Provided by: sudo_1.9.15p5-3ubuntu5_amd64 bug

NAME

     sudo.conf — configuration for sudo front-end

DESCRIPTION

     The sudo.conf file is used to configure the sudo front-end.  It is used to configure sudo
     plugins, plugin-agnostic path names, debug flags, and other settings.

     The sudo.conf file supports the following directives, described in detail below.

     Plugin  an approval, audit, I/O logging, or security policy plugin

     Path    a plugin-agnostic path

     Set     a front-end setting, such as disable_coredump or group_source

     Debug   debug flags to aid in debugging sudo, sudoreplay, visudo, and the sudoers plugin.

     The pound sign (‘#’) is used to indicate a comment.  Both the comment character and any text
     after it, up to the end of the line, are ignored.

     Long lines can be continued with a backslash (‘\’) as the last character on the line.
     Leading white space is removed from the beginning of lines even when a continuation
     character is used.

     Non-comment lines that don't begin with Plugin, Path, Debug, or Set are silently ignored.

     The sudo.conf file is always parsed in the ‘C’ locale.

   Plugin configuration
     sudo supports a plugin architecture for security policies and input/output logging.  Third
     parties can develop and distribute their own policy and I/O logging plugins to work
     seamlessly with the sudo front-end.  Plugins are dynamically loaded based on the contents of
     sudo.conf.

     A Plugin line consists of the Plugin keyword, followed by the symbol_name and the path to
     the dynamic shared object that contains the plugin.  The symbol_name is the name of the
     struct approval_plugin, struct audit_plugin, struct io_plugin, or struct policy_plugin
     defined by the plugin.  If a plugin implements multiple plugin types, there must be a Plugin
     line for each unique symbol name.  The path may be fully qualified or relative.  If not
     fully qualified, it is relative to the directory specified by the plugin_dir Path setting,
     which defaults to /usr/libexec/sudo.  In other words:

         Plugin sudoers_policy sudoers.so

     is equivalent to:

         Plugin sudoers_policy /usr/libexec/sudo/sudoers.so

     If the plugin was compiled statically into the sudo binary instead of being installed as a
     dynamic shared object, the path should be specified without a leading directory, as it does
     not actually exist in the file system.  For example:

         Plugin sudoers_policy sudoers.so

     On AIX systems, the plugin may be either a shared object ending in ‘.so’ or an archive file
     containing a shared object ending in ‘.a’ with the name of the shared object in parentheses
     at the end.

     Starting with sudo 1.8.5, any additional parameters after the path are passed as arguments
     to the plugin's open function.  For example, to override the compile-time default sudoers
     file mode:

         Plugin sudoers_policy sudoers.so sudoers_mode=0440

     See the sudoers(5) manual for a list of supported arguments.

     The same dynamic shared object may contain multiple plugins, each with a different symbol
     name.  The file must be owned by user-ID 0 and only writable by its owner.  Because of
     ambiguities that arise from composite policies, only a single policy plugin may be
     specified.  This limitation does not apply to I/O plugins.

     If no sudo.conf file is present, or if it contains no Plugin lines, the sudoers plugin will
     be used as the default security policy, for I/O logging (if enabled by the policy), and for
     auditing.  This is equivalent to the following:

         Plugin sudoers_policy sudoers.so
         Plugin sudoers_io sudoers.so
         Plugin sudoers_audit sudoers.so

     Starting with sudo version 1.9.1, some of the logging functionality of the sudoers plugin
     has been moved from the policy plugin to an audit plugin.  To maintain compatibility with
     sudo.conf files from older sudo versions, if sudoers is configured as the security policy,
     it will be used as an audit plugin as well.  This guarantees that the logging behavior will
     be consistent with that of sudo versions 1.9.0 and below.

     For more information on the sudo plugin architecture, see the sudo_plugin(5) manual.

   Path settings
     A Path line consists of the Path keyword, followed by the name of the path to set and its
     value.  For example:

         Path intercept /usr/libexec/sudo/sudo_intercept.so
         Path noexec /usr/libexec/sudo/sudo_noexec.so
         Path askpass /usr/X11R6/bin/ssh-askpass

     If no path name is specified, features relying on the specified setting will be disabled.
     Disabling Path settings is only supported in sudo version 1.8.16 and higher.

     The following plugin-agnostic paths may be set in the /etc/sudo.conf file:

     askpass
           The fully qualified path to a helper program used to read the user's password when no
           terminal is available.  This may be the case when sudo is executed from a graphical
           (as opposed to text-based) application.  The program specified by askpass should
           display the argument passed to it as the prompt and write the user's password to the
           standard output.  The value of askpass may be overridden by the SUDO_ASKPASS
           environment variable.

     devsearch
           An ordered, colon-separated search path of directories to look in for device nodes.
           This is used when mapping the process's tty device number to a device name on systems
           that do not provide such a mechanism.  Sudo will not recurse into sub-directories.  If
           terminal devices may be located in a sub-directory of /dev, that path must be
           explicitly listed in devsearch.  The default value is
           /dev/pts:/dev/vt:/dev/term:/dev/zcons:/dev/pty:/dev

           This option is ignored on systems that support either the devname() or _ttyname_dev()
           functions, for example BSD, macOS and Solaris.

     intercept
           The path to a shared library containing a wrappers for the execve(2), execl(3),
           execle(3), execlp(3), execv(3), execvp(3), execvpe(3), and system(3) library functions
           that intercepts attempts to run further commands and performs a policy check before
           allowing them to be executed.  This is used to implement the intercept and log_subcmds
           functionality on systems that support LD_PRELOAD or the equivalent.

           The intercept path may be set to either a single fully-qualified path, or, for systems
           that support separate LD_PRELOAD environment variables for 32-bit and 64-bit
           executables, it may optionally be set to two fully-qualified paths separated by a
           colon (‘:’).  The first path should be the 32-bit version and the second the 64-bit
           version.  This two-path form is currently only supported on AIX and Solaris systems.
           The default value is /usr/libexec/sudo/sudo_intercept.so.

     noexec
           The path to a shared library containing wrappers for the execve(2), execl(3),
           execle(3), execlp(3), exect(3), execv(3), execveat(3), execvP(3), execvp(3),
           execvpe(3), fexecve(3), popen(3), posix_spawn(3), posix_spawnp(3), system(3), and
           wordexp(3) library functions that prevent the execution of further commands.  This is
           used to implement the noexec functionality on systems that support LD_PRELOAD or the
           equivalent.

           The noexec path may be set to either a single fully-qualified path, or, for systems
           that support separate LD_PRELOAD environment variables for 32-bit and 64-bit
           executables, it may optionally be set to two fully-qualified paths separated by a
           colon (‘:’).  The first path should be the 32-bit version and the second the 64-bit
           version.  This two-path form is currently only supported on AIX and Solaris systems.
           The default value is /usr/libexec/sudo/sudo_noexec.so.

     plugin_dir
           The default directory to use when searching for plugins that are specified without a
           fully qualified path name.  The default value is /usr/libexec/sudo.

     sesh  The fully-qualified path to the sesh binary.  This setting is only used when sudo is
           built with SELinux support.  The default value is /usr/libexec/sudo/sesh.

   Other settings
     The sudo.conf file also supports the following front-end settings:

     disable_coredump
           Core dumps of sudo itself are disabled by default to prevent the disclosure of
           potentially sensitive information.  To aid in debugging sudo crashes, you may wish to
           re-enable core dumps by setting “disable_coredump” to false in sudo.conf as follows:

               Set disable_coredump false

           All modern operating systems place restrictions on core dumps from set-user-ID
           processes like sudo so this option can be enabled without compromising security.  To
           actually get a sudo core file you will likely need to enable core dumps for set-user-
           ID processes.  On BSD and Linux systems this is accomplished in the sysctl(8) command.
           On Solaris, the coreadm(1m) command is used to configure core dump behavior.

           This setting is only available in sudo version 1.8.4 and higher.

     group_source
           sudo passes the invoking user's group list to the policy and I/O plugins.  On most
           systems, there is an upper limit to the number of groups that a user may belong to
           simultaneously (typically 16 for compatibility with NFS).  On systems with the
           getconf(1) utility, running:
                 getconf NGROUPS_MAX
           will return the maximum number of groups.

           However, it is still possible to be a member of a larger number of groups--they simply
           won't be included in the group list returned by the kernel for the user.  Starting
           with sudo version 1.8.7, if the user's kernel group list has the maximum number of
           entries, sudo will consult the group database directly to determine the group list.
           This makes it possible for the security policy to perform matching by group name even
           when the user is a member of more than the maximum number of groups.

           The group_source setting allows the administrator to change this default behavior.
           Supported values for group_source are:

           static
                 Use the static group list that the kernel returns.  Retrieving the group list
                 this way is very fast but it is subject to an upper limit as described above.
                 It is “static” in that it does not reflect changes to the group database made
                 after the user logs in.  This was the default behavior prior to sudo 1.8.7.

           dynamic
                 Always query the group database directly.  It is “dynamic” in that changes made
                 to the group database after the user logs in will be reflected in the group
                 list.  On some systems, querying the group database for all of a user's groups
                 can be time consuming when querying a network-based group database.  Most
                 operating systems provide an efficient method of performing such queries.
                 Currently, sudo supports efficient group queries on AIX, BSD, Linux, macOS, and
                 Solaris.  This is the default behavior on macOS in sudo 1.9.6 and higher.

           adaptive
                 Only query the group database if the static group list returned by the kernel
                 has the maximum number of entries.  This is the default behavior on systems
                 other than macOS in sudo 1.8.7 and higher.

           For example, to cause sudo to only use the kernel's static list of groups for the
           user:

               Set group_source static

           This setting is only available in sudo version 1.8.7 and higher.

     max_groups
           The maximum number of user groups to retrieve from the group database.  Values less
           than one or larger than 1024 will be ignored.  This setting is only used when querying
           the group database directly.  It is intended to be used on systems where it is not
           possible to detect when the array to be populated with group entries is not
           sufficiently large.  By default, sudo will allocate four times the system's maximum
           number of groups (see above) and retry with double that number if the group database
           query fails.

           This setting is only available in sudo version 1.8.7 and higher.  It should not be
           required in sudo versions 1.8.24 and higher and may be removed in a later release.

     probe_interfaces
           By default, sudo will probe the system's network interfaces and pass the IP address of
           each enabled interface to the policy plugin.  This makes it possible for the plugin to
           match rules based on the IP address without having to query DNS.  On Linux systems
           with a large number of virtual interfaces, this may take a non-negligible amount of
           time.  If IP-based matching is not required, network interface probing can be disabled
           as follows:

               Set probe_interfaces false

           This setting is only available in sudo version 1.8.10 and higher.

   Debug settings
     sudo versions 1.8.4 and higher support a flexible debugging framework that can log what sudo
     is doing internally if there is a problem.

     A Debug line consists of the Debug keyword, followed by the name of the program, plugin, or
     shared object to debug, the debug file name, and a comma-separated list of debug flags.  The
     debug flag syntax used by sudo, the sudoers plugin along with its associated programs and
     shared objects is subsystem@priority but a third-party plugin is free to use a different
     format so long as it does not include a comma (‘,’).

     On AIX systems, a Debug line will match a plugin specified as either the name of an
     SVR4-style shared object file ending in ‘.so’, an archive file ending in ‘.a’, or an archive
     file ending in ‘.a’ with the name of the shared object in parentheses.

     Examples:

         Debug sudo /var/log/sudo_debug all@warn,plugin@info

     would log all debugging statements at the warn level and higher in addition to those at the
     info level for the plugin subsystem.

         Debug sudo_intercept.so /var/log/intercept_debug all@debug

     would log all debugging statements, regardless of level, for the sudo_intercept.so shared
     library that implements sudo's intercept functionality on some systems.

         Debug sudoers.so /var/log/sudoers_debug all@debug

     would log all debugging statements, regardless of level, for the sudoers plugin.  See
     sudoers(5) for the full list of subsystems supported by the sudoers plugin.

     As of sudo 1.8.12, multiple Debug entries may be specified per program.  Older versions of
     sudo only support a single Debug entry per program.  Plugin-specific Debug entries are also
     supported starting with sudo 1.8.12 and are matched by either the base name of the plugin
     that was loaded (for example sudoers.so) or by the plugin's fully-qualified path name.
     Previously, the sudoers plugin shared the same Debug entry as the sudo front-end and could
     not be configured separately.

     The following priorities are supported, in order of decreasing severity: crit, err, warn,
     notice, diag, info, trace, and debug.  Each priority, when specified, also includes all
     priorities higher than it.  For example, a priority of notice would include debug messages
     logged at notice and higher.

     The priorities trace and debug also include function call tracing which logs when a function
     is entered and when it returns.  For example, the following trace is for the
     get_user_groups() function located in src/sudo.c:

         sudo[123] -> get_user_groups @ src/sudo.c:385
         sudo[123] <- get_user_groups @ src/sudo.c:429 := groups=10,0,5

     When the function is entered, indicated by a right arrow ‘->’, the program, process ID,
     function, source file, and line number are logged.  When the function returns, indicated by
     a left arrow ‘<-’, the same information is logged along with the return value.  In this
     case, the return value is a string.

     The following subsystems are used by the sudo front-end:

     all         matches every subsystem

     args        command line argument processing

     conv        user conversation

     edit        sudoedit

     event       event subsystem

     exec        command execution

     main        sudo main function

     netif       network interface handling

     pcomm       communication with the plugin

     plugin      plugin configuration

     pty         pseudo-terminal related code

     selinux     SELinux-specific handling

     util        utility functions

     utmp        utmp handling

     The sudoers(5) plugin includes support for additional subsystems.

FILES

     /etc/sudo.conf            sudo front-end configuration

EXAMPLES

     #
     # Default /etc/sudo.conf file
     #
     # Sudo plugins:
     #   Plugin plugin_name plugin_path plugin_options ...
     #
     # The plugin_path is relative to /usr/libexec/sudo unless
     #   fully qualified.
     # The plugin_name corresponds to a global symbol in the plugin
     #   that contains the plugin interface structure.
     # The plugin_options are optional.
     #
     # The sudoers plugin is used by default if no Plugin lines are present.
     #Plugin sudoers_policy sudoers.so
     #Plugin sudoers_io sudoers.so
     #Plugin sudoers_audit sudoers.so

     #
     # Sudo askpass:
     #   Path askpass /path/to/askpass
     #
     # An askpass helper program may be specified to provide a graphical
     # password prompt for "sudo -A" support.  Sudo does not ship with its
     # own askpass program but can use the OpenSSH askpass.
     #
     # Use the OpenSSH askpass
     #Path askpass /usr/X11R6/bin/ssh-askpass
     #
     # Use the Gnome OpenSSH askpass
     #Path askpass /usr/libexec/openssh/gnome-ssh-askpass

     #
     # Sudo device search path:
     #   Path devsearch /dev/path1:/dev/path2:/dev
     #
     # A colon-separated list of paths to check when searching for a user's
     # terminal device.
     #
     #Path devsearch /dev/pts:/dev/vt:/dev/term:/dev/zcons:/dev/pty:/dev

     #
     # Sudo command interception:
     #   Path intercept /path/to/sudo_intercept.so
     #
     # Path to a shared library containing replacements for the execv()
     # and execve() library functions that perform a policy check to verify
     # the command is allowed and simply return an error if not.  This is
     # used to implement the "intercept" functionality on systems that
     # support LD_PRELOAD or its equivalent.
     #
     # The compiled-in value is usually sufficient and should only be changed
     # if you rename or move the sudo_intercept.so file.
     #
     #Path intercept /usr/libexec/sudo/sudo_intercept.so

     #
     # Sudo noexec:
     #   Path noexec /path/to/sudo_noexec.so
     #
     # Path to a shared library containing replacements for the execv()
     # family of library functions that just return an error.  This is
     # used to implement the "noexec" functionality on systems that support
     # LD_PRELOAD or its equivalent.
     #
     # The compiled-in value is usually sufficient and should only be changed
     # if you rename or move the sudo_noexec.so file.
     #
     #Path noexec /usr/libexec/sudo/sudo_noexec.so

     #
     # Sudo plugin directory:
     #   Path plugin_dir /path/to/plugins
     #
     # The default directory to use when searching for plugins that are
     # specified without a fully qualified path name.
     #
     #Path plugin_dir /usr/libexec/sudo

     #
     # Core dumps:
     #   Set disable_coredump true|false
     #
     # By default, sudo disables core dumps while it is executing (they
     # are re-enabled for the command that is run).
     # To aid in debugging sudo problems, you may wish to enable core
     # dumps by setting "disable_coredump" to false.
     #
     #Set disable_coredump false

     #
     # User groups:
     #   Set group_source static|dynamic|adaptive
     #
     # Sudo passes the user's group list to the policy plugin.
     # If the user is a member of the maximum number of groups (usually 16),
     # sudo will query the group database directly to be sure to include
     # the full list of groups.
     #
     # On some systems, this can be expensive so the behavior is configurable.
     # The "group_source" setting has three possible values:
     #   static   - use the user's list of groups returned by the kernel.
     #   dynamic  - query the group database to find the list of groups.
     #   adaptive - if user is in less than the maximum number of groups.
     #              use the kernel list, else query the group database.
     #
     #Set group_source static

     #
     # Sudo interface probing:
     #   Set probe_interfaces true|false
     #
     # By default, sudo will probe the system's network interfaces and
     # pass the IP address of each enabled interface to the policy plugin.
     # On systems with a large number of virtual interfaces this may take
     # a noticeable amount of time.
     #
     #Set probe_interfaces false

     #
     # Sudo debug files:
     #   Debug program /path/to/debug_log subsystem@priority[,subsyste@priority]
     #
     # Sudo and related programs support logging debug information to a file.
     # The program is typically sudo, sudoers.so, sudoreplay, or visudo.
     #
     # Subsystems vary based on the program; "all" matches all subsystems.
     # Priority may be crit, err, warn, notice, diag, info, trace, or debug.
     # Multiple subsystem@priority may be specified, separated by a comma.
     #
     #Debug sudo /var/log/sudo_debug all@debug
     #Debug sudoers.so /var/log/sudoers_debug all@debug

SEE ALSO

     sudo_plugin(5), sudoers(5), sudo(8)

AUTHORS

     Many people have worked on sudo over the years; this version consists of code written
     primarily by:

           Todd C. Miller

     See the CONTRIBUTORS.md file in the sudo distribution
     (https://www.sudo.ws/about/contributors/) for an exhaustive list of people who have
     contributed to sudo.

BUGS

     If you believe you have found a bug in sudo, you can submit a bug report at
     https://bugzilla.sudo.ws/

SUPPORT

     Limited free support is available via the sudo-users mailing list, see
     https://www.sudo.ws/mailman/listinfo/sudo-users to subscribe or search the archives.

DISCLAIMER

     sudo is provided “AS IS” and any express or implied warranties, including, but not limited
     to, the implied warranties of merchantability and fitness for a particular purpose are
     disclaimed.  See the LICENSE.md file distributed with sudo or
     https://www.sudo.ws/about/license/ for complete details.