Provided by: mlpack-bin_3.4.2-5ubuntu1_amd64 

NAME
mlpack_preprocess_binarize - binarize data
SYNOPSIS
mlpack_preprocess_binarize -i string [-d int] [-t double] [-V bool] [-o string] [-h -v]
DESCRIPTION
This utility takes a dataset and binarizes the variables into either 0 or 1 given threshold. User can
apply binarization on a dimension or the whole dataset. The dimension to apply binarization to can be
specified using the ’--dimension (-d)' parameter; if left unspecified, every dimension will be binarized.
The threshold for binarization can also be specified with the ’--threshold (-t)' parameter; the default
threshold is 0.0.
The binarized matrix may be saved with the '--output_file (-o)' output parameter.
For example, if we want to set all variables greater than 5 in the dataset ’X.csv' to 1 and variables
less than or equal to 5.0 to 0, and save the result to 'Y.csv', we could run
$ mlpack_preprocess_binarize --input_file X.csv --threshold 5 --output_file Y.csv
But if we want to apply this to only the first (0th) dimension of 'X.csv', we could instead run
$ mlpack_preprocess_binarize --input_file X.csv --threshold 5 --dimension 0 --output_file Y.csv
REQUIRED INPUT OPTIONS
--input_file (-i) [string]
Input data matrix.
OPTIONAL INPUT OPTIONS
--dimension (-d) [int]
Dimension to apply the binarization. If not set, the program will binarize every dimension by
default. Default value 0.
--help (-h) [bool]
Default help info.
--info [string]
Print help on a specific option. Default value ''.
--threshold (-t) [double]
Threshold to be applied for binarization. If not set, the threshold defaults to 0.0. Default value
0.
--verbose (-v) [bool]
Display informational messages and the full list of parameters and timers at the end of execution.
--version (-V) [bool]
Display the version of mlpack.
OPTIONAL OUTPUT OPTIONS
--output_file (-o) [string]
Matrix in which to save the output.
ADDITIONAL INFORMATION
For further information, including relevant papers, citations, and theory, consult the documentation
found at http://www.mlpack.org or included with your distribution of mlpack.
mlpack-3.4.2 11 April 2022 mlpack_preprocess_binarize(1)