jammy (8) turbostat.8.gz

Provided by: linux-xilinx-zynqmp-tools-common_5.15.0-1041.45_all bug

NAME

       turbostat - Report processor frequency and idle statistics

SYNOPSIS

       turbostat [Options] command
       turbostat [Options] [--interval seconds]

DESCRIPTION

       turbostat   reports  processor topology, frequency, idle power-state statistics, temperature and power on
       X86 processors.  There are two ways to invoke turbostat.  The first method is to supply a command,  which
       is  forked  and statistics are printed in one-shot upon its completion.  The second method is to omit the
       command, and turbostat displays statistics every 5  seconds  interval.   The  5-second  interval  can  be
       changed using the --interval option.

       Some information is not available on older processors.

   Options
       Options can be specified with a single or double '-', and only as much of the option name as necessary to
       disambiguate it from others is necessary.  Note that options are case-sensitive.

       --add attributes add column with counter having specified  'attributes'.   The  'location'  attribute  is
       required, all others are optional.
            location: {msrDDD | msr0xXXX | /sys/path...}
                 msrDDD is a decimal offset, eg. msr16
                 msr0xXXX is a hex offset, eg. msr0x10
                 /sys/path... is an absolute path to a sysfs attribute

            scope: {cpu | core | package}
                 sample and print the counter for every cpu, core, or package.
                 default: cpu

            size: {u32 | u64 }
                 MSRs are read as 64-bits, u32 truncates the displayed value to 32-bits.
                 default: u64

            format: {raw | delta | percent}
                 'raw' shows the MSR contents in hex.
                 'delta' shows the difference in values during the measurement interval.
                 'percent' shows the delta as a percentage of the cycles elapsed.
                 default: delta

            name: "name_string"
                 Any string that does not match a key-word above is used
                 as the column header.

       --cpu  cpu-set  limit  output  to  system  summary  plus the specified cpu-set.  If cpu-set is the string
       "core", then the system summary plus the first CPU in each core are printed -- eg. subsequent HT siblings
       are  not  printed.   Or if cpu-set is the string "package", then the system summary plus the first CPU in
       each package is printed.  Otherwise, the system summary plus the specified set of CPUs are printed.   The
       cpu-set  is  ordered from low to high, comma delimited with ".." and "-" permitted to denote a range. eg.
       1,2,8,14..17,21-44

       --hide column do not show the specified built-in columns.  May be  invoked  multiple  times,  or  with  a
       comma-separated list of column names.

       --enable column show the specified built-in columns, which are otherwise disabled, by default.  Currently
       the only built-in counters disabled by default are "usec", "Time_Of_Day_Seconds",  "APIC"  and  "X2APIC".
       The column name "all" can be used to enable all disabled-by-default built-in counters.

       --show  column show only the specified built-in columns.  May be invoked multiple times, or with a comma-
       separated list of column names.

       --show CATEGORY --hide CATEGORY  Show  and  hide  also  accept  a  single  CATEGORY  of  columns:  "all",
       "topology", "idle", "frequency", "power", "sysfs", "other".

       --Dump displays the raw counter values.

       --quiet Do not decode and print the system configuration header information.

       --interval seconds overrides the default 5.0 second measurement interval.

       --num_iterations num number of the measurement iterations.

       --out  output_file turbostat output is written to the specified output_file.  The file is truncated if it
       already exists, and it is created if it does not exist.

       --help displays usage for the most common parameters.

       --Joules displays energy in Joules, rather than dividing Joules by time to print power in Watts.

       --list display column header names available for use by --show and --hide, then exit.

       --Summary limits output to a 1-line System Summary for each interval.

       --TCC temperature sets the Thermal Control Circuit temperature for  systems  which  do  not  export  that
       value.   This  is  used  for  making  sense of the Digital Thermal Sensor outputs, as they return degrees
       Celsius below the TCC activation temperature.

       --version displays the version.

       The command parameter forks command, and upon its exit, displays the statistics  gathered  since  it  was
       forked.

ROW DESCRIPTIONS

       The  system  configuration dump (if --quiet is not used) is followed by statistics.  The first row of the
       statistics labels the content of each column (below).  The second row of statistics is the system summary
       line.   The system summary line has a '-' in the columns for the Package, Core, and CPU.  The contents of
       the system summary line depends on the type of column.  Columns that count items (eg. IRQ) show  the  sum
       across  all  CPUs  in the system.  Columns that show a percentage show the average across all CPUs in the
       system.  Columns that dump raw MSR values simply show 0 in the summary.  After the  system  summary  row,
       each  row describes a specific Package/Core/CPU.  Note that if the --cpu parameter is used to limit which
       specific CPUs are displayed, turbostat will still collect statistics for all CPUs in the system and  will
       still show the system summary for all CPUs in the system.

COLUMN DESCRIPTIONS

       usec For each CPU, the number of microseconds elapsed during counter collection, including thread migration -- if any.  This counter is disabled by default, and is enabled with "--enable usec", or --debug.  On the summary row, usec refers to the total elapsed time to collect the counters on all cpus.
       Time_Of_Day_Seconds For each CPU, the gettimeofday(2) value (seconds.subsec since Epoch) when the counters ending the measurement interval were collected.  This column is disabled by default, and can be enabled with "--enable Time_Of_Day_Seconds" or "--debug".  On the summary row, Time_Of_Day_Seconds refers to the timestamp following collection of counters on the last CPU.
       Core processor core number.  Note that multiple CPUs per core indicate support for Intel(R) Hyper-Threading Technology (HT).
       CPU Linux CPU (logical processor) number.  Yes, it is okay that on many systems the CPUs are not listed in numerical order -- for efficiency reasons, turbostat runs in topology order, so HT siblings appear together.
       Package processor package number -- not present on systems with a single processor package.
       Avg_MHz number of cycles executed divided by time elapsed.  Note that this includes idle-time when 0 instructions are executed.
       Busy% percent of the measurement interval that the CPU executes instructions, aka. % of time in "C0" state.
       Bzy_MHz average clock rate while the CPU was not idle (ie. in "c0" state).
       TSC_MHz average MHz that the TSC ran during the entire interval.
       IRQ The number of interrupts serviced by that CPU during the measurement interval.  The system total line is the sum of interrupts serviced across all CPUs.  turbostat parses /proc/interrupts to generate this summary.
       SMI The number of System Management Interrupts  serviced CPU during the measurement interval.  While this counter is actually per-CPU, SMI are triggered on all processors, so the number should be the same for all CPUs.
       C1, C2, C3... The number times Linux requested the C1, C2, C3 idle state during the measurement interval.  The system summary line shows the sum for all CPUs.  These are C-state names as exported in /sys/devices/system/cpu/cpu*/cpuidle/state*/name.  While their names are generic, their attributes are processor specific. They the system description section of output shows what MWAIT sub-states they are mapped to on each system.
       C1%, C2%, C3% The residency percentage that Linux requested C1, C2, C3....  The system summary is the average of all CPUs in the system.  Note that these are software, reflecting what was requested.  The hardware counters reflect what was actually achieved.
       CPU%c1, CPU%c3, CPU%c6, CPU%c7 show the percentage residency in hardware core idle states.  These numbers are from hardware residency counters.
       CoreTmp Degrees Celsius reported by the per-core Digital Thermal Sensor.
       PkgTmp Degrees Celsius reported by the per-package Package Thermal Monitor.
       GFX%rc6 The percentage of time the GPU is in the "render C6" state, rc6, during the measurement interval. From /sys/class/drm/card0/power/rc6_residency_ms.
       GFXMHz Instantaneous snapshot of what sysfs presents at the end of the measurement interval. From /sys/class/graphics/fb0/device/drm/card0/gt_cur_freq_mhz.
       Pkg%pc2, Pkg%pc3, Pkg%pc6, Pkg%pc7 percentage residency in hardware package idle states.  These numbers are from hardware residency counters.
       PkgWatt Watts consumed by the whole package.
       CorWatt Watts consumed by the core part of the package.
       GFXWatt Watts consumed by the Graphics part of the package -- available only on client processors.
       RAMWatt Watts consumed by the DRAM DIMMS -- available only on server processors.
       PKG_% percent of the interval that RAPL throttling was active on the Package.  Note that the system summary is the sum of the package throttling time, and thus may be higher than 100% on a multi-package system.  Note that the meaning of this field is model specific.  For example, some hardware increments this counter when RAPL responds to thermal limits, but does not increment this counter when RAPL responds to power limits.  Comparing PkgWatt and PkgTmp to system limits is necessary.
       RAM_% percent of the interval that RAPL throttling was active on DRAM.

TOO MUCH INFORMATION EXAMPLE

       By  default,  turbostat  dumps  all  possible  information  -- a system configuration header, followed by
       columns for all counters.  This is ideal for remote debugging, use the "--out" option to save  everything
       to a text file, and get that file to the expert helping you debug.

       When  you  are  not  interested  in all that information, and there are several ways to see only what you
       want.  First the "--quiet" option will skip the configuration information, and turbostat will  show  only
       the  counter columns.  Second, you can reduce the columns with the "--hide" and "--show" options.  If you
       use the "--show" option, then turbostat will show only the columns you list.  If  you  use  the  "--hide"
       option, turbostat will show all columns, except the ones you list.

       To  find  out  what  columns  are available for --show and --hide, the "--list" option is available.  For
       convenience, the special strings "sysfs" can be used to refer to all of the  sysfs  C-state  counters  at
       once:
       sudo ./turbostat --show sysfs --quiet sleep 10
       10.003837 sec
            C1   C1E  C3   C6   C7s  C1%  C1E% C3%  C6%  C7s%
            4    21   2    2    459  0.14 0.82 0.00 0.00 98.93
            1    17   2    2    130  0.00 0.02 0.00 0.00 99.80
            0    0    0    0    31   0.00 0.00 0.00 0.00 99.95
            2    1    0    0    52   1.14 6.49 0.00 0.00 92.21
            1    2    0    0    52   0.00 0.08 0.00 0.00 99.86
            0    0    0    0    71   0.00 0.00 0.00 0.00 99.89
            0    0    0    0    25   0.00 0.00 0.00 0.00 99.96
            0    0    0    0    74   0.00 0.00 0.00 0.00 99.94
            0    1    0    0    24   0.00 0.00 0.00 0.00 99.84

ONE SHOT COMMAND EXAMPLE

       If  turbostat  is  invoked  with  a command, it will fork that command and output the statistics gathered
       after the command exits.  In this case, turbostat output goes to stderr, by default.  Output can  instead
       be  saved  to  a  file  using  the  --out option.  In this example, the "sleep 10" command is forked, and
       turbostat waits for it to complete before saving all statistics into "ts.out".  Note that "sleep  10"  is
       not  part of turbostat, but is simply an example of a command that turbostat can fork.  The "ts.out" file
       is what you want to edit in a very wide window, paste into a spreadsheet, or attach to a bugzilla entry.

       [root@hsw]# ./turbostat -o ts.out sleep 10
       [root@hsw]#

PERIODIC INTERVAL EXAMPLE

       Without a command to fork, turbostat displays statistics ever 5 seconds.  Periodic output goes to stdout,
       by  default,  unless  --out is used to specify an output file.  The 5-second interval can be changed with
       the "-i sec" option.
       sudo ./turbostat --quiet --hide sysfs,IRQ,SMI,CoreTmp,PkgTmp,GFX%rc6,GFXMHz,PkgWatt,CorWatt,GFXWatt
            Core CPU  Avg_MHz   Busy%     Bzy_MHz   TSC_MHz   CPU%c1    CPU%c3    CPU%c6    CPU%c7
            -    -    488  12.52     3900 3498 12.50     0.00 0.00 74.98
            0    0    5    0.13 3900 3498 99.87     0.00 0.00 0.00
            0    4    3897 99.99     3900 3498 0.01
            1    1    0    0.00 3856 3498 0.01 0.00 0.00 99.98
            1    5    0    0.00 3861 3498 0.01
            2    2    1    0.02 3889 3498 0.03 0.00 0.00 99.95
            2    6    0    0.00 3863 3498 0.05
            3    3    0    0.01 3869 3498 0.02 0.00 0.00 99.97
            3    7    0    0.00 3878 3498 0.03
            Core CPU  Avg_MHz   Busy%     Bzy_MHz   TSC_MHz   CPU%c1    CPU%c3    CPU%c6    CPU%c7
            -    -    491  12.59     3900 3498 12.42     0.00 0.00 74.99
            0    0    27   0.69 3900 3498 99.31     0.00 0.00 0.00
            0    4    3898 99.99     3900 3498 0.01
            1    1    0    0.00 3883 3498 0.01 0.00 0.00 99.99
            1    5    0    0.00 3898 3498 0.01
            2    2    0    0.01 3889 3498 0.02 0.00 0.00 99.98
            2    6    0    0.00 3889 3498 0.02
            3    3    0    0.00 3856 3498 0.01 0.00 0.00 99.99
            3    7    0    0.00 3897 3498 0.01
       This example also shows the use of the --hide option to skip columns that are not wanted.  Note that cpu4
       in  this  example  is  99.99%  busy,  while  the other CPUs are all under 1% busy.  Notice that cpu4's HT
       sibling is cpu0, which is under 1% busy, but can get into CPU%c1 only, because  its  cpu4's  activity  on
       shared hardware keeps it from entering a deeper C-state.

SYSTEM CONFIGURATION INFORMATION EXAMPLE

       By  default,  turbostat always dumps system configuration information before taking measurements.  In the
       example above, "--quiet" is used to suppress that output.   Here  is  an  example  of  the  configuration
       information:
       turbostat version 2017.02.15 - Len Brown <lenb@kernel.org>
       CPUID(0): GenuineIntel 13 CPUID levels; family:model:stepping 0x6:3c:3 (6:60:3)
       CPUID(1): SSE3 MONITOR - EIST TM2 TSC MSR ACPI-TM TM
       CPUID(6): APERF, TURBO, DTS, PTM, No-HWP, No-HWPnotify, No-HWPwindow, No-HWPepp, No-HWPpkg, EPB
       cpu4: MSR_IA32_MISC_ENABLE: 0x00850089 (TCC EIST No-MWAIT PREFETCH TURBO)
       CPUID(7): No-SGX
       cpu4: MSR_MISC_PWR_MGMT: 0x00400000 (ENable-EIST_Coordination DISable-EPB DISable-OOB)
       RAPL: 3121 sec. Joule Counter Range, at 84 Watts
       cpu4: MSR_PLATFORM_INFO: 0x80838f3012300
       8 * 100.0 = 800.0 MHz max efficiency frequency
       35 * 100.0 = 3500.0 MHz base frequency
       cpu4: MSR_IA32_POWER_CTL: 0x0004005d (C1E auto-promotion: DISabled)
       cpu4: MSR_TURBO_RATIO_LIMIT: 0x25262727
       37 * 100.0 = 3700.0 MHz max turbo 4 active cores
       38 * 100.0 = 3800.0 MHz max turbo 3 active cores
       39 * 100.0 = 3900.0 MHz max turbo 2 active cores
       39 * 100.0 = 3900.0 MHz max turbo 1 active cores
       cpu4: MSR_CONFIG_TDP_NOMINAL: 0x00000023 (base_ratio=35)
       cpu4: MSR_CONFIG_TDP_LEVEL_1: 0x00000000 ()
       cpu4: MSR_CONFIG_TDP_LEVEL_2: 0x00000000 ()
       cpu4: MSR_CONFIG_TDP_CONTROL: 0x80000000 ( lock=1)
       cpu4: MSR_TURBO_ACTIVATION_RATIO: 0x00000000 (MAX_NON_TURBO_RATIO=0 lock=0)
       cpu4: MSR_PKG_CST_CONFIG_CONTROL: 0x1e000400 (UNdemote-C3, UNdemote-C1, demote-C3, demote-C1, UNlocked: pkg-cstate-limit=0: pc0)
       cpu4: POLL: CPUIDLE CORE POLL IDLE
       cpu4: C1: MWAIT 0x00
       cpu4: C1E: MWAIT 0x01
       cpu4: C3: MWAIT 0x10
       cpu4: C6: MWAIT 0x20
       cpu4: C7s: MWAIT 0x32
       cpu4: MSR_MISC_FEATURE_CONTROL: 0x00000000 (L2-Prefetch L2-Prefetch-pair L1-Prefetch L1-IP-Prefetch)
       cpu0: MSR_IA32_ENERGY_PERF_BIAS: 0x00000006 (balanced)
       cpu0: MSR_CORE_PERF_LIMIT_REASONS, 0x31200000 (Active: ) (Logged: Transitions, MultiCoreTurbo, Amps, Auto-HWP, )
       cpu0: MSR_GFX_PERF_LIMIT_REASONS, 0x00000000 (Active: ) (Logged: )
       cpu0: MSR_RING_PERF_LIMIT_REASONS, 0x0d000000 (Active: ) (Logged: Amps, PkgPwrL1, PkgPwrL2, )
       cpu0: MSR_RAPL_POWER_UNIT: 0x000a0e03 (0.125000 Watts, 0.000061 Joules, 0.000977 sec.)
       cpu0: MSR_PKG_POWER_INFO: 0x000002a0 (84 W TDP, RAPL 0 - 0 W, 0.000000 sec.)
       cpu0: MSR_PKG_POWER_LIMIT: 0x428348001a82a0 (UNlocked)
       cpu0: PKG Limit #1: ENabled (84.000000 Watts, 8.000000 sec, clamp DISabled)
       cpu0: PKG Limit #2: ENabled (105.000000 Watts, 0.002441* sec, clamp DISabled)
       cpu0: MSR_PP0_POLICY: 0
       cpu0: MSR_PP0_POWER_LIMIT: 0x00000000 (UNlocked)
       cpu0: Cores Limit: DISabled (0.000000 Watts, 0.000977 sec, clamp DISabled)
       cpu0: MSR_PP1_POLICY: 0
       cpu0: MSR_PP1_POWER_LIMIT: 0x00000000 (UNlocked)
       cpu0: GFX Limit: DISabled (0.000000 Watts, 0.000977 sec, clamp DISabled)
       cpu0: MSR_IA32_TEMPERATURE_TARGET: 0x00641400 (100 C)
       cpu0: MSR_IA32_PACKAGE_THERM_STATUS: 0x884c0800 (24 C)
       cpu0: MSR_IA32_THERM_STATUS: 0x884c0000 (24 C +/- 1)
       cpu1: MSR_IA32_THERM_STATUS: 0x88510000 (19 C +/- 1)
       cpu2: MSR_IA32_THERM_STATUS: 0x884e0000 (22 C +/- 1)
       cpu3: MSR_IA32_THERM_STATUS: 0x88510000 (19 C +/- 1)
       cpu4: MSR_PKGC3_IRTL: 0x00008842 (valid, 67584 ns)
       cpu4: MSR_PKGC6_IRTL: 0x00008873 (valid, 117760 ns)
       cpu4: MSR_PKGC7_IRTL: 0x00008891 (valid, 148480 ns)
       The  max  efficiency  frequency,  a.k.a.  Low  Frequency  Mode, is the frequency available at the minimum
       package voltage.  The TSC frequency is the base frequency of the processor -- this should match the brand
       string  in  /proc/cpuinfo.   This  base  frequency  should be sustainable on all CPUs indefinitely, given
       nominal power and cooling.  The remaining rows show what maximum turbo frequency is possible depending on
       the number of idle cores.  Note that not all information is available on all processors.

ADD COUNTER EXAMPLE

       Here  we  limit  turbostat  to showing just the CPU number for cpu0 - cpu3.  We add a counter showing the
       32-bit raw value of MSR 0x199 (MSR_IA32_PERF_CTL), labeling it with the column  header,  "PRF_CTRL",  and
       display it only once, afte the conclusion of a 0.1 second sleep.
       sudo ./turbostat --quiet --cpu 0-3 --show CPU --add msr0x199,u32,raw,PRF_CTRL sleep .1
       0.101604 sec
       CPU    PRF_CTRL
       -    0x00000000
       0    0x00000c00
       1    0x00000800
       2    0x00000a00
       3    0x00000800

INPUT

       For interval-mode, turbostat will immediately end the current interval when it sees a newline on standard
       input.  turbostat will then start the next interval.  Control-C will be send a SIGINT to turbostat, which
       will immediately abort the program with no further processing.

SIGNALS

       SIGINT  will  interrupt  interval-mode.   The end-of-interval data will be collected and displayed before
       turbostat exits.

       SIGUSR1 will end current interval, end-of-interval data will be collected and displayed before  turbostat
       starts a new interval.

NOTES

       turbostat must be run as root.  Alternatively, non-root users can be enabled to run turbostat this way:

       # setcap cap_sys_rawio=ep ./turbostat

       # chmod +r /dev/cpu/*/msr

       # chmod +r /dev/cpu_dma_latency

       turbostat reads hardware counters, but doesn't write them.  So it will not interfere with the OS or other
       programs, including multiple invocations of itself.

       turbostat may work poorly on Linux-2.6.20 through 2.6.29, as acpi-cpufreq periodically cleared the  APERF
       and MPERF MSRs in those kernels.

       AVG_MHz  =  APERF_delta/measurement_interval.  This is the actual number of elapsed cycles divided by the
       entire sample interval -- including idle time.  Note  that  this  calculation  is  resilient  to  systems
       lacking a non-stop TSC.

       TSC_MHz = TSC_delta/measurement_interval.  On a system with an invariant TSC, this value will be constant
       and will closely match the base frequency value shown in the brand string in /proc/cpuinfo.  On a  system
       where the TSC stops in idle, TSC_MHz will drop below the processor's base frequency.

       Busy% = MPERF_delta/TSC_delta

       Bzy_MHz = TSC_delta*APERF_delta/MPERF_delta/measurement_interval

       Note  that these calculations depend on TSC_delta, so they are not reliable during intervals when TSC_MHz
       is not running at the base frequency.

       Turbostat data collection is not atomic.   Extremely  short  measurement  intervals  (much  less  than  1
       second), or system activity that prevents turbostat from being able to run on all CPUS to quickly collect
       data, will result in inconsistent results.

       The APERF, MPERF MSRs are defined to count non-halted cycles.  Although  it  is  not  guaranteed  by  the
       architecture,  turbostat  assumes  that they count at TSC rate, which is true on all processors tested to
       date.

REFERENCES

       Volume 3B: System Programming Guide" https://www.intel.com/products/processor/manuals/

FILES

       /dev/cpu/*/msr

SEE ALSO

       msr(4), vmstat(8)

AUTHOR

       Written by Len Brown <len.brown@intel.com>

                                                                                                    TURBOSTAT(8)