Provided by: liblapack-doc_3.12.0-3build1.1_all 
      
    
NAME
       lanht - lan{ht,st}: Hermitian/symmetric matrix, tridiagonal
SYNOPSIS
   Functions
       real function clanht (norm, n, d, e)
           CLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element
           of largest absolute value of a complex Hermitian tridiagonal matrix.
       double precision function dlanst (norm, n, d, e)
           DLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element
           of largest absolute value of a real symmetric tridiagonal matrix.
       real function slanst (norm, n, d, e)
           SLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element
           of largest absolute value of a real symmetric tridiagonal matrix.
       double precision function zlanht (norm, n, d, e)
           ZLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element
           of largest absolute value of a complex Hermitian tridiagonal matrix.
Detailed Description
Function Documentation
   real function clanht (character norm, integer n, real, dimension( * ) d, complex, dimension( * ) e)
       CLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of
       largest absolute value of a complex Hermitian tridiagonal matrix.
       Purpose:
            CLANHT  returns the value of the one norm,  or the Frobenius norm, or
            the  infinity norm,  or the  element of  largest absolute value  of a
            complex Hermitian tridiagonal matrix A.
       Returns
           CLANHT
               CLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
                        (
                        ( norm1(A),         NORM = '1', 'O' or 'o'
                        (
                        ( normI(A),         NORM = 'I' or 'i'
                        (
                        ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
            where  norm1  denotes the  one norm of a matrix (maximum column sum),
            normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
            normF  denotes the  Frobenius norm of a matrix (square root of sum of
            squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
       Parameters
           NORM
                     NORM is CHARACTER*1
                     Specifies the value to be returned in CLANHT as described
                     above.
           N
                     N is INTEGER
                     The order of the matrix A.  N >= 0.  When N = 0, CLANHT is
                     set to zero.
           D
                     D is REAL array, dimension (N)
                     The diagonal elements of A.
           E
                     E is COMPLEX array, dimension (N-1)
                     The (n-1) sub-diagonal or super-diagonal elements of A.
       Author
           Univ. of Tennessee
           Univ. of California Berkeley
           Univ. of Colorado Denver
           NAG Ltd.
   double precision function dlanst (character norm, integer n, double precision, dimension( * ) d, double
       precision, dimension( * ) e)
       DLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of
       largest absolute value of a real symmetric tridiagonal matrix.
       Purpose:
            DLANST  returns the value of the one norm,  or the Frobenius norm, or
            the  infinity norm,  or the  element of  largest absolute value  of a
            real symmetric tridiagonal matrix A.
       Returns
           DLANST
               DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
                        (
                        ( norm1(A),         NORM = '1', 'O' or 'o'
                        (
                        ( normI(A),         NORM = 'I' or 'i'
                        (
                        ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
            where  norm1  denotes the  one norm of a matrix (maximum column sum),
            normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
            normF  denotes the  Frobenius norm of a matrix (square root of sum of
            squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
       Parameters
           NORM
                     NORM is CHARACTER*1
                     Specifies the value to be returned in DLANST as described
                     above.
           N
                     N is INTEGER
                     The order of the matrix A.  N >= 0.  When N = 0, DLANST is
                     set to zero.
           D
                     D is DOUBLE PRECISION array, dimension (N)
                     The diagonal elements of A.
           E
                     E is DOUBLE PRECISION array, dimension (N-1)
                     The (n-1) sub-diagonal or super-diagonal elements of A.
       Author
           Univ. of Tennessee
           Univ. of California Berkeley
           Univ. of Colorado Denver
           NAG Ltd.
   real function slanst (character norm, integer n, real, dimension( * ) d, real, dimension( * ) e)
       SLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of
       largest absolute value of a real symmetric tridiagonal matrix.
       Purpose:
            SLANST  returns the value of the one norm,  or the Frobenius norm, or
            the  infinity norm,  or the  element of  largest absolute value  of a
            real symmetric tridiagonal matrix A.
       Returns
           SLANST
               SLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
                        (
                        ( norm1(A),         NORM = '1', 'O' or 'o'
                        (
                        ( normI(A),         NORM = 'I' or 'i'
                        (
                        ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
            where  norm1  denotes the  one norm of a matrix (maximum column sum),
            normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
            normF  denotes the  Frobenius norm of a matrix (square root of sum of
            squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
       Parameters
           NORM
                     NORM is CHARACTER*1
                     Specifies the value to be returned in SLANST as described
                     above.
           N
                     N is INTEGER
                     The order of the matrix A.  N >= 0.  When N = 0, SLANST is
                     set to zero.
           D
                     D is REAL array, dimension (N)
                     The diagonal elements of A.
           E
                     E is REAL array, dimension (N-1)
                     The (n-1) sub-diagonal or super-diagonal elements of A.
       Author
           Univ. of Tennessee
           Univ. of California Berkeley
           Univ. of Colorado Denver
           NAG Ltd.
   double precision function zlanht (character norm, integer n, double precision, dimension( * ) d, complex*16,
       dimension( * ) e)
       ZLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of
       largest absolute value of a complex Hermitian tridiagonal matrix.
       Purpose:
            ZLANHT  returns the value of the one norm,  or the Frobenius norm, or
            the  infinity norm,  or the  element of  largest absolute value  of a
            complex Hermitian tridiagonal matrix A.
       Returns
           ZLANHT
               ZLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
                        (
                        ( norm1(A),         NORM = '1', 'O' or 'o'
                        (
                        ( normI(A),         NORM = 'I' or 'i'
                        (
                        ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
            where  norm1  denotes the  one norm of a matrix (maximum column sum),
            normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
            normF  denotes the  Frobenius norm of a matrix (square root of sum of
            squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
       Parameters
           NORM
                     NORM is CHARACTER*1
                     Specifies the value to be returned in ZLANHT as described
                     above.
           N
                     N is INTEGER
                     The order of the matrix A.  N >= 0.  When N = 0, ZLANHT is
                     set to zero.
           D
                     D is DOUBLE PRECISION array, dimension (N)
                     The diagonal elements of A.
           E
                     E is COMPLEX*16 array, dimension (N-1)
                     The (n-1) sub-diagonal or super-diagonal elements of A.
       Author
           Univ. of Tennessee
           Univ. of California Berkeley
           Univ. of Colorado Denver
           NAG Ltd.
Author
       Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0                               Fri Aug 9 2024 02:33:22                                    lanht(3)