Provided by: pktools_2.6.7.6+ds-4_amd64
NAME
pkoptsvm - program to optimize parameters for SVM classification
SYNOPSIS
pkoptsvm -t training [options] [advanced options]
DESCRIPTION
pkoptsvm The support vector machine depends on several parameters. Ideally, these parameters should be optimized for each classification problem. In case of a radial basis kernel function, two important parameters are {cost} and {gamma}. The utility pkoptsvm can optimize these two parameters, based on an accuracy assessment (the Kappa value). If an input test set (-i) is provided, it is used for the accuracy assessment. If not, the accuracy assessment is based on a cross validation (-cv) of the training sample. The optimization routine uses a grid search. The initial and final values of the parameters can be set with -cc startvalue -cc endvalue and -g startvalue -g endvalue for cost and gamma respectively. The search uses a multiplicative step for iterating the parameters (set with the options -stepcc and -stepg). An often used approach is to define a relatively large multiplicative step first (e.g 10) to obtain an initial estimate for both parameters. The estimate can then be optimized by defining a smaller step (>1) with constrained start and end values for the parameters cost and gamma.
OPTIONS
-t filename, --training filename training vector file. A single vector file contains all training features (must be set as: b0, b1, b2,...) for all classes (class numbers identified by label option). -i filename, --input filename input test vector file -cc startvalue -cc endvalue, --ccost startvalue --ccost endvalue min and max boundaries the parameter C of C-SVC, epsilon-SVR, and nu-SVR (optional: initial value) -g startvalue -g endvalue, --gamma startvalue --gamma endvalue min max boundaries for gamma in kernel function (optional: initial value) -step stepsize, --step stepsize multiplicative step for ccost and gamma in GRID search -v level, --verbose level use 1 to output intermediate results for plotting Advanced options -tln layer, --tln layer training layer name(s) -label attribute, --label attribute identifier for class label in training vector file. (default: label) -bal size, --balance size balance the input data to this number of samples for each class (default: 0) -random, --random in case of balance, randomize input data -min number, --min number if number of training pixels is less then min, do not take this class into account -b band, --band band band index (starting from 0, either use band option or use start to end) -sband band, --startband band start band sequence number -eband band, --endband band end band sequence number -offset value, --offset value offset value for each spectral band input features: refl[band]=(DN[band]-offset[band])/scale[band] -scale value, --scale value scale value for each spectral band input features: refl=(DN[band]-offset[band])/scale[band] (use 0 if scale min and max in each band to -1.0 and 1.0) -svmt type, --svmtype type type of SVM (C_SVC, nu_SVC,one_class, epsilon_SVR, nu_SVR) -kt type, --kerneltype type type of kernel function (linear,polynomial,radial,sigmoid) -kd value, --kd value degree in kernel function -c0 value, --coef0 value coef0 in kernel function -nu value, --nu value the parameter nu of nu-SVC, one-class SVM, and nu-SVR -eloss value, --eloss value the epsilon in loss function of epsilon-SVR -cache number, --cache number cache memory size in MB (default: 100) -etol value, --etol value the tolerance of termination criterion (default: 0.001) -shrink, --shrink whether to use the shrinking heuristics -cv value, --cv value n-fold cross validation mode (default: 0) -cf, --cf use Overall Accuracy instead of kappa -maxit number, --maxit number maximum number of iterations -tol value, --tolerance value relative tolerance for stopping criterion (default: 0.0001) -a value, --algorithm value GRID, or any optimization algorithm from http://ab- initio.mit.edu/wiki/index.php/NLopt_Algorithms -c name, --class name list of class names. -r value, --reclass value list of class values (use same order as in --class option). 01 December 2022 pkoptsvm(1)