focal (3) erl_syntax.3erl.gz

Provided by: erlang-manpages_22.2.7+dfsg-1ubuntu0.2_all bug

NAME

       erl_syntax - Abstract Erlang syntax trees.

DESCRIPTION

       Abstract Erlang syntax trees.

       This  module  defines an abstract data type for representing Erlang source code as syntax trees, in a way
       that is backwards compatible with the data structures created  by  the  Erlang  standard  library  parser
       module  erl_parse (often referred to as "parse trees", which is a bit of a misnomer). This means that all
       erl_parse trees are valid abstract syntax trees, but the reverse is not true: abstract syntax  trees  can
       in general not be used as input to functions expecting an erl_parse tree. However, as long as an abstract
       syntax tree represents a correct Erlang program, the function revert/1 should be able to transform it  to
       the corresponding erl_parse representation.

       A  recommended starting point for the first-time user is the documentation of the syntaxTree() data type,
       and the function type/1.

       NOTES:

       This module deals with the composition and decomposition of syntactic entities (as  opposed  to  semantic
       ones);  its  purpose  is  to  hide  all  direct references to the data structures used to represent these
       entities. With few exceptions, the functions in this module perform no semantic interpretation  of  their
       inputs,  and  in  general,  the user is assumed to pass type-correct arguments - if this is not done, the
       effects are not defined.

       With the exception of the erl_parse() data structures, the internal representations  of  abstract  syntax
       trees  are  subject  to  change  without  notice,  and  should  not  be  documented  outside this module.
       Furthermore, we do not give any guarantees on how an abstract syntax tree may or may not be  represented,
       with  the  following  exceptions: no syntax tree is represented by a single atom, such as none, by a list
       constructor [X | Y], or by the empty list []. This can be relied on when writing functions  that  operate
       on syntax trees.

DATA TYPES

         encoding() = utf8 | unicode | latin1:

         erl_parse()  =  erl_parse:abstract_clause()  |  erl_parse:abstract_expr() | erl_parse:abstract_form() |
         erl_parse:abstract_type() | erl_parse:form_info() | {bin_element, term(), term(), term(), term()}:

         forms() = syntaxTree() | [syntaxTree()]:

         guard() = none | syntaxTree() | [syntaxTree()] | [[syntaxTree()]]:

         padding() = none | integer():

         syntaxTree():

           An abstract syntax tree. The erl_parse() "parse tree"  representation  is  a  proper  subset  of  the
           syntaxTree() representation.

           Every  abstract  syntax  tree  node  has  a  type,  given  by the function type/1. Each node also has
           associated attributes; see get_attrs/1 for details. The  functions  make_tree/2  and  subtrees/1  are
           generic  constructor/decomposition  functions for abstract syntax trees. The functions abstract/1 and
           concrete/1 convert between constant Erlang terms and their  syntactic  representations.  The  set  of
           syntax tree nodes is extensible through the tree/2 function.

           A syntax tree can be transformed to the erl_parse() representation with the revert/1 function.

         syntaxTreeAttributes():

           This is an abstract representation of syntax tree node attributes; see the function get_attrs/1.

EXPORTS

       abstract(T::term()) -> syntaxTree()

              Returns  the  syntax  tree corresponding to an Erlang term. Term must be a literal term, i.e., one
              that can be represented as a source code literal. Thus, it may not contain a  process  identifier,
              port,  reference  or  function  value  as a subterm. The function recognises printable strings, in
              order to get a compact and readable representation. Evaluation fails with reason badarg if Term is
              not a literal term.

              See also: concrete/1, is_literal/1.

       add_ann(A::term(), Node::syntaxTree()) -> syntaxTree()

              Appends the term Annotation to the list of user annotations of Node.

              Note:  this  is  equivalent  to  set_ann(Node, [Annotation | get_ann(Node)]), but potentially more
              efficient.

              See also: get_ann/1, set_ann/2.

       add_postcomments(Cs::[syntaxTree()], Node::syntaxTree()) -> syntaxTree()

              Appends Comments to the post-comments of Node.

              Note: This is  equivalent  to  set_postcomments(Node,  get_postcomments(Node)  ++  Comments),  but
              potentially more efficient.

              See also: add_precomments/2, comment/2, get_postcomments/1, join_comments/2, set_postcomments/2.

       add_precomments(Cs::[syntaxTree()], Node::syntaxTree()) -> syntaxTree()

              Appends Comments to the pre-comments of Node.

              Note:  This  is  equivalent  to  set_precomments(Node,  get_precomments(Node)  ++  Comments),  but
              potentially more efficient.

              See also: add_postcomments/2, comment/2, get_precomments/1, join_comments/2, set_precomments/2.

       annotated_type(Name::syntaxTree(), Type::syntaxTree()) -> syntaxTree()

              Creates an abstract annotated type expression. The result represents "Name :: Type".

              See also: annotated_type_body/1, annotated_type_name/1.

       annotated_type_body(Node::syntaxTree()) -> syntaxTree()

              Returns the type subtrees of an annotated_type node.

              See also: annotated_type/2.

       annotated_type_name(Node::syntaxTree()) -> syntaxTree()

              Returns the name subtree of an annotated_type node.

              See also: annotated_type/2.

       application(Operator::syntaxTree(), Arguments::[syntaxTree()]) -> syntaxTree()

              Creates an abstract function application expression. If Arguments is [A1,  ...,  An],  the  result
              represents "Operator(A1, ..., An)".

              See also: application/3, application_arguments/1, application_operator/1.

       application(Module::none | syntaxTree(), Name::syntaxTree(), Arguments::[syntaxTree()]) -> syntaxTree()

              Creates an abstract function application expression. If Module is none, this is call is equivalent
              to     application(Function,     Arguments),     otherwise      it      is      equivalent      to
              application(module_qualifier(Module, Function), Arguments).

              (This is a utility function.)

              See also: application/2, module_qualifier/2.

       application_arguments(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of argument subtrees of an application node.

              See also: application/2.

       application_operator(Node::syntaxTree()) -> syntaxTree()

              Returns the operator subtree of an application node.

              Note: if Node represents "M:F(...)", then the result is the subtree representing "M:F".

              See also: application/2, module_qualifier/2.

       arity_qualifier(Body::syntaxTree(), Arity::syntaxTree()) -> syntaxTree()

              Creates an abstract arity qualifier. The result represents "Body/Arity".

              See also: arity_qualifier_argument/1, arity_qualifier_body/1.

       arity_qualifier_argument(Node::syntaxTree()) -> syntaxTree()

              Returns the argument (the arity) subtree of an arity_qualifier node.

              See also: arity_qualifier/2.

       arity_qualifier_body(Node::syntaxTree()) -> syntaxTree()

              Returns the body subtree of an arity_qualifier node.

              See also: arity_qualifier/2.

       atom(Name::atom() | string()) -> syntaxTree()

              Creates an abstract atom literal. The print name of the atom is the character sequence represented
              by Name.

              See also: atom_literal/1, atom_literal/2, atom_name/1, atom_value/1, is_atom/2.

       atom_literal(Node::syntaxTree()) -> string()

              Returns the literal string represented by an atom node.  This  includes  surrounding  single-quote
              characters if necessary. Characters beyond 255 will be escaped.

              Note  that  e.g. the result of atom("x\ny") represents any and all of `x\ny'', `x\12y'', `x\012y''
              and `x\^Jy\''; see string/1.

              See also: atom/1, string/1.

       atom_literal(Node, X2) -> term()

              Returns the literal string represented by an atom node.  This  includes  surrounding  single-quote
              characters if necessary. Depending on the encoding a character beyond 255 will be escaped (latin1)
              or copied as is (utf8).

              See also: atom/1, atom_literal/1, string/1.

       atom_name(Node::syntaxTree()) -> string()

              Returns the printname of an atom node.

              See also: atom/1.

       atom_value(Node::syntaxTree()) -> atom()

              Returns the value represented by an atom node.

              See also: atom/1.

       attribute(Name::syntaxTree()) -> syntaxTree()

              Equivalent to attribute(Name, none).

       attribute(Name::syntaxTree(), Args::none | [syntaxTree()]) -> syntaxTree()

              Creates an abstract program attribute. If Arguments  is  [A1,  ...,  An],  the  result  represents
              "-Name(A1, ..., An).". Otherwise, if Arguments is none, the result represents "-Name.". The latter
              form makes it possible to represent preprocessor directives  such  as  "-endif.".  Attributes  are
              source code forms.

              Note:  The  preprocessor  macro  definition  directive  "-define(Name,  Body)." has relatively few
              requirements on the syntactical form of Body (viewed as a sequence of tokens). The text node  type
              can be used for a Body that is not a normal Erlang construct.

              See also: attribute/1, attribute_arguments/1, attribute_name/1, is_form/1, text/1.

       attribute_arguments(Node::syntaxTree()) -> none | [syntaxTree()]

              Returns  the  list of argument subtrees of an attribute node, if any. If Node represents "-Name.",
              the result is none. Otherwise, if  Node  represents  "-Name(E1,  ...,  En).",  [E1,  ...,  E1]  is
              returned.

              See also: attribute/1.

       attribute_name(Node::syntaxTree()) -> syntaxTree()

              Returns the name subtree of an attribute node.

              See also: attribute/1.

       binary(List::[syntaxTree()]) -> syntaxTree()

              Creates  an  abstract  binary-object  template.  If Fields is [F1, ..., Fn], the result represents
              "<<F1, ..., Fn>>".

              See also: binary_field/2, binary_fields/1.

       binary_comp(Template::syntaxTree(), Body::[syntaxTree()]) -> syntaxTree()

              Creates an abstract binary comprehension.  If  Body  is  [E1,  ...,  En],  the  result  represents
              "<<Template || E1, ..., En>>".

              See also: binary_comp_body/1, binary_comp_template/1, generator/2.

       binary_comp_body(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of body subtrees of a binary_comp node.

              See also: binary_comp/2.

       binary_comp_template(Node::syntaxTree()) -> syntaxTree()

              Returns the template subtree of a binary_comp node.

              See also: binary_comp/2.

       binary_field(Body::syntaxTree()) -> syntaxTree()

              Equivalent to binary_field(Body, []).

       binary_field(Body::syntaxTree(), Types::[syntaxTree()]) -> syntaxTree()

              Creates  an  abstract  binary  template  field.  If  Types  is  the  empty list, the result simply
              represents "Body", otherwise, if Types is [T1, ..., Tn], the result represents "Body/T1-...-Tn".

              See also:  binary/1,  binary_field/1,  binary_field/3,  binary_field_body/1,  binary_field_size/1,
              binary_field_types/1.

       binary_field(Body::syntaxTree(), Size::none | syntaxTree(), Types::[syntaxTree()]) -> syntaxTree()

              Creates   an   abstract   binary   template  field.  If  Size  is  none,  this  is  equivalent  to
              "binary_field(Body, Types)", otherwise  it  is  equivalent  to  "binary_field(size_qualifier(Body,
              Size), Types)".

              (This is a utility function.)

              See also: binary/1, binary_field/2, size_qualifier/2.

       binary_field_body(Node::syntaxTree()) -> syntaxTree()

              Returns the body subtree of a binary_field.

              See also: binary_field/2.

       binary_field_size(Node::syntaxTree()) -> none | syntaxTree()

              Returns  the size specifier subtree of a binary_field node, if any. If Node represents "Body:Size"
              or "Body:Size/T1, ..., Tn", the result is Size, otherwise none is returned.

              (This is a utility function.)

              See also: binary_field/2, binary_field/3.

       binary_field_types(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of type-specifier subtrees of a binary_field node. If  Node  represents  ".../T1,
              ..., Tn", the result is [T1, ..., Tn], otherwise the result is the empty list.

              See also: binary_field/2.

       binary_fields(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of field subtrees of a binary node.

              See also: binary/1, binary_field/2.

       binary_generator(Pattern::syntaxTree(), Body::syntaxTree()) -> syntaxTree()

              Creates an abstract binary_generator. The result represents "Pattern <- Body".

              See also: binary_comp/2, binary_generator_body/1, binary_generator_pattern/1, list_comp/2.

       binary_generator_body(Node::syntaxTree()) -> syntaxTree()

              Returns the body subtree of a generator node.

              See also: binary_generator/2.

       binary_generator_pattern(Node::syntaxTree()) -> syntaxTree()

              Returns the pattern subtree of a generator node.

              See also: binary_generator/2.

       bitstring_type(M::syntaxTree(), N::syntaxTree()) -> syntaxTree()

              Creates an abstract bitstring type. The result represents "<<_:M, _:_*N>>".

              See also: bitstring_type_m/1, bitstring_type_n/1.

       bitstring_type_m(Node::syntaxTree()) -> syntaxTree()

              Returns the number of start bits, M, of a bitstring_type node.

              See also: bitstring_type/2.

       bitstring_type_n(Node::syntaxTree()) -> syntaxTree()

              Returns the segment size, N, of a bitstring_type node.

              See also: bitstring_type/2.

       block_expr(Body::[syntaxTree()]) -> syntaxTree()

              Creates  an  abstract block expression. If Body is [B1, ..., Bn], the result represents "begin B1,
              ..., Bn end".

              See also: block_expr_body/1.

       block_expr_body(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of body subtrees of a block_expr node.

              See also: block_expr/1.

       case_expr(Argument::syntaxTree(), Clauses::[syntaxTree()]) -> syntaxTree()

              Creates an abstract case-expression. If Clauses is [C1, ...,  Cn],  the  result  represents  "case
              Argument of C1; ...; Cn end". More exactly, if each Ci represents "(Pi) Gi -> Bi", then the result
              represents "case Argument of P1 G1 -> B1; ...; Pn Gn -> Bn end".

              See also: case_expr_argument/1, case_expr_clauses/1, clause/3, cond_expr/1, if_expr/1.

       case_expr_argument(Node::syntaxTree()) -> syntaxTree()

              Returns the argument subtree of a case_expr node.

              See also: case_expr/2.

       case_expr_clauses(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of clause subtrees of a case_expr node.

              See also: case_expr/2.

       catch_expr(Expr::syntaxTree()) -> syntaxTree()

              Creates an abstract catch-expression. The result represents "catch Expr".

              See also: catch_expr_body/1.

       catch_expr_body(Node::syntaxTree()) -> syntaxTree()

              Returns the body subtree of a catch_expr node.

              See also: catch_expr/1.

       char(Char::char()) -> syntaxTree()

              Creates an abstract character literal. The result represents "$Name", where  Name  corresponds  to
              Value.

              Note: the literal corresponding to a particular character value is not uniquely defined. E.g., the
              character "a" can be written both as "$a" and "$\141", and a  Tab  character  can  be  written  as
              "$\11", "$\011" or "$\t".

              See also: char_literal/1, char_literal/2, char_value/1, is_char/2.

       char_literal(Node::syntaxTree()) -> nonempty_string()

              Returns  the  literal  string represented by a char node. This includes the leading "$" character.
              Characters beyond 255 will be escaped.

              See also: char/1.

       char_literal(Node::syntaxTree(), X2::encoding()) -> nonempty_string()

              Returns the literal string represented by a char node. This includes the  leading  "$"  character.
              Depending on the encoding a character beyond 255 will be escaped (latin1) or copied as is (utf8).

              See also: char/1.

       char_value(Node::syntaxTree()) -> char()

              Returns the value represented by a char node.

              See also: char/1.

       class_qualifier(Class::syntaxTree(), Body::syntaxTree()) -> syntaxTree()

              Creates an abstract class qualifier. The result represents "Class:Body".

              See   also:   class_qualifier_argument/1,   class_qualifier_body/1,  class_qualifier_stacktrace/1,
              try_expr/4.

       class_qualifier(Class::syntaxTree(), Body::syntaxTree(), Stacktrace::syntaxTree()) -> syntaxTree()

              Creates an abstract class qualifier. The result represents "Class:Body:Stacktrace".

              See also: class_qualifier_argument/1, class_qualifier_body/1, try_expr/4.

       class_qualifier_argument(Node::syntaxTree()) -> syntaxTree()

              Returns the argument (the class) subtree of a class_qualifier node.

              See also: class_qualifier/2.

       class_qualifier_body(Node::syntaxTree()) -> syntaxTree()

              Returns the body subtree of a class_qualifier node.

              See also: class_qualifier/2.

       class_qualifier_stacktrace(Node::syntaxTree()) -> syntaxTree()

              Returns the stacktrace subtree of a class_qualifier node.

              See also: class_qualifier/2.

       clause(Guard::guard(), Body::[syntaxTree()]) -> syntaxTree()

              Equivalent to clause([], Guard, Body).

       clause(Patterns::[syntaxTree()], Guard::guard(), Body::[syntaxTree()]) -> syntaxTree()

              Creates an abstract clause. If Patterns is [P1, ..., Pn] and Body is [B1, ..., Bm], then if  Guard
              is  none, the result represents "(P1, ..., Pn) -> B1, ..., Bm", otherwise, unless Guard is a list,
              the result represents "(P1, ..., Pn) when Guard -> B1, ..., Bm".

              For simplicity, the Guard argument may also be any of the following:

                * An empty list []. This is equivalent to passing none.

                * A nonempty list [E1, ..., Ej] of syntax trees. This is equivalent to passing  conjunction([E1,
                  ..., Ej]).

                * A  nonempty list of lists of syntax trees [[E1_1, ..., E1_k1], ..., [Ej_1, ..., Ej_kj]], which
                  is equivalent to passing disjunction([conjunction([E1_1, ..., E1_k1]), ..., conjunction([Ej_1,
                  ..., Ej_kj])]).

              See also: clause/2, clause_body/1, clause_guard/1, clause_patterns/1.

       clause_body(Node::syntaxTree()) -> [syntaxTree()]

              Return the list of body subtrees of a clause node.

              See also: clause/3.

       clause_guard(Node::syntaxTree()) -> none | syntaxTree()

              Returns  the  guard subtree of a clause node, if any. If Node represents "(P1, ..., Pn) when Guard
              -> B1, ..., Bm", Guard is returned. Otherwise, the result is none.

              See also: clause/3.

       clause_patterns(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of pattern subtrees of a clause node.

              See also: clause/3.

       comment(Strings::[string()]) -> syntaxTree()

              Equivalent to comment(none, Strings).

       comment(Pad::padding(), Strings::[string()]) -> syntaxTree()

              Creates an abstract comment with the given padding and text. If Strings is a (possibly empty) list
              ["Txt1", ..., "TxtN"], the result represents the source code text

                   %Txt1
                   ...
                   %TxtN

              Padding  states  the  number of empty character positions to the left of the comment separating it
              horizontally from source code on the same line (if any). If Padding is none,  a  default  positive
              number  is  used.  If  Padding  is  an  integer  less than 1, there should be no separating space.
              Comments are in themselves regarded as source program forms.

              See also: comment/1, is_form/1.

       comment_padding(Node::syntaxTree()) -> padding()

              Returns the amount of padding before the comment, or none. The latter means that a default padding
              may be used.

              See also: comment/2.

       comment_text(Node::syntaxTree()) -> [string()]

              Returns the lines of text of the abstract comment.

              See also: comment/2.

       compact_list(Node::syntaxTree()) -> syntaxTree()

              Yields  the  most  compact  form for an abstract list skeleton. The result either represents "[E1,
              ..., En | Tail]", where Tail is not  a  list  skeleton,  or  otherwise  simply  "[E1,  ...,  En]".
              Annotations  on  subtrees  of Node that represent list skeletons may be lost, but comments will be
              propagated to the result. Returns Node itself if Node does not represent a list skeleton.

              See also: list/2, normalize_list/1.

       concrete(Node::syntaxTree()) -> term()

              Returns the Erlang term represented by a syntax tree. Evaluation fails with reason badarg if  Node
              does not represent a literal term.

              Note:  Currently,  the set of syntax trees which have a concrete representation is larger than the
              set of trees which can be built using the function  abstract/1.  An  abstract  character  will  be
              concretised  as  an  integer, while abstract/1 does not at present yield an abstract character for
              any input. (Use the char/1 function to explicitly create an abstract character.)

              Note: arity_qualifier nodes are recognized. This is to follow The Erlang Parser when it  comes  to
              wild  attributes:  both  {F,  A}  and  F/A  are  recognized,  which makes it possible to turn wild
              attributes into recognized attributes without at the same time making  it  impossible  to  compile
              files using the new syntax with the old version of the Erlang Compiler.

              See also: abstract/1, char/1, is_literal/1.

       cond_expr(Clauses::[syntaxTree()]) -> syntaxTree()

              Creates  an abstract cond-expression. If Clauses is [C1, ..., Cn], the result represents "cond C1;
              ...; Cn end". More exactly, if each Ci represents "() Ei -> Bi", then the result represents  "cond
              E1 -> B1; ...; En -> Bn end".

              See also: case_expr/2, clause/3, cond_expr_clauses/1.

       cond_expr_clauses(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of clause subtrees of a cond_expr node.

              See also: cond_expr/1.

       conjunction(Tests::[syntaxTree()]) -> syntaxTree()

              Creates an abstract conjunction. If List is [E1, ..., En], the result represents "E1, ..., En".

              See also: conjunction_body/1, disjunction/1.

       conjunction_body(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of body subtrees of a conjunction node.

              See also: conjunction/1.

       cons(Head::syntaxTree(), Tail::syntaxTree()) -> syntaxTree()

              "Optimising"  list  skeleton cons operation. Creates an abstract list skeleton whose first element
              is Head and whose tail corresponds to Tail. This is similar to  list([Head],  Tail),  except  that
              Tail  may not be none, and that the result does not necessarily represent exactly "[Head | Tail]",
              but may depend on the Tail subtree. E.g., if Tail represents [X,  Y],  the  result  may  represent
              "[Head,  X,  Y]",  rather  than  "[Head | [X, Y]]". Annotations on Tail itself may be lost if Tail
              represents a list skeleton, but comments on Tail are propagated to the result.

              See also: list/2, list_head/1, list_tail/1.

       constrained_function_type(FunctionType::syntaxTree(), FunctionConstraint::[syntaxTree()]) -> syntaxTree()

              Creates an abstract constrained function type. If FunctionConstraint is [C1, ..., Cn], the  result
              represents "FunctionType when C1, ...Cn".

              See also: constrained_function_type_argument/1, constrained_function_type_body/1.

       constrained_function_type_argument(Node::syntaxTree()) -> syntaxTree()

              Returns the function constraint subtree of a constrained_function_type node.

              See also: constrained_function_type/2.

       constrained_function_type_body(Node::syntaxTree()) -> syntaxTree()

              Returns the function type subtree of a constrained_function_type node.

              See also: constrained_function_type/2.

       constraint(Name::syntaxTree(), Types::[syntaxTree()]) -> syntaxTree()

              Creates an abstract (subtype) constraint. The result represents "Name :: Type".

              See also: constraint_argument/1, constraint_body/1.

       constraint_argument(Node::syntaxTree()) -> syntaxTree()

              Returns the name subtree of a constraint node.

              See also: constraint/2.

       constraint_body(Node::syntaxTree()) -> [syntaxTree()]

              Returns the type subtree of a constraint node.

              See also: constraint/2.

       copy_ann(Source::syntaxTree(), Target::syntaxTree()) -> syntaxTree()

              Copies the list of user annotations from Source to Target.

              Note: this is equivalent to set_ann(Target, get_ann(Source)), but potentially more efficient.

              See also: get_ann/1, set_ann/2.

       copy_attrs(S::syntaxTree(), T::syntaxTree()) -> syntaxTree()

              Copies the attributes from Source to Target.

              Note: this is equivalent to set_attrs(Target, get_attrs(Source)), but potentially more efficient.

              See also: get_attrs/1, set_attrs/2.

       copy_comments(Source::syntaxTree(), Target::syntaxTree()) -> syntaxTree()

              Copies the pre- and postcomments from Source to Target.

              Note:  This  is  equivalent  to set_postcomments(set_precomments(Target, get_precomments(Source)),
              get_postcomments(Source)), but potentially more efficient.

              See also: comment/2, get_postcomments/1, get_precomments/1, set_postcomments/2, set_precomments/2.

       copy_pos(Source::syntaxTree(), Target::syntaxTree()) -> syntaxTree()

              Copies the position information from Source to Target.

              This is equivalent to set_pos(Target, get_pos(Source)), but potentially more efficient.

              See also: get_pos/1, set_pos/2.

       data(Tree::syntaxTree()) -> term()

              For special purposes only. Returns the associated data of a syntax  tree  node.  Evaluation  fails
              with reason badarg if is_tree(Node) does not yield true.

              See also: tree/2.

       disjunction(Tests::[syntaxTree()]) -> syntaxTree()

              Creates an abstract disjunction. If List is [E1, ..., En], the result represents "E1; ...; En".

              See also: conjunction/1, disjunction_body/1.

       disjunction_body(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of body subtrees of a disjunction node.

              See also: disjunction/1.

       eof_marker() -> syntaxTree()

              Creates  an  abstract end-of-file marker. This represents the end of input when reading a sequence
              of source code forms. An end-of-file marker is itself regarded as a source code form (namely,  the
              last in any sequence in which it occurs). It has no defined lexical form.

              Note: this is retained only for backwards compatibility with existing parsers and tools.

              See also: error_marker/1, is_form/1, warning_marker/1.

       error_marker(Error::term()) -> syntaxTree()

              Creates  an  abstract  error marker. The result represents an occurrence of an error in the source
              code, with an associated Erlang I/O ErrorInfo structure given by Error (see  module  io(3erl)  for
              details). Error markers are regarded as source code forms, but have no defined lexical form.

              Note: this is supported only for backwards compatibility with existing parsers and tools.

              See also: eof_marker/0, error_marker_info/1, is_form/1, warning_marker/1.

       error_marker_info(Node::syntaxTree()) -> term()

              Returns the ErrorInfo structure of an error_marker node.

              See also: error_marker/1.

       flatten_form_list(Node::syntaxTree()) -> syntaxTree()

              Flattens  sublists  of  a  form_list  node.  Returns  Node  with  all  subtrees  of type form_list
              recursively expanded, yielding a single "flat" abstract form sequence.

              See also: form_list/1.

       float(Value::float()) -> syntaxTree()

              Creates an abstract floating-point literal. The lexical representation is  the  decimal  floating-
              point numeral of Value.

              See also: float_literal/1, float_value/1.

       float_literal(Node::syntaxTree()) -> string()

              Returns the numeral string represented by a float node.

              See also: float/1.

       float_value(Node::syntaxTree()) -> float()

              Returns  the value represented by a float node. Note that floating-point values should usually not
              be compared for equality.

              See also: float/1.

       form_list(Forms::[syntaxTree()]) -> syntaxTree()

              Creates an abstract sequence of "source code forms". If Forms is [F1, ..., Fn], where each Fi is a
              form (see is_form/1, the result represents

                   F1
                   ...
                   Fn

              where the Fi are separated by one or more line breaks. A node of type form_list is itself regarded
              as a source code form; see flatten_form_list/1.

              Note: this is simply a way of grouping source code forms as a single syntax tree, usually in order
              to form an Erlang module definition.

              See also: flatten_form_list/1, form_list_elements/1, is_form/1.

       form_list_elements(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of subnodes of a form_list node.

              See also: form_list/1.

       fun_expr(Clauses::[syntaxTree()]) -> syntaxTree()

              Creates  an  abstract  fun-expression. If Clauses is [C1, ..., Cn], the result represents "fun C1;
              ...; Cn end". More exactly, if each Ci represents "(Pi1, ..., Pim) Gi  ->  Bi",  then  the  result
              represents "fun (P11, ..., P1m) G1 -> B1; ...; (Pn1, ..., Pnm) Gn -> Bn end".

              See also: fun_expr_arity/1, fun_expr_clauses/1.

       fun_expr_arity(Node::syntaxTree()) -> arity()

              Returns  the arity of a fun_expr node. The result is the number of parameter patterns in the first
              clause of the fun-expression; subsequent clauses are ignored.

              An exception is thrown if fun_expr_clauses(Node) returns an empty list, or if the first element of
              that list is not a syntax tree C of type clause such that clause_patterns(C) is a nonempty list.

              See also: clause/3, clause_patterns/1, fun_expr/1, fun_expr_clauses/1.

       fun_expr_clauses(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of clause subtrees of a fun_expr node.

              See also: fun_expr/1.

       fun_type() -> syntaxTree()

              Creates an abstract fun of any type. The result represents "fun()".

       function(Name::syntaxTree(), Clauses::[syntaxTree()]) -> syntaxTree()

              Creates  an abstract function definition. If Clauses is [C1, ..., Cn], the result represents "Name
              C1; ...; Name Cn.". More exactly, if each Ci represents "(Pi1, ...,  Pim)  Gi  ->  Bi",  then  the
              result  represents  "Name(P11,  ...,  P1m) G1 -> B1; ...; Name(Pn1, ..., Pnm) Gn -> Bn.". Function
              definitions are source code forms.

              See also: function_arity/1, function_clauses/1, function_name/1, is_form/1.

       function_arity(Node::syntaxTree()) -> arity()

              Returns the arity of a function node. The result is the number of parameter patterns in the  first
              clause of the function; subsequent clauses are ignored.

              An exception is thrown if function_clauses(Node) returns an empty list, or if the first element of
              that list is not a syntax tree C of type clause such that clause_patterns(C) is a nonempty list.

              See also: clause/3, clause_patterns/1, function/2, function_clauses/1.

       function_clauses(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of clause subtrees of a function node.

              See also: function/2.

       function_name(Node::syntaxTree()) -> syntaxTree()

              Returns the name subtree of a function node.

              See also: function/2.

       function_type(Type) -> term()

              Equivalent to function_type(any_arity, Type).

       function_type(Arguments::any_arity | syntaxTree(), Return::syntaxTree()) -> syntaxTree()

              Creates an abstract function type. If Arguments is [T1, ..., Tn],  then  if  it  occurs  within  a
              function  specification,  the  result  represents "(T1, ...Tn) -> Return"; otherwise it represents
              "fun((T1, ...Tn) -> Return)". If Arguments is any_arity, it represents "fun((...) -> Return)".

              Note that the erl_parse representation is identical for "FunctionType" and "fun(FunctionType)".

              See also: function_type_arguments/1, function_type_return/1.

       function_type_arguments(Node::syntaxTree()) -> any_arity | [syntaxTree()]

              Returns the argument types subtrees of a function_type node.  If  Node  represents  "fun((...)  ->
              Return)",  any_arity  is  returned;  otherwise,  if  Node  represents  "(T1,  ...Tn) -> Return" or
              "fun((T1, ...Tn) -> Return)", [T1, ..., Tn] is returned.

              See also: function_type/1, function_type/2.

       function_type_return(Node::syntaxTree()) -> syntaxTree()

              Returns the return type subtrees of a function_type node.

              See also: function_type/1, function_type/2.

       generator(Pattern::syntaxTree(), Body::syntaxTree()) -> syntaxTree()

              Creates an abstract generator. The result represents "Pattern <- Body".

              See also: binary_comp/2, generator_body/1, generator_pattern/1, list_comp/2.

       generator_body(Node::syntaxTree()) -> syntaxTree()

              Returns the body subtree of a generator node.

              See also: generator/2.

       generator_pattern(Node::syntaxTree()) -> syntaxTree()

              Returns the pattern subtree of a generator node.

              See also: generator/2.

       get_ann(Tree::syntaxTree()) -> [term()]

              Returns the list of user annotations associated with a syntax tree node. For a newly created node,
              this is the empty list. The annotations may be any terms.

              See also: get_attrs/1, set_ann/2.

       get_attrs(Tree::syntaxTree()) -> syntaxTreeAttributes()

              Returns  a representation of the attributes associated with a syntax tree node. The attributes are
              all the extra information that can be attached  to  a  node.  Currently,  this  includes  position
              information,  source  code  comments,  and user annotations. The result of this function cannot be
              inspected directly; only attached to another node (see set_attrs/2).

              For  accessing  individual   attributes,   see   get_pos/1,   get_ann/1,   get_precomments/1   and
              get_postcomments/1.

              See also: get_ann/1, get_pos/1, get_postcomments/1, get_precomments/1, set_attrs/2.

       get_pos(Tree::syntaxTree()) -> term()

              Returns  the  position  information  associated  with  Node. This is usually a nonnegative integer
              (indicating the source code line number), but may be any term. By default, all new tree nodes have
              their associated position information set to the integer zero.

              See also: get_attrs/1, set_pos/2.

       get_postcomments(Tree::syntaxTree()) -> [syntaxTree()]

              Returns  the  associated  post-comments  of  a  node.  This  is  a possibly empty list of abstract
              comments, in top-down textual order. When the  code  is  formatted,  post-comments  are  typically
              displayed to the right of and/or below the node. For example:

                   {foo, X, Y}     % Post-comment of tuple

              If possible, the comment should be moved past any following separator characters on the same line,
              rather than placing the separators on the following line. E.g.:

                   foo([X | Xs], Y) ->
                       foo(Xs, bar(X));     % Post-comment of 'bar(X)' node
                    ...

              (where the comment is moved past the rightmost ")" and the ";").

              See also: comment/2, get_attrs/1, get_precomments/1, set_postcomments/2.

       get_precomments(Tree::syntaxTree()) -> [syntaxTree()]

              Returns the associated pre-comments of a node. This is a possibly empty list of abstract comments,
              in  top-down  textual  order.  When  the  code  is formatted, pre-comments are typically displayed
              directly above the node. For example:

                   % Pre-comment of function
                   foo(X) -> {bar, X}.

              If possible, the comment should be moved before any preceding separator  characters  on  the  same
              line. E.g.:

                   foo([X | Xs]) ->
                       % Pre-comment of 'bar(X)' node
                       [bar(X) | foo(Xs)];
                   ...

              (where the comment is moved before the "[").

              See also: comment/2, get_attrs/1, get_postcomments/1, set_precomments/2.

       has_comments(Tree::syntaxTree()) -> boolean()

              Yields false if the node has no associated comments, and true otherwise.

              Note:  This is equivalent to (get_precomments(Node) == []) and (get_postcomments(Node) == []), but
              potentially more efficient.

              See also: get_postcomments/1, get_precomments/1, remove_comments/1.

       if_expr(Clauses::[syntaxTree()]) -> syntaxTree()

              Creates an abstract if-expression. If Clauses is [C1, ..., Cn], the result represents "if C1; ...;
              Cn  end".  More exactly, if each Ci represents "() Gi -> Bi", then the result represents "if G1 ->
              B1; ...; Gn -> Bn end".

              See also: case_expr/2, clause/3, if_expr_clauses/1.

       if_expr_clauses(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of clause subtrees of an if_expr node.

              See also: if_expr/1.

       implicit_fun(Name::syntaxTree()) -> syntaxTree()

              Creates an abstract "implicit fun" expression. The  result  represents  "fun  Name".  Name  should
              represent either F/A or M:F/A

              See     also:     arity_qualifier/2,    implicit_fun/2,    implicit_fun/3,    implicit_fun_name/1,
              module_qualifier/2.

       implicit_fun(Name::syntaxTree(), Arity::none | syntaxTree()) -> syntaxTree()

              Creates an  abstract  "implicit  fun"  expression.  If  Arity  is  none,  this  is  equivalent  to
              implicit_fun(Name), otherwise it is equivalent to implicit_fun(arity_qualifier(Name, Arity)).

              (This is a utility function.)

              See also: implicit_fun/1, implicit_fun/3.

       implicit_fun(Module::none | syntaxTree(), Name::syntaxTree(), Arity::syntaxTree()) -> syntaxTree()

              Creates  an  abstract  module-qualified  "implicit  fun"  expression.  If  Module is none, this is
              equivalent    to    implicit_fun(Name,    Arity),    otherwise     it     is     equivalent     to
              implicit_fun(module_qualifier(Module, arity_qualifier(Name, Arity)).

              (This is a utility function.)

              See also: implicit_fun/1, implicit_fun/2.

       implicit_fun_name(Node::syntaxTree()) -> syntaxTree()

              Returns the name subtree of an implicit_fun node.

              Note:  if  Node  represents  "fun N/A" or "fun M:N/A", then the result is the subtree representing
              "N/A" or "M:N/A", respectively.

              See also: arity_qualifier/2, implicit_fun/1, module_qualifier/2.

       infix_expr(Left::syntaxTree(), Operator::syntaxTree(), Right::syntaxTree()) -> syntaxTree()

              Creates an abstract infix operator expression. The result represents "Left Operator Right".

              See also: infix_expr_left/1, infix_expr_operator/1, infix_expr_right/1, prefix_expr/2.

       infix_expr_left(Node::syntaxTree()) -> syntaxTree()

              Returns the left argument subtree of an infix_expr node.

              See also: infix_expr/3.

       infix_expr_operator(Node::syntaxTree()) -> syntaxTree()

              Returns the operator subtree of an infix_expr node.

              See also: infix_expr/3.

       infix_expr_right(Node::syntaxTree()) -> syntaxTree()

              Returns the right argument subtree of an infix_expr node.

              See also: infix_expr/3.

       integer(Value::integer()) -> syntaxTree()

              Creates an abstract integer literal. The lexical representation is the canonical  decimal  numeral
              of Value.

              See also: integer_literal/1, integer_value/1, is_integer/2.

       integer_literal(Node::syntaxTree()) -> string()

              Returns the numeral string represented by an integer node.

              See also: integer/1.

       integer_range_type(Low::syntaxTree(), High::syntaxTree()) -> syntaxTree()

              Creates an abstract range type. The result represents "Low .. High".

              See also: integer_range_type_high/1, integer_range_type_low/1.

       integer_range_type_high(Node::syntaxTree()) -> syntaxTree()

              Returns the high limit of an integer_range_type node.

              See also: integer_range_type/2.

       integer_range_type_low(Node::syntaxTree()) -> syntaxTree()

              Returns the low limit of an integer_range_type node.

              See also: integer_range_type/2.

       integer_value(Node::syntaxTree()) -> integer()

              Returns the value represented by an integer node.

              See also: integer/1.

       is_atom(Node::syntaxTree(), Value::atom()) -> boolean()

              Returns true if Node has type atom and represents Value, otherwise false.

              See also: atom/1.

       is_char(Node::syntaxTree(), Value::char()) -> boolean()

              Returns true if Node has type char and represents Value, otherwise false.

              See also: char/1.

       is_form(Node::syntaxTree()) -> boolean()

              Returns  true  if  Node  is  a  syntax tree representing a so-called "source code form", otherwise
              false. Forms are the Erlang source code units which, placed  in  sequence,  constitute  an  Erlang
              program. Current form types are:

              attribute comment error_marker eof_marker
              form_list function warning_marker text

              See  also:  attribute/2, comment/2, eof_marker/0, error_marker/1, form_list/1, function/2, type/1,
              warning_marker/1.

       is_integer(Node::syntaxTree(), Value::integer()) -> boolean()

              Returns true if Node has type integer and represents Value, otherwise false.

              See also: integer/1.

       is_leaf(Node::syntaxTree()) -> boolean()

              Returns true if Node is a leaf node, otherwise false. The currently  recognised  leaf  node  types
              are:

              atom char comment eof_marker error_marker
              float fun_type integer nil operator string
              text underscore variable warning_marker

              A  node of type map_expr is a leaf node if and only if it has no argument and no fields. A node of
              type map_type is a leaf node if and only if it has no fields (any_size). A node of type tuple is a
              leaf  node  if and only if its arity is zero. A node of type tuple_type is a leaf node if and only
              if it has no elements (any_size).

              Note: not all literals are leaf nodes, and  vice  versa.  E.g.,  tuples  with  nonzero  arity  and
              nonempty  lists  may  be  literals, but are not leaf nodes. Variables, on the other hand, are leaf
              nodes but not literals.

              See also: is_literal/1, type/1.

       is_list_skeleton(Node::syntaxTree()) -> boolean()

              Returns true if Node has type list or nil, otherwise false.

              See also: list/2, nil/0.

       is_literal(T::syntaxTree()) -> boolean()

              Returns true if Node represents a literal term, otherwise false. This function returns true if and
              only if the value of concrete(Node) is defined.

              See also: abstract/1, concrete/1.

       is_proper_list(Node::syntaxTree()) -> boolean()

              Returns  true  if  Node  represents  a  proper  list, and false otherwise. A proper list is a list
              skeleton either on the form "[]" or "[E1, ..., En]", or "[... | Tail]" where recursively Tail also
              represents a proper list.

              Note:  Since  Node  is a syntax tree, the actual run-time values corresponding to its subtrees may
              often be partially or completely unknown. Thus, if Node represents e.g. "[... | Ns]" (where Ns  is
              a variable), then the function will return false, because it is not known whether Ns will be bound
              to a list at run-time. If Node instead represents e.g. "[1,  2,  3]"  or  "[A  |  []]",  then  the
              function will return true.

              See also: list/2.

       is_string(Node::syntaxTree(), Value::string()) -> boolean()

              Returns true if Node has type string and represents Value, otherwise false.

              See also: string/1.

       is_tree(Tree::syntaxTree()) -> boolean()

              For special purposes only. Returns true if Tree is an abstract syntax tree and false otherwise.

              Note: this function yields false for all "old-style" erl_parse-compatible "parse trees".

              See also: tree/2.

       join_comments(Source::syntaxTree(), Target::syntaxTree()) -> syntaxTree()

              Appends the comments of Source to the current comments of Target.

              Note:       This       is       equivalent      to      add_postcomments(get_postcomments(Source),
              add_precomments(get_precomments(Source), Target)), but potentially more efficient.

              See also: add_postcomments/2, add_precomments/2, comment/2, get_postcomments/1, get_precomments/1.

       list(List::[syntaxTree()]) -> syntaxTree()

              Equivalent to list(List, none).

       list(Elements::[syntaxTree()], Tail::none | syntaxTree()) -> syntaxTree()

              Constructs an abstract list skeleton. The result has type list or nil. If List is a nonempty  list
              [E1, ..., En], the result has type list and represents either "[E1, ..., En]", if Tail is none, or
              otherwise "[E1, ..., En | Tail]". If List is the empty list, Tail must be none, and in  that  case
              the result has type nil and represents "[]" (see nil/0).

              The  difference  between lists as semantic objects (built up of individual "cons" and "nil" terms)
              and the various syntactic forms for denoting lists  may  be  bewildering  at  first.  This  module
              provides  functions  both  for  exact  control  of the syntactic representation as well as for the
              simple composition and deconstruction in terms of cons and head/tail operations.

              Note: in list(Elements, none), the "nil"  list  terminator  is  implicit  and  has  no  associated
              information  (see  get_attrs/1),  while in the seemingly equivalent list(Elements, Tail) when Tail
              has type nil, the list terminator subtree Tail may have  attached  attributes  such  as  position,
              comments, and annotations, which will be preserved in the result.

              See  also:  compact_list/1,  cons/2,  get_attrs/1,  is_list_skeleton/1,  is_proper_list/1, list/1,
              list_elements/1, list_head/1, list_length/1,  list_prefix/1,  list_suffix/1,  list_tail/1,  nil/0,
              normalize_list/1.

       list_comp(Template::syntaxTree(), Body::[syntaxTree()]) -> syntaxTree()

              Creates an abstract list comprehension. If Body is [E1, ..., En], the result represents "[Template
              || E1, ..., En]".

              See also: generator/2, list_comp_body/1, list_comp_template/1.

       list_comp_body(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of body subtrees of a list_comp node.

              See also: list_comp/2.

       list_comp_template(Node::syntaxTree()) -> syntaxTree()

              Returns the template subtree of a list_comp node.

              See also: list_comp/2.

       list_elements(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of element subtrees of a list skeleton. Node must represent a proper list.  E.g.,
              if  Node  represents  "[X1, X2 | [X3, X4 | []]", then list_elements(Node) yields the list [X1, X2,
              X3, X4].

              See also: is_proper_list/1, list/2.

       list_head(Node::syntaxTree()) -> syntaxTree()

              Returns the head element subtree of a list node. If Node represents "[Head ...]", the result  will
              represent "Head".

              See also: cons/2, list/2, list_tail/1.

       list_length(Node::syntaxTree()) -> non_neg_integer()

              Returns  the  number  of  element  subtrees of a list skeleton. Node must represent a proper list.
              E.g., if Node represents "[X1 | [X2, X3 | [X4, X5,  X6]]]",  then  list_length(Node)  returns  the
              integer 6.

              Note: this is equivalent to length(list_elements(Node)), but potentially more efficient.

              See also: is_proper_list/1, list/2, list_elements/1.

       list_prefix(Node::syntaxTree()) -> [syntaxTree()]

              Returns  the  prefix  element subtrees of a list node. If Node represents "[E1, ..., En]" or "[E1,
              ..., En | Tail]", the returned value is [E1, ..., En].

              See also: list/2.

       list_suffix(Node::syntaxTree()) -> none | syntaxTree()

              Returns the suffix subtree of a list node, if one exists. If  Node  represents  "[E1,  ...,  En  |
              Tail]",  the  returned value is Tail, otherwise, i.e., if Node represents "[E1, ..., En]", none is
              returned.

              Note that even if this function returns some Tail that is not none, the type of Tail can  be  nil,
              if  the  tail  has  been  given  explicitly,  and  the  list  skeleton has not been compacted (see
              compact_list/1).

              See also: compact_list/1, list/2, nil/0.

       list_tail(Node::syntaxTree()) -> syntaxTree()

              Returns the tail of a list node. If Node represents a single-element list "[E]", then  the  result
              has type nil, representing "[]". If Node represents "[E1, E2 ...]", the result will represent "[E2
              ...]", and if Node represents "[Head | Tail]", the result will represent "Tail".

              See also: cons/2, list/2, list_head/1.

       macro(Name::syntaxTree()) -> syntaxTree()

              Equivalent to macro(Name, none).

       macro(Name::syntaxTree(), Arguments::none | [syntaxTree()]) -> syntaxTree()

              Creates an abstract macro application. If  Arguments  is  none,  the  result  represents  "?Name",
              otherwise, if Arguments is [A1, ..., An], the result represents "?Name(A1, ..., An)".

              Notes:  if Arguments is the empty list, the result will thus represent "?Name()", including a pair
              of matching parentheses.

              The only syntactical  limitation  imposed  by  the  preprocessor  on  the  arguments  to  a  macro
              application  (viewed  as  sequences  of  tokens)  is  that  they  must be balanced with respect to
              parentheses, brackets, begin ... end, case ... end, etc.  The  text  node  type  can  be  used  to
              represent arguments which are not regular Erlang constructs.

              See also: macro/1, macro_arguments/1, macro_name/1, text/1.

       macro_arguments(Node::syntaxTree()) -> none | [syntaxTree()]

              Returns the list of argument subtrees of a macro node, if any. If Node represents "?Name", none is
              returned. Otherwise, if Node represents "?Name(A1, ..., An)", [A1, ..., An] is returned.

              See also: macro/2.

       macro_name(Node::syntaxTree()) -> syntaxTree()

              Returns the name subtree of a macro node.

              See also: macro/2.

       make_tree(X1::atom(), X2::[[syntaxTree()]]) -> syntaxTree()

              Creates a syntax tree with the given type and subtrees. Type must be a node type name (see type/1)
              that does not denote a leaf node type (see is_leaf/1). Groups must be a nonempty list of groups of
              syntax trees, representing the subtrees of a node of the given type,  in  left-to-right  order  as
              they would occur in the printed program text, grouped by category as done by subtrees/1.

              The   result   of  copy_attrs(Node,  make_tree(type(Node),  subtrees(Node)))  (see  update_tree/2)
              represents the same source code text as the original Node, assuming that subtrees(Node)  yields  a
              nonempty list. However, it does not necessarily have the same data representation as Node.

              See also: copy_attrs/2, is_leaf/1, subtrees/1, type/1, update_tree/2.

       map_expr(Fields::[syntaxTree()]) -> syntaxTree()

              Equivalent to map_expr(none, Fields).

       map_expr(Argument::none | syntaxTree(), Fields::[syntaxTree()]) -> syntaxTree()

              Creates  an  abstract  map  expression.  If Fields is [F1, ..., Fn], then if Argument is none, the
              result represents "#{F1, ..., Fn}", otherwise it represents "Argument#{F1, ..., Fn}".

              See    also:    map_expr/1,     map_expr_argument/1,     map_expr_fields/1,     map_field_assoc/2,
              map_field_exact/2.

       map_expr_argument(Node::syntaxTree()) -> none | syntaxTree()

              Returns  the  argument  subtree  of  a map_expr node, if any. If Node represents "#{...}", none is
              returned. Otherwise, if Node represents "Argument#{...}", Argument is returned.

              See also: map_expr/2.

       map_expr_fields(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of field subtrees of a map_expr node.

              See also: map_expr/2.

       map_field_assoc(Name::syntaxTree(), Value::syntaxTree()) -> syntaxTree()

              Creates an abstract map assoc field. The result represents "Name => Value".

              See also: map_expr/2, map_field_assoc_name/1, map_field_assoc_value/1.

       map_field_assoc_name(Node::syntaxTree()) -> syntaxTree()

              Returns the name subtree of a map_field_assoc node.

              See also: map_field_assoc/2.

       map_field_assoc_value(Node::syntaxTree()) -> syntaxTree()

              Returns the value subtree of a map_field_assoc node.

              See also: map_field_assoc/2.

       map_field_exact(Name::syntaxTree(), Value::syntaxTree()) -> syntaxTree()

              Creates an abstract map exact field. The result represents "Name := Value".

              See also: map_expr/2, map_field_exact_name/1, map_field_exact_value/1.

       map_field_exact_name(Node::syntaxTree()) -> syntaxTree()

              Returns the name subtree of a map_field_exact node.

              See also: map_field_exact/2.

       map_field_exact_value(Node::syntaxTree()) -> syntaxTree()

              Returns the value subtree of a map_field_exact node.

              See also: map_field_exact/2.

       map_type() -> term()

              Equivalent to map_type(any_size).

       map_type(Fields::any_size | [syntaxTree()]) -> syntaxTree()

              Creates an abstract type map. If Fields is [F1, ..., Fn], the result represents "#{F1, ...,  Fn}";
              otherwise, if Fields is any_size, it represents "map()".

              See also: map_type_fields/1.

       map_type_assoc(Name::syntaxTree(), Value::syntaxTree()) -> syntaxTree()

              Creates an abstract map type assoc field. The result represents "Name => Value".

              See also: map_type/1, map_type_assoc_name/1, map_type_assoc_value/1.

       map_type_assoc_name(Node::syntaxTree()) -> syntaxTree()

              Returns the name subtree of a map_type_assoc node.

              See also: map_type_assoc/2.

       map_type_assoc_value(Node::syntaxTree()) -> syntaxTree()

              Returns the value subtree of a map_type_assoc node.

              See also: map_type_assoc/2.

       map_type_exact(Name::syntaxTree(), Value::syntaxTree()) -> syntaxTree()

              Creates an abstract map type exact field. The result represents "Name := Value".

              See also: map_type/1, map_type_exact_name/1, map_type_exact_value/1.

       map_type_exact_name(Node::syntaxTree()) -> syntaxTree()

              Returns the name subtree of a map_type_exact node.

              See also: map_type_exact/2.

       map_type_exact_value(Node::syntaxTree()) -> syntaxTree()

              Returns the value subtree of a map_type_exact node.

              See also: map_type_exact/2.

       map_type_fields(Node::syntaxTree()) -> any_size | [syntaxTree()]

              Returns  the  list  of  field subtrees of a map_type node. If Node represents "map()", any_size is
              returned; otherwise, if Node represents "#{F1, ..., Fn}", [F1, ..., Fn] is returned.

              See also: map_type/0, map_type/1.

       match_expr(Pattern::syntaxTree(), Body::syntaxTree()) -> syntaxTree()

              Creates an abstract match-expression. The result represents "Pattern = Body".

              See also: match_expr_body/1, match_expr_pattern/1.

       match_expr_body(Node::syntaxTree()) -> syntaxTree()

              Returns the body subtree of a match_expr node.

              See also: match_expr/2.

       match_expr_pattern(Node::syntaxTree()) -> syntaxTree()

              Returns the pattern subtree of a match_expr node.

              See also: match_expr/2.

       meta(T::syntaxTree()) -> syntaxTree()

              Creates a meta-representation of a  syntax  tree.  The  result  represents  an  Erlang  expression
              "MetaTree"  which,  if  evaluated,  will yield a new syntax tree representing the same source code
              text as  Tree  (although  the  actual  data  representation  may  be  different).  The  expression
              represented  by  MetaTree is implementation independent with regard to the data structures used by
              the abstract syntax tree implementation. Comments attached to nodes of Tree will be preserved, but
              other attributes are lost.

              Any  node  in  Tree  whose  node type is variable (see type/1), and whose list of annotations (see
              get_ann/1) contains the atom meta_var, will remain unchanged in the resulting  tree,  except  that
              exactly one occurrence of meta_var is removed from its annotation list.

              The  main  use  of  the  function meta/1 is to transform a data structure Tree, which represents a
              piece of program code, into a form that is representation independent when printed. E.g.,  suppose
              Tree  represents  a  variable  named  "V".  Then  (assuming a function print/1 for printing syntax
              trees), evaluating print(abstract(Tree))  -  simply  using  abstract/1  to  map  the  actual  data
              structure onto a syntax tree representation - would output a string that might look something like
              "{tree, variable, ..., "V", ...}", which is obviously  dependent  on  the  implementation  of  the
              abstract  syntax trees. This could e.g. be useful for caching a syntax tree in a file. However, in
              some situations like  in  a  program  generator  generator  (with  two  "generator"),  it  may  be
              unacceptable.  Using  print(meta(Tree))  instead  would output a representation independent syntax
              tree generating expression; in the above case, something like "erl_syntax:variable("V")".

              See also: abstract/1, get_ann/1, type/1.

       module_qualifier(Module::syntaxTree(), Body::syntaxTree()) -> syntaxTree()

              Creates an abstract module qualifier. The result represents "Module:Body".

              See also: module_qualifier_argument/1, module_qualifier_body/1.

       module_qualifier_argument(Node::syntaxTree()) -> syntaxTree()

              Returns the argument (the module) subtree of a module_qualifier node.

              See also: module_qualifier/2.

       module_qualifier_body(Node::syntaxTree()) -> syntaxTree()

              Returns the body subtree of a module_qualifier node.

              See also: module_qualifier/2.

       named_fun_expr(Name::syntaxTree(), Clauses::[syntaxTree()]) -> syntaxTree()

              Creates an abstract named fun-expression. If Clauses is [C1, ..., Cn], the result represents  "fun
              Name  C1;  ...; Name Cn end". More exactly, if each Ci represents "(Pi1, ..., Pim) Gi -> Bi", then
              the result represents "fun Name(P11, ..., P1m) G1 -> B1; ...; Name(Pn1, ..., Pnm) Gn -> Bn end".

              See also: named_fun_expr_arity/1, named_fun_expr_clauses/1, named_fun_expr_name/1.

       named_fun_expr_arity(Node::syntaxTree()) -> arity()

              Returns the arity of a named_fun_expr node. The result is the number of parameter patterns in  the
              first clause of the named fun-expression; subsequent clauses are ignored.

              An  exception  is  thrown  if  named_fun_expr_clauses(Node) returns an empty list, or if the first
              element of that list is not a syntax tree C of type  clause  such  that  clause_patterns(C)  is  a
              nonempty list.

              See also: clause/3, clause_patterns/1, named_fun_expr/2, named_fun_expr_clauses/1.

       named_fun_expr_clauses(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of clause subtrees of a named_fun_expr node.

              See also: named_fun_expr/2.

       named_fun_expr_name(Node::syntaxTree()) -> syntaxTree()

              Returns the name subtree of a named_fun_expr node.

              See also: named_fun_expr/2.

       nil() -> syntaxTree()

              Creates an abstract empty list. The result represents "[]". The empty list is traditionally called
              "nil".

              See also: is_list_skeleton/1, list/2.

       normalize_list(Node::syntaxTree()) -> syntaxTree()

              Expands an abstract list skeleton to its most explicit form. If Node represents "[E1,  ...,  En  |
              Tail]",  the  result  represents  "[E1  |  ...  [En  | Tail1] ... ]", where Tail1 is the result of
              normalize_list(Tail). If Node represents "[E1, ..., En]", the result simply represents "[E1 |  ...
              [En | []] ... ]". If Node does not represent a list skeleton, Node itself is returned.

              See also: compact_list/1, list/2.

       operator(Name::atom() | string()) -> syntaxTree()

              Creates  an  abstract  operator. The name of the operator is the character sequence represented by
              Name. This is analogous to the print name of an atom, but an  operator  is  never  written  within
              single-quotes; e.g., the result of operator(++')' represents "++" rather than "`++''".

              See also: atom/1, operator_literal/1, operator_name/1.

       operator_literal(Node::syntaxTree()) -> string()

              Returns  the literal string represented by an operator node. This is simply the operator name as a
              string.

              See also: operator/1.

       operator_name(Node::syntaxTree()) -> atom()

              Returns the name of an operator node. Note that the name is returned as an atom.

              See also: operator/1.

       parentheses(Expr::syntaxTree()) -> syntaxTree()

              Creates an abstract parenthesised expression. The result represents "(Body)", independently of the
              context.

              See also: parentheses_body/1.

       parentheses_body(Node::syntaxTree()) -> syntaxTree()

              Returns the body subtree of a parentheses node.

              See also: parentheses/1.

       prefix_expr(Operator::syntaxTree(), Argument::syntaxTree()) -> syntaxTree()

              Creates an abstract prefix operator expression. The result represents "Operator Argument".

              See also: infix_expr/3, prefix_expr_argument/1, prefix_expr_operator/1.

       prefix_expr_argument(Node::syntaxTree()) -> syntaxTree()

              Returns the argument subtree of a prefix_expr node.

              See also: prefix_expr/2.

       prefix_expr_operator(Node::syntaxTree()) -> syntaxTree()

              Returns the operator subtree of a prefix_expr node.

              See also: prefix_expr/2.

       receive_expr(Clauses::[syntaxTree()]) -> syntaxTree()

              Equivalent to receive_expr(Clauses, none, []).

       receive_expr(Clauses::[syntaxTree()],    Timeout::none   |   syntaxTree(),   Action::[syntaxTree()])   ->
       syntaxTree()

              Creates an abstract receive-expression. If Timeout is none, the  result  represents  "receive  C1;
              ...;  Cn  end" (the Action argument is ignored). Otherwise, if Clauses is [C1, ..., Cn] and Action
              is [A1, ..., Am], the result represents "receive C1; ...; Cn after Timeout -> A1,  ...,  Am  end".
              More  exactly, if each Ci represents "(Pi) Gi -> Bi", then the result represents "receive P1 G1 ->
              B1; ...; Pn Gn -> Bn ... end".

              Note that in Erlang, a receive-expression must have at least one clause  if  no  timeout  part  is
              specified.

              See  also:  case_expr/2,  clause/3, receive_expr/1, receive_expr_action/1, receive_expr_clauses/1,
              receive_expr_timeout/1.

       receive_expr_action(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of action body subtrees of a receive_expr node. If Node represents  "receive  C1;
              ...; Cn end", this is the empty list.

              See also: receive_expr/3.

       receive_expr_clauses(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of clause subtrees of a receive_expr node.

              See also: receive_expr/3.

       receive_expr_timeout(Node::syntaxTree()) -> none | syntaxTree()

              Returns  the  timeout subtree of a receive_expr node, if any. If Node represents "receive C1; ...;
              Cn end", none is returned. Otherwise, if Node represents "receive C1; ...; Cn after Timeout -> ...
              end", Timeout is returned.

              See also: receive_expr/3.

       record_access(Argument::syntaxTree(), Type::syntaxTree(), Field::syntaxTree()) -> syntaxTree()

              Creates an abstract record field access expression. The result represents "Argument#Type.Field".

              See also: record_access_argument/1, record_access_field/1, record_access_type/1, record_expr/3.

       record_access_argument(Node::syntaxTree()) -> syntaxTree()

              Returns the argument subtree of a record_access node.

              See also: record_access/3.

       record_access_field(Node::syntaxTree()) -> syntaxTree()

              Returns the field subtree of a record_access node.

              See also: record_access/3.

       record_access_type(Node::syntaxTree()) -> syntaxTree()

              Returns the type subtree of a record_access node.

              See also: record_access/3.

       record_expr(Type::syntaxTree(), Fields::[syntaxTree()]) -> syntaxTree()

              Equivalent to record_expr(none, Type, Fields).

       record_expr(Argument::none | syntaxTree(), Type::syntaxTree(), Fields::[syntaxTree()]) -> syntaxTree()

              Creates  an  abstract record expression. If Fields is [F1, ..., Fn], then if Argument is none, the
              result represents "#Type{F1, ..., Fn}", otherwise it represents "Argument#Type{F1, ..., Fn}".

              See   also:   record_access/3,   record_expr/2,   record_expr_argument/1,    record_expr_fields/1,
              record_expr_type/1, record_field/2, record_index_expr/2.

       record_expr_argument(Node::syntaxTree()) -> none | syntaxTree()

              Returns  the argument subtree of a record_expr node, if any. If Node represents "#Type{...}", none
              is returned. Otherwise, if Node represents "Argument#Type{...}", Argument is returned.

              See also: record_expr/3.

       record_expr_fields(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of field subtrees of a record_expr node.

              See also: record_expr/3.

       record_expr_type(Node::syntaxTree()) -> syntaxTree()

              Returns the type subtree of a record_expr node.

              See also: record_expr/3.

       record_field(Name::syntaxTree()) -> syntaxTree()

              Equivalent to record_field(Name, none).

       record_field(Name::syntaxTree(), Value::none | syntaxTree()) -> syntaxTree()

              Creates an abstract record field specification. If Value is none,  the  result  represents  simply
              "Name", otherwise it represents "Name = Value".

              See also: record_expr/3, record_field_name/1, record_field_value/1.

       record_field_name(Node::syntaxTree()) -> syntaxTree()

              Returns the name subtree of a record_field node.

              See also: record_field/2.

       record_field_value(Node::syntaxTree()) -> none | syntaxTree()

              Returns  the  value  subtree  of  a  record_field node, if any. If Node represents "Name", none is
              returned. Otherwise, if Node represents "Name = Value", Value is returned.

              See also: record_field/2.

       record_index_expr(Type::syntaxTree(), Field::syntaxTree()) -> syntaxTree()

              Creates an abstract record field index expression. The result represents "#Type.Field".

              (Note: the function name record_index/2 is reserved by the Erlang compiler, which is why that name
              could not be used for this constructor.)

              See also: record_expr/3, record_index_expr_field/1, record_index_expr_type/1.

       record_index_expr_field(Node::syntaxTree()) -> syntaxTree()

              Returns the field subtree of a record_index_expr node.

              See also: record_index_expr/2.

       record_index_expr_type(Node::syntaxTree()) -> syntaxTree()

              Returns the type subtree of a record_index_expr node.

              See also: record_index_expr/2.

       record_type(Name::syntaxTree(), Fields::[syntaxTree()]) -> syntaxTree()

              Creates an abstract record type. If Fields is [F1, ..., Fn], the result represents "#Name{F1, ...,
              Fn}".

              See also: record_type_fields/1, record_type_name/1.

       record_type_field(Name::syntaxTree(), Type::syntaxTree()) -> syntaxTree()

              Creates an abstract record type field. The result represents "Name :: Type".

              See also: record_type_field_name/1, record_type_field_type/1.

       record_type_field_name(Node::syntaxTree()) -> syntaxTree()

              Returns the name subtree of a record_type_field node.

              See also: record_type_field/2.

       record_type_field_type(Node::syntaxTree()) -> syntaxTree()

              Returns the type subtree of a record_type_field node.

              See also: record_type_field/2.

       record_type_fields(Node::syntaxTree()) -> [syntaxTree()]

              Returns the fields subtree of a record_type node.

              See also: record_type/2.

       record_type_name(Node::syntaxTree()) -> syntaxTree()

              Returns the name subtree of a record_type node.

              See also: record_type/2.

       remove_comments(Node::syntaxTree()) -> syntaxTree()

              Clears the associated comments of Node.

              Note: This is equivalent to set_precomments(set_postcomments(Node, []), []), but potentially  more
              efficient.

              See also: set_postcomments/2, set_precomments/2.

       revert(Node::syntaxTree()) -> syntaxTree()

              Returns an erl_parse-compatible representation of a syntax tree, if possible. If Tree represents a
              well-formed Erlang program or expression, the conversion should work without problems.  Typically,
              is_tree/1  yields  true  if conversion failed (i.e., the result is still an abstract syntax tree),
              and false otherwise.

              The  is_tree/1  test  is  not  completely  foolproof.  For  a  few  special   node   types   (e.g.
              arity_qualifier),  if  such  a  node occurs in a context where it is not expected, it will be left
              unchanged as a non-reverted subtree of the result. This can only happen if Tree does not  actually
              represent legal Erlang code.

              See also: erl_parse(3erl), revert_forms/1.

       revert_forms(Forms::forms()) -> [erl_parse()]

              Reverts  a  sequence  of Erlang source code forms. The sequence can be given either as a form_list
              syntax tree (possibly nested), or as a list of "program form" syntax  trees.  If  successful,  the
              corresponding  flat  list of erl_parse-compatible syntax trees is returned (see revert/1). If some
              program form could not be reverted, {error, Form} is  thrown.  Standalone  comments  in  the  form
              sequence are discarded.

              See also: form_list/1, is_form/1, revert/1.

       set_ann(Node::syntaxTree(), As::[term()]) -> syntaxTree()

              Sets the list of user annotations of Node to Annotations.

              See also: add_ann/2, copy_ann/2, get_ann/1.

       set_attrs(Node::syntaxTree(), Attr::syntaxTreeAttributes()) -> syntaxTree()

              Sets the attributes of Node to Attributes.

              See also: copy_attrs/2, get_attrs/1.

       set_pos(Node::syntaxTree(), Pos::term()) -> syntaxTree()

              Sets the position information of Node to Pos.

              See also: copy_pos/2, get_pos/1.

       set_postcomments(Node::syntaxTree(), Cs::[syntaxTree()]) -> syntaxTree()

              Sets  the  post-comments of Node to Comments. Comments should be a possibly empty list of abstract
              comments, in top-down textual order

              See also: add_postcomments/2,  comment/2,  copy_comments/2,  get_postcomments/1,  join_comments/2,
              remove_comments/1, set_precomments/2.

       set_precomments(Node::syntaxTree(), Cs::[syntaxTree()]) -> syntaxTree()

              Sets  the  pre-comments  of Node to Comments. Comments should be a possibly empty list of abstract
              comments, in top-down textual order.

              See  also:  add_precomments/2,  comment/2,  copy_comments/2,  get_precomments/1,  join_comments/2,
              remove_comments/1, set_postcomments/2.

       size_qualifier(Body::syntaxTree(), Size::syntaxTree()) -> syntaxTree()

              Creates an abstract size qualifier. The result represents "Body:Size".

              See also: size_qualifier_argument/1, size_qualifier_body/1.

       size_qualifier_argument(Node::syntaxTree()) -> syntaxTree()

              Returns the argument subtree (the size) of a size_qualifier node.

              See also: size_qualifier/2.

       size_qualifier_body(Node::syntaxTree()) -> syntaxTree()

              Returns the body subtree of a size_qualifier node.

              See also: size_qualifier/2.

       string(String::string()) -> syntaxTree()

              Creates  an  abstract  string  literal.  The  result  represents "Text" (including the surrounding
              double-quotes),  where  Text  corresponds  to  the  sequence  of  characters  in  Value,  but  not
              representing a specific string literal.

              For  example, the result of string("x\ny") represents any and all of "x\ny", "x\12y", "x\012y" and
              "x\^Jy"; see char/1.

              See also: char/1, is_string/2, string_literal/1, string_literal/2, string_value/1.

       string_literal(Node::syntaxTree()) -> nonempty_string()

              Returns the literal string represented by a string node. This  includes  surrounding  double-quote
              characters. Characters beyond 255 will be escaped.

              See also: string/1.

       string_literal(Node::syntaxTree(), X2::encoding()) -> nonempty_string()

              Returns  the  literal  string represented by a string node. This includes surrounding double-quote
              characters. Depending on the encoding characters beyond 255 will be escaped (latin1) or copied  as
              is (utf8).

              See also: string/1.

       string_value(Node::syntaxTree()) -> string()

              Returns the value represented by a string node.

              See also: string/1.

       subtrees(T::syntaxTree()) -> [[syntaxTree()]]

              Returns the grouped list of all subtrees of a syntax tree. If Node is a leaf node (see is_leaf/1),
              this is the empty list, otherwise the result is always a nonempty list, containing  the  lists  of
              subtrees of Node, in left-to-right order as they occur in the printed program text, and grouped by
              category. Often, each group contains only a single subtree.

              Depending on the type of Node, the size of some groups may be variable (e.g., the group consisting
              of all the elements of a tuple), while others always contain the same number of elements - usually
              exactly one (e.g., the group containing the  argument  expression  of  a  case-expression).  Note,
              however,  that  the exact structure of the returned list (for a given node type) should in general
              not be depended upon, since it might be subject to change without notice.

              The function subtrees/1 and the constructor functions make_tree/2 and update_tree/2 can be a great
              help  if  one  wants  to traverse a syntax tree, visiting all its subtrees, but treat nodes of the
              tree in a uniform way in most or all cases. Using these functions  makes  this  simple,  and  also
              assures that your code is not overly sensitive to extensions of the syntax tree data type, because
              any node types not explicitly handled by your code can be left to a default case.

              For example:

                   postorder(F, Tree) ->
                      F(case subtrees(Tree) of
                          [] -> Tree;
                          List -> update_tree(Tree,
                                              [[postorder(F, Subtree)
                                                || Subtree &lt;- Group]
                                               || Group &lt;- List])
                        end).

              maps the function F on Tree and all its subtrees, doing a post-order traversal of the syntax tree.
              (Note the use of update_tree/2 to preserve node attributes.) For a simple function like:

                   f(Node) ->
                      case type(Node) of
                          atom -> atom("a_" ++ atom_name(Node));
                          _ -> Node
                      end.

              the  call postorder(fun f/1, Tree) will yield a new representation of Tree in which all atom names
              have been extended with the prefix "a_", but nothing else  (including  comments,  annotations  and
              line numbers) has been changed.

              See also: copy_attrs/2, is_leaf/1, make_tree/2, type/1.

       text(String::string()) -> syntaxTree()

              Creates  an  abstract  piece  of  source  code text. The result represents exactly the sequence of
              characters in String. This is useful in cases when one wants full control of the resulting output,
              e.g., for the appearance of floating-point numbers or macro definitions.

              See also: text_string/1.

       text_string(Node::syntaxTree()) -> string()

              Returns the character sequence represented by a text node.

              See also: text/1.

       tree(Type::atom())    ->    #tree{type=atom(),    attr=#attr{pos=term(),    ann=[term()],    com=none   |
       #com{pre=[syntaxTree()], post=[syntaxTree()]}}, data=term()}

              Equivalent to tree(Type, []).

       tree(Type::atom(), Data::term()) -> #tree{type=atom(), attr=#attr{pos=term(),  ann=[term()],  com=none  |
       #com{pre=[syntaxTree()], post=[syntaxTree()]}}, data=term()}

              For  special purposes only. Creates an abstract syntax tree node with type tag Type and associated
              data Data.

              This function and the related is_tree/1 and data/1 provide a uniform way  to  extend  the  set  of
              erl_parse node types. The associated data is any term, whose format may depend on the type tag.

              Notes:

                * Any  nodes  created  outside  of this module must have type tags distinct from those currently
                  defined by this module; see type/1 for a complete list.

                * The type tag of a syntax tree node may also  be  used  as  a  primary  tag  by  the  erl_parse
                  representation;  in  that case, the selector functions for that node type must handle both the
                  abstract syntax tree and the erl_parse form. The function type(T) should  return  the  correct
                  type  tag  regardless  of the representation of T, so that the user sees no difference between
                  erl_syntax and erl_parse nodes.

              See also: data/1, is_tree/1, type/1.

       try_after_expr(Body::[syntaxTree()], After::[syntaxTree()]) -> syntaxTree()

              Equivalent to try_expr(Body, [], [], After).

       try_expr(Body::[syntaxTree()], Handlers::[syntaxTree()]) -> syntaxTree()

              Equivalent to try_expr(Body, [], Handlers).

       try_expr(Body::[syntaxTree()], Clauses::[syntaxTree()], Handlers::[syntaxTree()]) -> syntaxTree()

              Equivalent to try_expr(Body, Clauses, Handlers, []).

       try_expr(Body::[syntaxTree()], Clauses::[syntaxTree()], Handlers::[syntaxTree()],  After::[syntaxTree()])
       -> syntaxTree()

              Creates  an  abstract try-expression. If Body is [B1, ..., Bn], Clauses is [C1, ..., Cj], Handlers
              is [H1, ..., Hk], and After is [A1, ..., Am], the result represents "try B1, ..., Bn of  C1;  ...;
              Cj  catch  H1;  ...;  Hk after A1, ..., Am end". More exactly, if each Ci represents "(CPi) CGi ->
              CBi", and each Hi represents "(HPi) HGi -> HBi", then the result represents "try B1,  ...,  Bn  of
              CP1  CG1  ->  CB1; ...; CPj CGj -> CBj catch HP1 HG1 -> HB1; ...; HPk HGk -> HBk after A1, ..., Am
              end"; see case_expr/2. If Clauses is the empty list, the of ... section is left out. If  After  is
              the  empty  list,  the  after ... section is left out. If Handlers is the empty list, and After is
              nonempty, the catch ... section is left out.

              See also: case_expr/2,  class_qualifier/2,  clause/3,  try_after_expr/2,  try_expr/2,  try_expr/3,
              try_expr_after/1, try_expr_body/1, try_expr_clauses/1, try_expr_handlers/1.

       try_expr_after(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of "after" subtrees of a try_expr node.

              See also: try_expr/4.

       try_expr_body(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of body subtrees of a try_expr node.

              See also: try_expr/4.

       try_expr_clauses(Node::syntaxTree()) -> [syntaxTree()]

              Returns  the  list  of case-clause subtrees of a try_expr node. If Node represents "try Body catch
              H1; ...; Hn end", the result is the empty list.

              See also: try_expr/4.

       try_expr_handlers(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of handler-clause subtrees of a try_expr node.

              See also: try_expr/4.

       tuple(List::[syntaxTree()]) -> syntaxTree()

              Creates an abstract tuple. If Elements is [X1, ..., Xn], the result represents "{X1, ..., Xn}".

              Note: The Erlang language has distinct 1-tuples, i.e., {X} is always distinct from X itself.

              See also: tuple_elements/1, tuple_size/1.

       tuple_elements(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of element subtrees of a tuple node.

              See also: tuple/1.

       tuple_size(Node::syntaxTree()) -> non_neg_integer()

              Returns the number of elements of a tuple node.

              Note: this is equivalent to length(tuple_elements(Node)), but potentially more efficient.

              See also: tuple/1, tuple_elements/1.

       tuple_type() -> term()

              Equivalent to tuple_type(any_size).

       tuple_type(Elements::any_size | [syntaxTree()]) -> syntaxTree()

              Creates an abstract type tuple. If Elements is [T1, ..., Tn], the  result  represents  "{T1,  ...,
              Tn}"; otherwise, if Elements is any_size, it represents "tuple()".

              See also: tuple_type_elements/1.

       tuple_type_elements(Node::syntaxTree()) -> any_size | [syntaxTree()]

              Returns  the  list  of  type  element subtrees of a tuple_type node. If Node represents "tuple()",
              any_size is returned; otherwise, if Node represents "{T1, ..., Tn}", [T1, ..., Tn] is returned.

              See also: tuple_type/0, tuple_type/1.

       type(Tree::syntaxTree()) -> atom()

              Returns the type tag of Node. If Node does not represent a  syntax  tree,  evaluation  fails  with
              reason badarg. Node types currently defined by this module are:

              application annotated_type arity_qualifier atom
              attribute binary binary_field bitstring_type
              block_expr case_expr catch_expr char
              class_qualifier clause comment cond_expr
              conjunction constrained_function_type constraint disjunction
              eof_marker error_marker float form_list
              fun_expr fun_type function function_type
              generator if_expr implicit_fun infix_expr
              integer integer_range_type list list_comp
              macro map_expr map_field_assoc map_field_exact
              map_type map_type_assoc map_type_exact match_expr module_qualifier
              named_fun_expr nil operator parentheses
              prefix_expr receive_expr record_access record_expr
              record_field record_index_expr record_type record_type_field
              size_qualifier string text try_expr
              tuple  tuple_type  typed_record_field type_application type_union underscore user_type_application
              variable
              warning_marker

              The user may (for special purposes) create additional nodes with other type tags, using the tree/2
              function.

              Note:  The  primary  constructor functions for a node type should always have the same name as the
              node type itself.

              See also:  annotated_type/2,  application/3,  arity_qualifier/2,  atom/1,  attribute/2,  binary/1,
              binary_field/2,     bitstring_type/2,    block_expr/1,    case_expr/2,    catch_expr/1,    char/1,
              class_qualifier/2, clause/3, comment/2, cond_expr/1,  conjunction/1,  constrained_function_type/2,
              constraint/2,  disjunction/1,  eof_marker/0,  error_marker/1,  float/1,  form_list/1,  fun_expr/1,
              fun_type/0, function/2, function_type/1, function_type/2, generator/2, if_expr/1,  implicit_fun/2,
              infix_expr/3,   integer/1,   integer_range_type/2,   list/2,   list_comp/2,  macro/2,  map_expr/2,
              map_field_assoc/2, map_field_exact/2, map_type/0, map_type/1, map_type_assoc/2,  map_type_exact/2,
              match_expr/2,    module_qualifier/2,    named_fun_expr/2,    nil/0,   operator/1,   parentheses/1,
              prefix_expr/2,      receive_expr/3,      record_access/3,      record_expr/2,      record_field/2,
              record_index_expr/2,   record_type/2,  record_type_field/2,  size_qualifier/2,  string/1,  text/1,
              tree/2,  try_expr/3,  tuple/1,  tuple_type/0,  tuple_type/1,   type_application/2,   type_union/1,
              typed_record_field/2, underscore/0, user_type_application/2, variable/1, warning_marker/1.

       type_application(TypeName::syntaxTree(), Arguments::[syntaxTree()]) -> syntaxTree()

              Creates  an  abstract  type  application  expression.  If  Arguments  is [T1, ..., Tn], the result
              represents "TypeName(T1, ...Tn)".

              See    also:    type_application/3,     type_application_arguments/1,     type_application_name/1,
              user_type_application/2.

       type_application(Module::none   |  syntaxTree(),  TypeName::syntaxTree(),  Arguments::[syntaxTree()])  ->
       syntaxTree()

              Creates an abstract type application expression. If Module is none, this is call is equivalent  to
              type_application(TypeName,      Arguments),      otherwise      it      is      equivalent      to
              type_application(module_qualifier(Module, TypeName), Arguments).

              (This is a utility function.)

              See also: module_qualifier/2, type_application/2.

       type_application_arguments(Node::syntaxTree()) -> [syntaxTree()]

              Returns the arguments subtrees of a type_application node.

              See also: type_application/2.

       type_application_name(Node::syntaxTree()) -> syntaxTree()

              Returns the type name subtree of a type_application node.

              See also: type_application/2.

       type_union(Types::[syntaxTree()]) -> syntaxTree()

              Creates an abstract type union. If Types is [T1, ..., Tn], the result represents "T1 | ... | Tn".

              See also: type_union_types/1.

       type_union_types(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of type subtrees of a type_union node.

              See also: type_union/1.

       typed_record_field(Field::syntaxTree(), Type::syntaxTree()) -> syntaxTree()

              Creates an abstract typed record field specification. The result represents "Field :: Type".

              See also: typed_record_field_body/1, typed_record_field_type/1.

       typed_record_field_body(Node::syntaxTree()) -> syntaxTree()

              Returns the field subtree of a typed_record_field node.

              See also: typed_record_field/2.

       typed_record_field_type(Node::syntaxTree()) -> syntaxTree()

              Returns the type subtree of a typed_record_field node.

              See also: typed_record_field/2.

       underscore() -> syntaxTree()

              Creates an abstract universal pattern ("_"). The lexical representation  is  a  single  underscore
              character. Note that this is not a variable, lexically speaking.

              See also: variable/1.

       update_tree(Node::syntaxTree(), Groups::[[syntaxTree()]]) -> syntaxTree()

              Creates  a  syntax tree with the same type and attributes as the given tree. This is equivalent to
              copy_attrs(Node, make_tree(type(Node), Groups)).

              See also: copy_attrs/2, make_tree/2, type/1.

       user_type_application(TypeName::syntaxTree(), Arguments::[syntaxTree()]) -> syntaxTree()

              Creates an abstract user type. If Arguments is [T1, ..., Tn], the result represents  "TypeName(T1,
              ...Tn)".

              See also: type_application/2, user_type_application_arguments/1, user_type_application_name/1.

       user_type_application_arguments(Node::syntaxTree()) -> [syntaxTree()]

              Returns the arguments subtrees of a user_type_application node.

              See also: user_type_application/2.

       user_type_application_name(Node::syntaxTree()) -> syntaxTree()

              Returns the type name subtree of a user_type_application node.

              See also: user_type_application/2.

       variable(Name::atom() | string()) -> syntaxTree()

              Creates an abstract variable with the given name. Name may be any atom or string that represents a
              lexically valid variable name, but not a single underscore character; see underscore/0.

              Note: no checking is done whether the character sequence represents a proper variable name,  i.e.,
              whether  or  not  its  first  character  is  an uppercase Erlang character, or whether it does not
              contain control characters, whitespace, etc.

              See also: underscore/0, variable_literal/1, variable_name/1.

       variable_literal(Node::syntaxTree()) -> string()

              Returns the name of a variable node as a string.

              See also: variable/1.

       variable_name(Node::syntaxTree()) -> atom()

              Returns the name of a variable node as an atom.

              See also: variable/1.

       warning_marker(Warning::term()) -> syntaxTree()

              Creates an abstract warning marker. The result represents an occurrence of a possible  problem  in
              the  source  code,  with  an  associated Erlang I/O ErrorInfo structure given by Error (see module
              io(3erl) for details). Warning markers are regarded as source code  forms,  but  have  no  defined
              lexical form.

              Note: this is supported only for backwards compatibility with existing parsers and tools.

              See also: eof_marker/0, error_marker/1, is_form/1, warning_marker_info/1.

       warning_marker_info(Node::syntaxTree()) -> term()

              Returns the ErrorInfo structure of a warning_marker node.

              See also: warning_marker/1.

AUTHORS

       Richard Carlsson <carlsson.richard@gmail.com>

                                               syntax_tools 2.2.1                               erl_syntax(3erl)