21 00:00:00

   Monthly aggregation
       t.rast.aggregate input=daily_temp output=monthly_avg_temp \
         basename=monthly_avg_temp suffix=gran method=average \
         granularity="1 months"
       t.rast.list monthly_avg_temp
       name|mapset|start_time|end_time
       monthly_avg_temp_2003_01|climate|2003-01-01 00:00:00|2003-02-01 00:00:00
       monthly_avg_temp_2003_02|climate|2003-02-01 00:00:00|2003-03-01 00:00:00
       monthly_avg_temp_2003_03|climate|2003-03-01 00:00:00|2003-04-01 00:00:00
       monthly_avg_temp_2003_04|climate|2003-04-01 00:00:00|2003-05-01 00:00:00
       monthly_avg_temp_2003_05|climate|2003-05-01 00:00:00|2003-06-01 00:00:00
       monthly_avg_temp_2003_06|climate|2003-06-01 00:00:00|2003-07-01 00:00:00

   Yearly aggregation
       t.rast.aggregate input=daily_temp output=yearly_avg_temp \
         basename=yearly_avg_temp suffix=gran method=average \
         granularity="1 years"
       t.rast.list yearly_avg_temp
       name|mapset|start_time|end_time
       yearly_avg_temp_2003|climate|2003-01-01 00:00:00|2004-01-01 00:00:00
       yearly_avg_temp_2004|climate|2004-01-01 00:00:00|2005-01-01 00:00:00

SEE ALSO

        t.rast.aggregate.ds, t.rast.extract, t.info, r.series, g.region, r.mask

       Temporal data processing Wiki

AUTHOR

       Sören Gebbert, Thünen Institute of Climate-Smart Agriculture

SOURCE CODE

       Available at: t.rast.aggregate source code (history)

       Main index | Temporal index | Topics index | Keywords index | Graphical index | Full index

       © 2003-2019 GRASS Development Team, GRASS GIS 7.8.2 Reference Manual