Provided by: grass-doc_8.3.0-1_all bug

NAME

       t.rast.series   -  Performs  different  aggregation  algorithms  from r.series on all or a
       subset of raster maps in a space time raster dataset.

KEYWORDS

       temporal, aggregation, series, raster, time

SYNOPSIS

       t.rast.series
       t.rast.series --help
       t.rast.series [-tn]  input=name  method=string[,string,...]   [quantile=float[,float,...]]
       [order=string[,string,...]]   [nprocs=integer]   [memory=memory in MB]   [where=sql_query]
       output=name[,name,...]   [file_limit=integer]     [--overwrite]    [--help]    [--verbose]
       [--quiet]  [--ui]

   Flags:
       -t
           Do not assign the space time raster dataset start and end time to the output map

       -n
           Propagate NULLs

       --overwrite
           Allow output files to overwrite existing files

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       input=name [required]
           Name of the input space time raster dataset

       method=string[,string,...] [required]
           Aggregate operation to be performed on the raster maps
           Options:  average,  count,  median,  mode,  minimum,  min_raster, maximum, max_raster,
           stddev, range, sum, variance, diversity,  slope,  offset,  detcoeff,  quart1,  quart3,
           perc90, quantile, skewness, kurtosis
           Default: average

       quantile=float[,float,...]
           Quantile to calculate for method=quantile
           Options: 0.0-1.0

       order=string[,string,...]
           Sort the maps by category
           Options:   id,    name,    creator,    mapset,    creation_time,    modification_time,
           start_time,  end_time,  north,  south,  west,  east,  min,  max
           Default: start_time

       nprocs=integer
           Number of threads for parallel computing
           Default: 1

       memory=memory in MB
           Maximum memory to be used (in MB)
           Cache size for raster rows
           Default: 300

       where=sql_query
           WHERE conditions of SQL statement without ’where’ keyword used  in  the  temporal  GIS
           framework
           Example: start_time > ’2001-01-01 12:30:00’

       output=name[,name,...] [required]
           Name for output raster map(s)

       file_limit=integer
           The maximum number of open files allowed for each r.series process
           Default: 1000

DESCRIPTION

       The  input  of  this  module is a single space time raster dataset, the output is a single
       raster map layer. A subset of the input space time raster dataset can  be  selected  using
       the  where  option. The sorting of the raster map layer can be set using the order option.
       Be aware that the order of  the  maps  can  significantly  influence  the  result  of  the
       aggregation (e.g.: slope). By default the maps are ordered by start_time.

       t.rast.series  is a simple wrapper for the raster module r.series. It supports a subset of
       the aggregation methods of r.series.

NOTES

       To avoid problems with too many open files, by default, the maximum number of  open  files
       is  set to 1000. If the number of input raster files exceeds this number, the -z flag will
       be invoked. Because this will slow down processing, the user can set a higher  limit  with
       the  file_limit  parameter. Note that file_limit limit should not exceed the user-specific
       limit on open files set by your operating system. See the Wiki for more information.

Performance

       To enable parallel processing, the user can specify the number of threads to be used  with
       the  nprocs  parameter  (default  1).  The  memory  parameter (default 300 MB) can also be
       provided to determine the size of the buffer in MB for computation.  Both  parameters  are
       passed  to  r.series.   To  take  advantage  of the parallelization, GRASS GIS needs to be
       compiled with OpenMP enabled.

EXAMPLES

   Estimate the average temperature for the whole time series
       Here the entire stack of input maps is considered:
       t.rast.series input=tempmean_monthly output=tempmean_average method=average

   Estimate the average temperature for a subset of the time series
       Here the stack of input maps is limited to a certain period of time:
       t.rast.series input=tempmean_daily output=tempmean_season method=average \
         where="start_time >= ’2012-06’ and start_time <= ’2012-08’"

   Climatology: single month in a multi-annual time series
       By considering only a single month in a multi-annual time series the so-called climatology
       can be computed.  Estimate average temperature for all January maps in the time series:
       t.rast.series input=tempmean_monthly \
           method=average output=tempmean_january \
           where="strftime(’%m’, start_time)=’01’"
       # equivalently, we can use
       t.rast.series input=tempmean_monthly \
           output=tempmean_january method=average \
           where="start_time = datetime(start_time, ’start of year’, ’0 month’)"
       # if we want also February and March averages
       t.rast.series input=tempmean_monthly \
           output=tempmean_february method=average \
           where="start_time = datetime(start_time, ’start of year’, ’1 month’)"
       t.rast.series input=tempmean_monthly \
           output=tempmean_march method=average \
           where="start_time = datetime(start_time, ’start of year’, ’2 month’)"
       Generalizing  a  bit,  we  can  estimate  monthly climatologies for all months by means of
       different methods
       for i in `seq -w 1 12` ; do
         for m in average stddev minimum maximum ; do
           t.rast.series input=tempmean_monthly method=${m} output=tempmean_${m}_${i} \
           where="strftime(’%m’, start_time)=’${i}’"
         done
       done

SEE ALSO

        r.series, t.create, t.info

       Temporal data processing Wiki

AUTHOR

       Sören Gebbert, Thünen Institute of Climate-Smart Agriculture

SOURCE CODE

       Available at: t.rast.series source code (history)

       Accessed: Tuesday Jun 27 11:14:36 2023

       Main index | Temporal index | Topics index | Keywords index | Graphical index | Full index

       © 2003-2023 GRASS Development Team, GRASS GIS 8.3.0 Reference Manual