Provided by: liblapack-doc_3.12.0-3build1.1_all 

NAME
pptrs - pptrs: triangular solve using factor
SYNOPSIS
Functions subroutine cpptrs (uplo, n, nrhs, ap, b, ldb, info) CPPTRS subroutine dpptrs (uplo, n, nrhs, ap, b, ldb, info) DPPTRS subroutine spptrs (uplo, n, nrhs, ap, b, ldb, info) SPPTRS subroutine zpptrs (uplo, n, nrhs, ap, b, ldb, info) ZPPTRS
Detailed Description
Function Documentation
subroutine cpptrs (character uplo, integer n, integer nrhs, complex, dimension( * ) ap, complex, dimension( ldb, * ) b, integer ldb, integer info) CPPTRS Purpose: CPPTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A in packed storage using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPPTRF. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. AP AP is COMPLEX array, dimension (N*(N+1)/2) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, packed columnwise in a linear array. The j-th column of U or L is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. B B is COMPLEX array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine dpptrs (character uplo, integer n, integer nrhs, double precision, dimension( * ) ap, double precision, dimension( ldb, * ) b, integer ldb, integer info) DPPTRS Purpose: DPPTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A in packed storage using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPPTRF. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. AP AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) The triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, packed columnwise in a linear array. The j-th column of U or L is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. B B is DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine spptrs (character uplo, integer n, integer nrhs, real, dimension( * ) ap, real, dimension( ldb, * ) b, integer ldb, integer info) SPPTRS Purpose: SPPTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A in packed storage using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPPTRF. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. AP AP is REAL array, dimension (N*(N+1)/2) The triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, packed columnwise in a linear array. The j-th column of U or L is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. B B is REAL array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine zpptrs (character uplo, integer n, integer nrhs, complex*16, dimension( * ) ap, complex*16, dimension( ldb, * ) b, integer ldb, integer info) ZPPTRS Purpose: ZPPTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A in packed storage using the Cholesky factorization A = U**H * U or A = L * L**H computed by ZPPTRF. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. AP AP is COMPLEX*16 array, dimension (N*(N+1)/2) The triangular factor U or L from the Cholesky factorization A = U**H * U or A = L * L**H, packed columnwise in a linear array. The j-th column of U or L is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. B B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd.
Author
Generated automatically by Doxygen for LAPACK from the source code.