Provided by: libmath-planepath-perl_129-1_all
NAME
Math::PlanePath::FilledRings -- concentric filled lattice rings
SYNOPSIS
use Math::PlanePath::FilledRings; my $path = Math::PlanePath::FilledRings->new; my ($x, $y) = $path->n_to_xy (123);
DESCRIPTION
This path puts points on integer X,Y pixels of filled rings with radius 1 unit each ring. 110-109-108-107-106 6 / \ 112-111 79--78--77--76--75 105-104 5 | / \ | 114-113 80 48--47--46--45--44 74 103-102 4 | / | | \ | 115 81 50--49 27--26--25 43--42 73 101 3 / / | / \ | \ \ 116 82 52--51 28 14--13--12 24 41--40 72 100 2 | | | / / \ \ | | | 117 83 53 29 15 5-- 4-- 3 11 23 39 71 99 1 | | | | | | | | | | | | 118 84 54 30 16 6 1-- 2 10 22 38 70 98 <- Y=0 | | | | | | / / / / / / 119 85 55 31 17 7-- 8-- 9 21 37 69 97 137 -1 | | | \ \ / / | | | 120 86 56--57 32 18--19--20 36 67--68 96 136 -2 \ \ | \ / | / / 121 87 58--59 33--34--35 65--66 95 135 -3 | \ | | / | 122-123 88 60--61--62--63--64 94 133-134 -4 | \ / | 124-125 89--90--91--92--93 131-132 -5 \ / 126-127-128-129-130 ^ -6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6 For example the ring N=22 to N=37 is all the points 2.5 < hypot(X,Y) < 3.5 where hypot(X,Y) = sqrt(X^2+Y^2) N Start The default is to number points starting N=1 as shown above. An optional "n_start" can give a different start with the same shape. For example to start at 0, 26-25-24 n_start => 0 / \ 27 13-12-11 23 / / \ \ 28 14 4--3--2 10 22 | | | | | | 29 15 5 0--1 9 21 | | | / / / 30 16 6--7--8 20 36 \ \ / / 31 17-18-19 35 \ / 8 32-33-34 The only effect is to push the N values by a constant amount but can help match N on the axes to counts of X,Y points < R or similar.
FUNCTIONS
See "FUNCTIONS" in Math::PlanePath for the behaviour common to all path classes. "$path = Math::PlanePath::FilledRings->new ()" "$path = Math::PlanePath::FilledRings->new (n_start => $n)" Create and return a new path object.
OEIS
Entries in Sloane's Online Encyclopedia of Integer Sequences related to this path include, <http://oeis.org/A036704> (etc) A036705 first diffs of N on X axis, being count of X,Y points n-1/2 < norm <= n+1/2 A036706 1/4 of those diffs n_start=1 (the default) A036707 N/2+X-1 along X axis, being count norm <= n+1/2 in half plane A036708 (N(X,0)-N(X-1,0))/2+1, first diffs of the half plane count n_start=0 A036704 N on X axis, from X=1 onwards count of X,Y points norm <= n+1/2
SEE ALSO
Math::PlanePath, Math::PlanePath::PixelRings, Math::PlanePath::Hypot, Math::PlanePath::MultipleRings
HOME PAGE
<http://user42.tuxfamily.org/math-planepath/index.html>
LICENSE
Copyright 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde This file is part of Math-PlanePath. Math-PlanePath is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. Math-PlanePath is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Math- PlanePath. If not, see <http://www.gnu.org/licenses/>.