oracular (1) sqlite-utils.1.gz

Provided by: sqlite-utils_3.36-1_all bug

NAME

       sqlite-utils - sqlite-utils documentation

CLI TOOL AND PYTHON LIBRARY FOR MANIPULATING SQLITE DATABASES

       This library and command-line utility helps create SQLite databases from an existing collection of data.

       Most  of  the  functionality is available as either a Python API or through the sqlite-utils command-line
       tool.

       sqlite-utils is not intended to be a full ORM: the focus is utility helpers to make creating the  initial
       database and populating it with data as productive as possible.

       It is designed as a useful complement to Datasette.

       Cleaning  data  with  sqlite-utils  and  Datasette provides a tutorial introduction (and accompanying ten
       minute video) about using this tool.

   Contents
   Installation
       sqlite-utils is tested on Linux, macOS and Windows.

   Using Homebrew
       The sqlite-utils command-line tool can be installed on macOS using Homebrew:

          brew install sqlite-utils

       If you have it installed and want to upgrade to the most recent release, you can run:

          brew upgrade sqlite-utils

       Then run sqlite-utils --version to confirm the installed version.

   Using pip
       The sqlite-utils package on PyPI includes both the  sqlite_utils  Python  library  and  the  sqlite-utils
       command-line tool. You can install them using pip like so:

          pip install sqlite-utils

   Using pipx
       pipx  is  a  tool for installing Python command-line applications in their own isolated environments. You
       can use pipx to install the sqlite-utils command-line tool like this:

          pipx install sqlite-utils

   Alternatives to sqlite3
       By default, sqlite-utils uses the sqlite3 package bundled with the Python standard library.

       Depending on your operating system, this may come with some limitations.

       On  some  platforms  the  ability  to  load  additional  extensions  (via   conn.load_extension(...)   or
       --load-extension=/path/to/extension) may be disabled.

       You  may also see the error sqlite3.OperationalError: table sqlite_master may not be modified when trying
       to alter an existing table.

       You can work around these limitations by  installing  either  the  pysqlite3  package  or  the  sqlean.py
       package,  both  of  which provide drop-in replacements for the standard library sqlite3 module but with a
       recent version of SQLite and full support for loading extensions.

       To install sqlean.py (which has compiled binary  wheels  available  for  all  major  platforms)  run  the
       following:

          sqlite-utils install sqlean.py

       pysqlite3 and sqlean.py do not provide implementations of the .iterdump() method. To use that method (see
       Dumping the database to SQL) or the sqlite-utils dump command you should  also  install  the  sqlite-dump
       package:

          sqlite-utils install sqlite-dump

   Setting up shell completion
       You can configure shell tab completion for the sqlite-utils command using these commands.

       For bash:

          eval "$(_SQLITE_UTILS_COMPLETE=bash_source sqlite-utils)"

       For zsh:

          eval "$(_SQLITE_UTILS_COMPLETE=zsh_source sqlite-utils)"

       Add this code to ~/.zshrc or ~/.bashrc to automatically run it when you start a new shell.

       See the Click documentation for more details.

   sqlite-utils command-line tool
       The  sqlite-utils  command-line  tool can be used to manipulate SQLite databases in a number of different
       ways.

       Once installed the tool should be available  as  sqlite-utils.  It  can  also  be  run  using  python  -m
       sqlite_utils.

       • Running SQL queriesReturning JSONNewline-delimited JSONJSON arraysBinary data in JSONNested JSON valuesReturning CSV or TSVTable-formatted outputReturning raw data, such as binary contentUsing named parametersUPDATE, INSERT and DELETEDefining custom SQL functionsSQLite extensionsAttaching additional databasesQuerying data directly using an in-memory databaseRunning queries directly against CSV or JSONExplicitly specifying the formatJoining in-memory data against existing databases using --attach--schema, --analyze, --dump and --saveReturning all rows in a tableListing tablesListing viewsListing indexesListing triggersShowing the schemaAnalyzing tablesSaving the analyzed table detailsCreating an empty databaseInserting JSON dataInserting binary dataInserting newline-delimited JSONFlattening nested JSON objectsInserting CSV or TSV dataAlternative delimiters and quote charactersCSV files without a header rowInserting unstructured data with --lines and --textApplying conversions while inserting data--convert with --lines--convert with --textInsert-replacing dataUpserting dataExecuting SQL in bulkInserting data from filesConverting data in columnsImporting additional modulesUsing the debuggerDefining a convert() functionsqlite-utils convert recipesSaving the result to a different columnConverting a column into multiple columnsCreating tablesRenaming a tableDuplicating tablesDropping tablesTransforming tablesAdding a primary key to a rowid tableExtracting columns into a separate tableCreating viewsDropping viewsAdding columnsAdding columns automatically on insert/updateAdding foreign key constraintsAdding multiple foreign keys at onceAdding indexes for all foreign keysSetting defaults and not null constraintsCreating indexesConfiguring full-text searchExecuting searchesEnabling cached countsOptimizing index usage with ANALYZEVacuumOptimizeWAL modeDumping the database to SQLLoading SQLite extensionsSpatiaLite helpersAdding spatial indexesInstalling packagesUninstalling packagesExperimental TUI

   Running SQL queries
       The  sqlite-utils query command lets you run queries directly against a SQLite database file. This is the
       default subcommand, so the following two examples work the same way:

          sqlite-utils query dogs.db "select * from dogs"

          sqlite-utils dogs.db "select * from dogs"

       NOTE:
          In Python: db.query()  CLI reference: sqlite-utils query

   Returning JSON
       The default format returned for queries is JSON:

          sqlite-utils dogs.db "select * from dogs"

          [{"id": 1, "age": 4, "name": "Cleo"},
           {"id": 2, "age": 2, "name": "Pancakes"}]

   Newline-delimited JSON
       Use --nl to get back newline-delimited JSON objects:

          sqlite-utils dogs.db "select * from dogs" --nl

          {"id": 1, "age": 4, "name": "Cleo"}
          {"id": 2, "age": 2, "name": "Pancakes"}

   JSON arrays
       You can use --arrays to request arrays instead of objects:

          sqlite-utils dogs.db "select * from dogs" --arrays

          [[1, 4, "Cleo"],
           [2, 2, "Pancakes"]]

       You can also combine --arrays and --nl:

          sqlite-utils dogs.db "select * from dogs" --arrays --nl

          [1, 4, "Cleo"]
          [2, 2, "Pancakes"]

       If you want to pretty-print the output further, you can pipe it through python -mjson.tool:

          sqlite-utils dogs.db "select * from dogs" | python -mjson.tool

          [
              {
                  "id": 1,
                  "age": 4,
                  "name": "Cleo"
              },
              {
                  "id": 2,
                  "age": 2,
                  "name": "Pancakes"
              }
          ]

   Binary data in JSON
       Binary strings are not valid JSON, so BLOB columns containing binary data will  be  returned  as  a  JSON
       object containing base64 encoded data, that looks like this:

          sqlite-utils dogs.db "select name, content from images" | python -mjson.tool

          [
              {
                  "name": "transparent.gif",
                  "content": {
                      "$base64": true,
                      "encoded": "R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7"
                  }
              }
          ]

   Nested JSON values
       If one of your columns contains JSON, by default it will be returned as an escaped string:

          sqlite-utils dogs.db "select * from dogs" | python -mjson.tool

          [
              {
                  "id": 1,
                  "name": "Cleo",
                  "friends": "[{\"name\": \"Pancakes\"}, {\"name\": \"Bailey\"}]"
              }
          ]

       You  can  use the --json-cols option to automatically detect these JSON columns and output them as nested
       JSON data:

          sqlite-utils dogs.db "select * from dogs" --json-cols | python -mjson.tool

          [
              {
                  "id": 1,
                  "name": "Cleo",
                  "friends": [
                      {
                          "name": "Pancakes"
                      },
                      {
                          "name": "Bailey"
                      }
                  ]
              }
          ]

   Returning CSV or TSV
       You can use the --csv option to return results as CSV:

          sqlite-utils dogs.db "select * from dogs" --csv

          id,age,name
          1,4,Cleo
          2,2,Pancakes

       This will default to  including  the  column  names  as  a  header  row.  To  exclude  the  headers,  use
       --no-headers:

          sqlite-utils dogs.db "select * from dogs" --csv --no-headers

          1,4,Cleo
          2,2,Pancakes

       Use --tsv instead of --csv to get back tab-separated values:

          sqlite-utils dogs.db "select * from dogs" --tsv

          id  age     name
          1   4       Cleo
          2   2       Pancakes

   Table-formatted output
       You can use the --table option (or -t shortcut) to output query results as a table:

          sqlite-utils dogs.db "select * from dogs" --table

            id    age  name
          ----  -----  --------
             1      4  Cleo
             2      2  Pancakes

       You can use the --fmt option to specify different table formats, for example rst for reStructuredText:

          sqlite-utils dogs.db "select * from dogs" --fmt rst

          ====  =====  ========
            id    age  name
          ====  =====  ========
             1      4  Cleo
             2      2  Pancakes
          ====  =====  ========

       Available --fmt options are:

       • asciidocdouble_griddouble_outlinefancy_gridfancy_outlinegithubgridheavy_gridheavy_outlinehtmljiralatexlatex_booktabslatex_longtablelatex_rawmediawikimixed_gridmixed_outlinemoinmoinorgtbloutlinepipeplainprestoprettypsqlrounded_gridrounded_outlinerstsimplesimple_gridsimple_outlinetextiletsvunsafehtmlyoutrack

       This list can also be found by running sqlite-utils query --help.

   Returning raw data, such as binary content
       If  your  table  contains  binary  data in a BLOB you can use the --raw option to output specific columns
       directly to standard out.

       For example, to retrieve a binary image from a BLOB column and store  it  in  a  file  you  can  use  the
       following:

          sqlite-utils photos.db "select contents from photos where id=1" --raw > myphoto.jpg

       To return the first column of each result as raw data, separated by newlines, use --raw-lines:

          sqlite-utils photos.db "select caption from photos" --raw-lines > captions.txt

   Using named parameters
       You can pass named parameters to the query using -p:

          sqlite-utils query dogs.db "select :num * :num2" -p num 5 -p num2 6

          [{":num * :num2": 30}]

       These will be correctly quoted and escaped in the SQL query, providing a safe way to combine other values
       with SQL.

   UPDATE, INSERT and DELETE
       If you execute an UPDATE, INSERT or DELETE query the command will return the number of affected rows:

          sqlite-utils dogs.db "update dogs set age = 5 where name = 'Cleo'"

          [{"rows_affected": 1}]

   Defining custom SQL functions
       You can use the --functions option to pass a block of Python code that defines additional functions which
       can then be called by your SQL query.

       This example defines a function which extracts the domain from a URL:

          sqlite-utils query sites.db "select url, domain(url) from urls" --functions '
          from urllib.parse import urlparse

          def domain(url):
              return urlparse(url).netloc
          '

       Every  callable object defined in the block will be registered as a SQL function with the same name, with
       the exception of functions with names that begin with an underscore.

   SQLite extensions
       You can load SQLite extension modules using the --load-extension option, see Loading SQLite extensions.

          sqlite-utils dogs.db "select spatialite_version()" --load-extension=spatialite

          [{"spatialite_version()": "4.3.0a"}]

   Attaching additional databases
       SQLite supports cross-database SQL queries, which can join data from tables in  more  than  one  database
       file.

       You  can attach one or more additional databases using the --attach option, providing an alias to use for
       that database and the path to the SQLite file on disk.

       This example attaches the books.db database under the alias books and then runs  a  query  that  combines
       data from that database with the default dogs.db database:

          sqlite-utils dogs.db --attach books books.db \
             'select * from sqlite_master union all select * from books.sqlite_master'

       NOTE:
          In Python: db.attach()

   Querying data directly using an in-memory database
       The  sqlite-utils  memory  command works similar to sqlite-utils query, but allows you to execute queries
       against an in-memory database.

       You can also pass this command CSV or JSON files which will be loaded into a temporary  in-memory  table,
       allowing you to execute SQL against that data without a separate step to first convert it to SQLite.

       Without any extra arguments, this command executes SQL against the in-memory database directly:

          sqlite-utils memory 'select sqlite_version()'

          [{"sqlite_version()": "3.35.5"}]

       It takes all of the same output formatting options as sqlite-utils query: --csv and --csv and --table and
       --nl:

          sqlite-utils memory 'select sqlite_version()' --csv

          sqlite_version()
          3.35.5

          sqlite-utils memory 'select sqlite_version()' --fmt grid

          +--------------------+
          | sqlite_version()   |
          +====================+
          | 3.35.5             |
          +--------------------+

   Running queries directly against CSV or JSON
       If you have data in CSV or JSON format you can load it into an in-memory SQLite database and run  queries
       against it directly in a single command using sqlite-utils memory like this:

          sqlite-utils memory data.csv "select * from data"

       You can pass multiple files to the command if you want to run joins between data from different files:

          sqlite-utils memory one.csv two.json \
            "select * from one join two on one.id = two.other_id"

       If  your  data  is  JSON  it  should be the same format supported by the sqlite-utils insert command - so
       either a single JSON object (treated as a single row) or a list of JSON objects.

       CSV data can be comma- or tab- delimited.

       The in-memory tables will be named after the files without  their  extensions.  The  tool  also  sets  up
       aliases  for  those  tables (using SQL views) as t1, t2 and so on, or you can use the alias t to refer to
       the first table:

          sqlite-utils memory example.csv "select * from t"

       If two files have the same name they will be assigned a numeric suffix:

          sqlite-utils memory foo/data.csv bar/data.csv "select * from data_2"

       To read from standard input, use either - or stdin as the filename - then use stdin or t  or  t1  as  the
       table name:

          cat example.csv | sqlite-utils memory - "select * from stdin"

       Incoming  CSV data will be assumed to use utf-8. If your data uses a different character encoding you can
       specify that with --encoding:

          cat example.csv | sqlite-utils memory - "select * from stdin" --encoding=latin-1

       If you are joining across multiple CSV files they must all use the same encoding.

       Column types  will  be  automatically  detected  in  CSV  or  TSV  data,  using  the  same  mechanism  as
       --detect-types  described  in  Inserting  CSV  or  TSV data. You can pass the --no-detect-types option to
       disable this automatic type detection and treat all CSV and TSV columns as TEXT.

   Explicitly specifying the format
       By default, sqlite-utils memory will attempt to detect the  incoming  data  format  (JSON,  TSV  or  CSV)
       automatically.

       You  can  instead  specify an explicit format by adding a :csv, :tsv, :json or :nl (for newline-delimited
       JSON) suffix to the filename. For example:

          sqlite-utils memory one.dat:csv two.dat:nl \
            "select * from one union select * from two"

       Here the contents of one.dat will be treated as CSV and the  contents  of  two.dat  will  be  treated  as
       newline-delimited JSON.

       To  explicitly  specify the format for data piped into the tool on standard input, use stdin:format - for
       example:

          cat one.dat | sqlite-utils memory stdin:csv "select * from stdin"

   Joining in-memory data against existing databases using --attach
       The attach option can be used to attach database  files  to  the  in-memory  connection,  enabling  joins
       between in-memory data loaded from a file and tables in existing SQLite database files. An example:

          echo "id\n1\n3\n5" | sqlite-utils memory - --attach trees trees.db \
            "select * from trees.trees where rowid in (select id from stdin)"

       Here the --attach trees trees.db option makes the trees.db database available with an alias of trees.

       select * from trees.trees where ... can then query the trees table in that database.

       The  CSV  data  that  was  piped  into the script is available in the stdin table, so  ... where rowid in
       (select id from stdin) can be used to return rows from the trees table that match IDs that were piped  in
       as CSV content.

   --schema, --analyze, --dump and --save
       To see the in-memory database schema that would be used for a file or for multiple files, use --schema:

          sqlite-utils memory dogs.csv --schema

          CREATE TABLE [dogs] (
              [id] INTEGER,
              [age] INTEGER,
              [name] TEXT
          );
          CREATE VIEW t1 AS select * from [dogs];
          CREATE VIEW t AS select * from [dogs];

       You can run the equivalent of the analyze-tables command using --analyze:

          sqlite-utils memory dogs.csv --analyze

          dogs.id: (1/3)

            Total rows: 2
            Null rows: 0
            Blank rows: 0

            Distinct values: 2

          dogs.name: (2/3)

            Total rows: 2
            Null rows: 0
            Blank rows: 0

            Distinct values: 2

          dogs.age: (3/3)

            Total rows: 2
            Null rows: 0
            Blank rows: 0

            Distinct values: 2

       You  can  output  SQL  that  will  both  create  the tables and insert the full data used to populate the
       in-memory database using --dump:

          sqlite-utils memory dogs.csv --dump

          BEGIN TRANSACTION;
          CREATE TABLE [dogs] (
              [id] INTEGER,
              [age] INTEGER,
              [name] TEXT
          );
          INSERT INTO "dogs" VALUES('1','4','Cleo');
          INSERT INTO "dogs" VALUES('2','2','Pancakes');
          CREATE VIEW t1 AS select * from [dogs];
          CREATE VIEW t AS select * from [dogs];
          COMMIT;

       Passing --save other.db will instead use that SQL to populate a new database file:

          sqlite-utils memory dogs.csv --save dogs.db

       These features are mainly intended as debugging tools - for much more finely  grained  control  over  how
       data is inserted into a SQLite database file see Inserting JSON data and Inserting CSV or TSV data.

   Returning all rows in a table
       You can return every row in a specified table using the rows command:

          sqlite-utils rows dogs.db dogs

          [{"id": 1, "age": 4, "name": "Cleo"},
           {"id": 2, "age": 2, "name": "Pancakes"}]

       This command accepts the same output options as query - so you can pass --nl, --csv, --tsv, --no-headers,
       --table and --fmt.

       You can use the -c option to specify a subset of columns to return:

          sqlite-utils rows dogs.db dogs -c age -c name

          [{"age": 4, "name": "Cleo"},
           {"age": 2, "name": "Pancakes"}]

       You can filter rows using a where clause with the --where option:

          sqlite-utils rows dogs.db dogs -c name --where 'name = "Cleo"'

          [{"name": "Cleo"}]

       Or pass named parameters using --where in combination with -p:

          sqlite-utils rows dogs.db dogs -c name --where 'name = :name' -p name Cleo

          [{"name": "Cleo"}]

       You can define a sort order using --order column or --order 'column desc'.

       Use --limit N to only return the first N rows. Use --offset N to return rows starting from the  specified
       offset.

       NOTE:
          In Python: table.rows  CLI reference: sqlite-utils rows

   Listing tables
       You can list the names of tables in a database using the tables command:

          sqlite-utils tables mydb.db

          [{"table": "dogs"},
           {"table": "cats"},
           {"table": "chickens"}]

       You can output this list in CSV using the --csv or --tsv options:

          sqlite-utils tables mydb.db --csv --no-headers

          dogs
          cats
          chickens

       If you just want to see the FTS4 tables, you can use --fts4 (or --fts5 for FTS5 tables):

          sqlite-utils tables docs.db --fts4

          [{"table": "docs_fts"}]

       Use --counts to include a count of the number of rows in each table:

          sqlite-utils tables mydb.db --counts

          [{"table": "dogs", "count": 12},
           {"table": "cats", "count": 332},
           {"table": "chickens", "count": 9}]

       Use --columns to include a list of columns in each table:

          sqlite-utils tables dogs.db --counts --columns

          [{"table": "Gosh", "count": 0, "columns": ["c1", "c2", "c3"]},
           {"table": "Gosh2", "count": 0, "columns": ["c1", "c2", "c3"]},
           {"table": "dogs", "count": 2, "columns": ["id", "age", "name"]}]

       Use --schema to include the schema of each table:

          sqlite-utils tables dogs.db --schema --table

          table    schema
          -------  -----------------------------------------------
          Gosh     CREATE TABLE Gosh (c1 text, c2 text, c3 text)
          Gosh2    CREATE TABLE Gosh2 (c1 text, c2 text, c3 text)
          dogs     CREATE TABLE [dogs] (
                     [id] INTEGER,
                     [age] INTEGER,
                     [name] TEXT)

       The --nl, --csv, --tsv, --table and --fmt options are also available.

       NOTE:
          In Python: db.tables or db.table_names()  CLI reference: sqlite-utils tables

   Listing views
       The views command shows any views defined in the database:

          sqlite-utils views sf-trees.db --table --counts --columns --schema

          view         count  columns               schema
          ---------  -------  --------------------  --------------------------------------------------------------
          demo_view   189144  ['qSpecies']          CREATE VIEW demo_view AS select qSpecies from Street_Tree_List
          hello            1  ['sqlite_version()']  CREATE VIEW hello as select sqlite_version()

       It takes the same options as the tables command:

       • --columns--schema--counts--nl--csv--tsv--table

       NOTE:
          In Python: db.views or db.view_names()  CLI reference: sqlite-utils views

   Listing indexes
       The indexes command lists any indexes configured for the database:

          sqlite-utils indexes covid.db --table

          table                             index_name                                                seqno    cid  name                 desc  coll      key
          --------------------------------  ------------------------------------------------------  -------  -----  -----------------  ------  ------  -----
          johns_hopkins_csse_daily_reports  idx_johns_hopkins_csse_daily_reports_combined_key             0     12  combined_key            0  BINARY      1
          johns_hopkins_csse_daily_reports  idx_johns_hopkins_csse_daily_reports_country_or_region        0      1  country_or_region       0  BINARY      1
          johns_hopkins_csse_daily_reports  idx_johns_hopkins_csse_daily_reports_province_or_state        0      2  province_or_state       0  BINARY      1
          johns_hopkins_csse_daily_reports  idx_johns_hopkins_csse_daily_reports_day                      0      0  day                     0  BINARY      1
          ny_times_us_counties              idx_ny_times_us_counties_date                                 0      0  date                    1  BINARY      1
          ny_times_us_counties              idx_ny_times_us_counties_fips                                 0      3  fips                    0  BINARY      1
          ny_times_us_counties              idx_ny_times_us_counties_county                               0      1  county                  0  BINARY      1
          ny_times_us_counties              idx_ny_times_us_counties_state                                0      2  state                   0  BINARY      1

       It shows indexes across all tables. To see indexes for specific tables, list those after the database:

          sqlite-utils indexes covid.db johns_hopkins_csse_daily_reports --table

       The  command  defaults to only showing the columns that are explicitly part of the index. To also include
       auxiliary columns use the --aux option - these columns will be listed with a key of 0.

       The command takes the same format options as the tables and views commands.

       NOTE:
          In Python: table.indexes  CLI reference: sqlite-utils indexes

   Listing triggers
       The triggers command shows any triggers configured for the database:

          sqlite-utils triggers global-power-plants.db --table

          name             table      sql
          ---------------  ---------  -----------------------------------------------------------------
          plants_insert    plants     CREATE TRIGGER [plants_insert] AFTER INSERT ON [plants]
                                      BEGIN
                                          INSERT OR REPLACE INTO [_counts]
                                          VALUES (
                                            'plants',
                                            COALESCE(
                                              (SELECT count FROM [_counts] WHERE [table] = 'plants'),
                                            0
                                            ) + 1
                                          );
                                      END

       It defaults to showing triggers for all tables. To see triggers for one  or  more  specific  tables  pass
       their names as arguments:

          sqlite-utils triggers global-power-plants.db plants

       The command takes the same format options as the tables and views commands.

       NOTE:
          In Python: table.triggers or db.triggers  CLI reference: sqlite-utils triggers

   Showing the schema
       The sqlite-utils schema command shows the full SQL schema for the database:

          sqlite-utils schema dogs.db

          CREATE TABLE "dogs" (
              [id] INTEGER PRIMARY KEY,
              [name] TEXT
          );

       This  will  show  the  schema  for  every  table and index in the database. To view the schema just for a
       specified subset of tables pass those as additional arguments:

          sqlite-utils schema dogs.db dogs chickens

       NOTE:
          In Python: table.schema or db.schema  CLI reference: sqlite-utils schema

   Analyzing tables
       When working with a new database it can be useful  to  get  an  idea  of  the  shape  of  the  data.  The
       sqlite-utils  analyze-tables command inspects specified tables (or all tables) and calculates some useful
       details about each of the columns in those tables.

       To inspect the tags table in the github.db database, run the following:

          sqlite-utils analyze-tables github.db tags

          tags.repo: (1/3)

            Total rows: 261
            Null rows: 0
            Blank rows: 0

            Distinct values: 14

            Most common:
              88: 107914493
              75: 140912432
              27: 206156866

            Least common:
              1: 209590345
              2: 206649770
              2: 303218369

          tags.name: (2/3)

            Total rows: 261
            Null rows: 0
            Blank rows: 0

            Distinct values: 175

            Most common:
              10: 0.2
              9: 0.1
              7: 0.3

            Least common:
              1: 0.1.1
              1: 0.11.1
              1: 0.1a2

          tags.sha: (3/3)

            Total rows: 261
            Null rows: 0
            Blank rows: 0

            Distinct values: 261

       For each column this tool displays the number of null rows, the number of blank rows (rows  that  contain
       an empty string), the number of distinct values and, for columns that are not entirely distinct, the most
       common and least common values.

       If you do not specify any tables every table in the database will be analyzed:

          sqlite-utils analyze-tables github.db

       If you wish to analyze one or more specific columns, use the -c option:

          sqlite-utils analyze-tables github.db tags -c sha

       To show more than 10 common values, use --common-limit 20.  To skip the most common or least common value
       analysis, use --no-most or --no-least:

          sqlite-utils analyze-tables github.db tags --common-limit 20 --no-least

   Saving the analyzed table details
       analyze-tables  can  take  quite a while to run for large database files. You can save the results of the
       analysis to a database table called _analyze_tables_ using the --save option:

          sqlite-utils analyze-tables github.db --save

       The _analyze_tables_ table has the following schema:

          CREATE TABLE [_analyze_tables_] (
              [table] TEXT,
              [column] TEXT,
              [total_rows] INTEGER,
              [num_null] INTEGER,
              [num_blank] INTEGER,
              [num_distinct] INTEGER,
              [most_common] TEXT,
              [least_common] TEXT,
              PRIMARY KEY ([table], [column])
          );

       The most_common and least_common columns will contain nested JSON arrays of the  most  common  and  least
       common values that look like this:

          [
              ["Del Libertador, Av", 5068],
              ["Alberdi Juan Bautista Av.", 4612],
              ["Directorio Av.", 4552],
              ["Rivadavia, Av", 4532],
              ["Yerbal", 4512],
              ["Cosquín", 4472],
              ["Estado Plurinacional de Bolivia", 4440],
              ["Gordillo Timoteo", 4424],
              ["Montiel", 4360],
              ["Condarco", 4288]
          ]

   Creating an empty database
       You can create a new empty database file using the create-database command:

          sqlite-utils create-database empty.db

       To enable WAL mode on the newly created database add the --enable-wal option:

          sqlite-utils create-database empty.db --enable-wal

       To enable SpatiaLite metadata on a newly created database, add the --init-spatialite flag:

          sqlite-utils create-database empty.db --init-spatialite

       That  will look for SpatiaLite in a set of predictable locations. To load it from somewhere else, use the
       --load-extension option:

          sqlite-utils create-database empty.db --init-spatialite --load-extension /path/to/spatialite.so

   Inserting JSON data
       If you have data as JSON, you can use sqlite-utils insert tablename to insert it  into  a  database.  The
       table will be created with the correct (automatically detected) columns if it does not already exist.

       You can pass in a single JSON object or a list of JSON objects, either as a filename or piped directly to
       standard-in (by using - as the filename).

       Here's the simplest possible example:

          echo '{"name": "Cleo", "age": 4}' | sqlite-utils insert dogs.db dogs -

       To specify a column as the primary key, use --pk=column_name.

       To create a compound primary key across more than one column, use --pk multiple times.

       If you feed it a JSON list it will insert multiple records. For example, if dogs.json looks like this:

          [
              {
                  "id": 1,
                  "name": "Cleo",
                  "age": 4
              },
              {
                  "id": 2,
                  "name": "Pancakes",
                  "age": 2
              },
              {
                  "id": 3,
                  "name": "Toby",
                  "age": 6
              }
          ]

       You can import all three records into an automatically created dogs table and set the id  column  as  the
       primary key like so:

          sqlite-utils insert dogs.db dogs dogs.json --pk=id

       You can skip inserting any records that have a primary key that already exists using --ignore:

          sqlite-utils insert dogs.db dogs dogs.json --ignore

       You can delete all the existing rows in the table before inserting the new records using --truncate:

          sqlite-utils insert dogs.db dogs dogs.json --truncate

       You can add the --analyze option to run ANALYZE against the table after the rows have been inserted.

   Inserting binary data
       You  can  insert binary data into a BLOB column by first encoding it using base64 and then structuring it
       like this:

          [
              {
                  "name": "transparent.gif",
                  "content": {
                      "$base64": true,
                      "encoded": "R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7"
                  }
              }
          ]

   Inserting newline-delimited JSON
       You can also import newline-delimited JSON using the --nl option:

          echo '{"id": 1, "name": "Cleo"}
          {"id": 2, "name": "Suna"}' | sqlite-utils insert creatures.db creatures - --nl

       Newline-delimited JSON consists of full JSON objects separated by newlines.

       If you are processing data using jq you can use the jq -c option to output valid newline-delimited JSON.

       Since Datasette can export newline-delimited JSON, you can combine the Datasette  and  sqlite-utils  like
       so:

          curl -L "https://latest.datasette.io/fixtures/facetable.json?_shape=array&_nl=on" \
              | sqlite-utils insert nl-demo.db facetable - --pk=id --nl

       You  can also pipe sqlite-utils together to create a new SQLite database file containing the results of a
       SQL query against another database:

          sqlite-utils sf-trees.db \
              "select TreeID, qAddress, Latitude, Longitude from Street_Tree_List" --nl \
            | sqlite-utils insert saved.db trees - --nl

          sqlite-utils saved.db "select * from trees limit 5" --csv

          TreeID,qAddress,Latitude,Longitude
          141565,501X Baker St,37.7759676911831,-122.441396661871
          232565,940 Elizabeth St,37.7517102172731,-122.441498017841
          119263,495X Lakeshore Dr,,
          207368,920 Kirkham St,37.760210314285,-122.47073935813
          188702,1501 Evans Ave,37.7422086702947,-122.387293152263

   Flattening nested JSON objects
       sqlite-utils insert and sqlite-utils memory both expect incoming JSON data to consist of an array of JSON
       objects, where the top-level keys of each object will become columns in the created database table.

       If  your  data  is  nested  you  can use the --flatten option to create columns that are derived from the
       nested data.

       Consider this example document, in a file called log.json:

          {
              "httpRequest": {
                  "latency": "0.112114537s",
                  "requestMethod": "GET",
                  "requestSize": "534",
                  "status": 200
              },
              "insertId": "6111722f000b5b4c4d4071e2",
              "labels": {
                  "service": "datasette-io"
              }
          }

       Inserting this into a table using sqlite-utils insert logs.db logs log.json will create a table with  the
       following schema:

          CREATE TABLE [logs] (
             [httpRequest] TEXT,
             [insertId] TEXT,
             [labels] TEXT
          );

       With  the  --flatten  option  columns  will  be  created  using  topkey_nextkey column names - so running
       sqlite-utils insert logs.db logs log.json --flatten will create the following schema instead:

          CREATE TABLE [logs] (
             [httpRequest_latency] TEXT,
             [httpRequest_requestMethod] TEXT,
             [httpRequest_requestSize] TEXT,
             [httpRequest_status] INTEGER,
             [insertId] TEXT,
             [labels_service] TEXT
          );

   Inserting CSV or TSV data
       If your data is in CSV format, you can insert it using the --csv option:

          sqlite-utils insert dogs.db dogs dogs.csv --csv

       For tab-delimited data, use --tsv:

          sqlite-utils insert dogs.db dogs dogs.tsv --tsv

       Data is expected to be encoded as Unicode UTF-8. If your data is an another character  encoding  you  can
       specify it using the --encoding option:

          sqlite-utils insert dogs.db dogs dogs.tsv --tsv --encoding=latin-1

       To  stop  inserting  after a specified number of records - useful for getting a faster preview of a large
       file - use the --stop-after option:

          sqlite-utils insert dogs.db dogs dogs.csv --csv --stop-after=10

       A progress bar is displayed when inserting data from a file. You can hide  the  progress  bar  using  the
       --silent option.

       By  default  every  column  inserted from a CSV or TSV file will be of type TEXT. To automatically detect
       column types - resulting in a mix of TEXT, INTEGER and FLOAT columns, use the --detect-types  option  (or
       its shortcut -d).

       For example, given a creatures.csv file containing this:

          name,age,weight
          Cleo,6,45.5
          Dori,1,3.5

       The following command:

          sqlite-utils insert creatures.db creatures creatures.csv --csv --detect-types

       Will produce this schema:

          sqlite-utils schema creatures.db

          CREATE TABLE "creatures" (
             [name] TEXT,
             [age] INTEGER,
             [weight] FLOAT
          );

       You  can  set  the  SQLITE_UTILS_DETECT_TYPES  environment  variable if you want --detect-types to be the
       default behavior:

          export SQLITE_UTILS_DETECT_TYPES=1

       If a CSV or TSV file includes empty cells, like this one:

          name,age,weight
          Cleo,6,
          Dori,,3.5

       They will be imported into SQLite as empty string values, "".

       To import them as NULL values instead, use the --empty-null option:

          sqlite-utils insert creatures.db creatures creatures.csv --csv --empty-null

   Alternative delimiters and quote characters
       If your file uses a delimiter other than , or a quote character other than " you can  attempt  to  detect
       delimiters or you can specify them explicitly.

       The --sniff option can be used to attempt to detect the delimiters:

          sqlite-utils insert dogs.db dogs dogs.csv --sniff

       Alternatively, you can specify them using the --delimiter and --quotechar options.

       Here's a CSV file that uses ; for delimiters and the | symbol for quote characters:

          name;description
          Cleo;|Very fine; a friendly dog|
          Pancakes;A local corgi

       You can import that using:

          sqlite-utils insert dogs.db dogs dogs.csv --delimiter=";" --quotechar="|"

       Passing --delimiter, --quotechar or --sniff implies --csv, so you can omit the --csv option.

   CSV files without a header row
       The first row of any CSV or TSV file is expected to contain the names of the columns in that file.

       If  your  file  does  not  include this row, you can use the --no-headers option to specify that the tool
       should not use that fist row as headers.

       If you do this, the table will be created with column names called untitled_1 and untitled_2 and  so  on.
       You can then rename them using the sqlite-utils transform ... --rename command, see Transforming tables.

   Inserting unstructured data with --lines and --text
       If  you  have  an  unstructured  file  you can insert its contents into a table with a single line column
       containing each line from the file using --lines. This can be useful if you  intend  to  further  analyze
       those lines using SQL string functions or sqlite-utils convert:

          sqlite-utils insert logs.db loglines logfile.log --lines

       This will produce the following schema:

          CREATE TABLE [loglines] (
             [line] TEXT
          );

       You can also insert the entire contents of the file into a single column called text using --text:

          sqlite-utils insert content.db content file.txt --text

       The schema here will be:

          CREATE TABLE [content] (
             [text] TEXT
          );

   Applying conversions while inserting data
       The  --convert  option  can  be  used to apply a Python conversion function to imported data before it is
       inserted into the database. It works in a similar way to sqlite-utils convert.

       Your Python function will be passed a dictionary called row for each item that is being imported. You can
       modify  that  dictionary  and  return it - or return a fresh dictionary - to change the data that will be
       inserted.

       Given a JSON file called dogs.json containing this:

          [
              {"id": 1, "name": "Cleo"},
              {"id": 2, "name": "Pancakes"}
          ]

       The following command will insert that data and add an is_good column set to 1 for each dog:

          sqlite-utils insert dogs.db dogs dogs.json --convert 'row["is_good"] = 1'

       The --convert option also works with the --csv, --tsv and --nl insert options.

       As with sqlite-utils convert you can use --import to import  additional  Python  modules,  see  Importing
       additional modules for details.

       You  can  also  pass  code that runs some initialization steps and defines a convert(value) function, see
       Defining a convert() function.

   --convert with --lines
       Things work slightly differently when combined with the --lines or --text options.

       With --lines, instead of being passed a row dictionary  your  function  will  be  passed  a  line  string
       representing each line of the input. Given a file called access.log containing the following:

          INFO:     127.0.0.1:60581 - GET / HTTP/1.1 200 OK
          INFO:     127.0.0.1:60581 - GET /foo/-/static/app.css?cead5a HTTP/1.1 200 OK

       You could convert it into structured data like so:

          sqlite-utils insert logs.db loglines access.log --convert '
          type, source, _, verb, path, _, status, _ = line.split()
          return {
              "type": type,
              "source": source,
              "verb": verb,
              "path": path,
              "status": status,
          }' --lines

       The resulting table would look like this:

                       ┌──────┬─────────────────┬──────┬──────────────────────────────┬────────┐
                       │type  │ source          │ verb │ path                         │ status │
                       ├──────┼─────────────────┼──────┼──────────────────────────────┼────────┤
                       │INFO: │ 127.0.0.1:60581 │ GET  │ /                            │ 200    │
                       ├──────┼─────────────────┼──────┼──────────────────────────────┼────────┤
                       │INFO: │ 127.0.0.1:60581 │ GET  │ /foo/-/static/app.css?cead5a │ 200    │
                       └──────┴─────────────────┴──────┴──────────────────────────────┴────────┘

   --convert with --text
       With --text the entire input to the command will be made available to the function as a  variable  called
       text.

       The  function  can  return a single dictionary which will be inserted as a single row, or it can return a
       list or iterator of dictionaries, each of which will be inserted.

       Here's how to use --convert and --text to insert one record per word in the input:

          echo 'A bunch of words' | sqlite-utils insert words.db words - \
              --text --convert '({"word": w} for w in text.split())'

       The result looks like this:

          sqlite-utils dump words.db

          BEGIN TRANSACTION;
          CREATE TABLE [words] (
             [word] TEXT
          );
          INSERT INTO "words" VALUES('A');
          INSERT INTO "words" VALUES('bunch');
          INSERT INTO "words" VALUES('of');
          INSERT INTO "words" VALUES('words');
          COMMIT;

   Insert-replacing data
       The --replace option to insert causes any existing records with the  same  primary  key  to  be  replaced
       entirely by the new records.

       To replace a dog with in ID of 2 with a new record, run the following:

          echo '{"id": 2, "name": "Pancakes", "age": 3}' | \
              sqlite-utils insert dogs.db dogs - --pk=id --replace

   Upserting data
       Upserting  is  update-or-insert. If a row exists with the specified primary key the provided columns will
       be updated. If no row exists that row will be created.

       Unlike insert --replace, an upsert will ignore any column values that exist but are not  present  in  the
       upsert document.

       For example:

          echo '{"id": 2, "age": 4}' | \
              sqlite-utils upsert dogs.db dogs - --pk=id

       This will update the dog with an ID of 2 to have an age of 4, creating a new record (with a null name) if
       one does not exist. If a row DOES exist the name will be left as-is.

       The command will fail if you reference columns that do not exist on the table.  To  automatically  create
       missing columns, use the --alter option.

       NOTE:
          upsert  in sqlite-utils 1.x worked like insert ... --replace does in 2.x. See issue #66 for details of
          this change.

   Executing SQL in bulk
       If you have a JSON, newline-delimited JSON, CSV or TSV file you can execute a bulk SQL query  using  each
       of the records in that file using the sqlite-utils bulk command.

       The  command  takes  the database file, the SQL to be executed and the file containing records to be used
       when evaluating the SQL query.

       The SQL query should include :named parameters that match the keys in the records.

       For example, given a chickens.csv CSV file containing the following:

          id,name
          1,Blue
          2,Snowy
          3,Azi
          4,Lila
          5,Suna
          6,Cardi

       You could insert those rows into a pre-created chickens table like so:

          sqlite-utils bulk chickens.db \
            'insert into chickens (id, name) values (:id, :name)' \
            chickens.csv --csv

       This command takes the same options as the sqlite-utils insert command - so it defaults to expecting JSON
       but can accept other formats using --csv or --tsv or --nl or other options described above.

       By  default  all of the SQL queries will be executed in a single transaction. To commit every 20 records,
       use --batch-size 20.

   Inserting data from files
       The insert-files command can be used to insert the content of files, along with their  metadata,  into  a
       SQLite table.

       Here's  an  example  that  inserts all of the GIF files in the current directory into a gifs.db database,
       placing the file contents in an images table:

          sqlite-utils insert-files gifs.db images *.gif

       You can also pass one or more directories, in which case every file in those directories  will  be  added
       recursively:

          sqlite-utils insert-files gifs.db images path/to/my-gifs

       By default this command will create a table with the following schema:

          CREATE TABLE [images] (
              [path] TEXT PRIMARY KEY,
              [content] BLOB,
              [size] INTEGER
          );

       Content  will  be treated as binary by default and stored in a BLOB column. You can use the --text option
       to store that content in a TEXT column instead.

       You can customize the schema using one or more -c options. For a table  schema  that  includes  just  the
       path, MD5 hash and last modification time of the file, you would use this:

          sqlite-utils insert-files gifs.db images *.gif -c path -c md5 -c mtime --pk=path

       This will result in the following schema:

          CREATE TABLE [images] (
              [path] TEXT PRIMARY KEY,
              [md5] TEXT,
              [mtime] FLOAT
          );

       Note  that  there's  no  content  column here at all - if you specify custom columns using -c you need to
       include -c content to create that column.

       You can change the name of one of these columns using a -c colname:coldef parameter. To rename the  mtime
       column to last_modified you would use this:

          sqlite-utils insert-files gifs.db images *.gif \
              -c path -c md5 -c last_modified:mtime --pk=path

       You  can  pass  --replace  or --upsert to indicate what should happen if you try to insert a file with an
       existing primary key. Pass --alter to cause any missing columns to be added to the table.

       The full list of column definitions you can use is as follows:

       name   The name of the file, e.g. cleo.jpg

       path   The path to the file relative to the root folder, e.g. pictures/cleo.jpg

       fullpath
              The fully resolved path to the image, e.g. /home/simonw/pictures/cleo.jpg

       sha256 The SHA256 hash of the file contents

       md5    The MD5 hash of the file contents

       mode   The permission bits of the file, as an integer - you may want to convert this to octal

       content
              The binary file contents, which will be stored as a BLOB

       content_text
              The text file contents, which will be stored as TEXT

       mtime  The modification time of the file, as floating point seconds since the Unix epoch

       ctime  The creation time of the file, as floating point seconds since the Unix epoch

       mtime_int
              The modification time as an integer rather than a float

       ctime_int
              The creation time as an integer rather than a float

       mtime_iso
              The modification time as an ISO timestamp, e.g. 2020-07-27T04:24:06.654246

       ctime_iso
              The creation time is an ISO timestamp

       size   The integer size of the file in bytes

       stem   The filename without the extension - for file.txt.gz this would be file.txt

       suffix The file extension - for file.txt.gz this would be .gz

       You can insert data piped from standard input like this:

          cat dog.jpg | sqlite-utils insert-files dogs.db pics - --name=dog.jpg

       The - argument indicates data should be read from standard input. The  string  passed  using  the  --name
       option will be used for the file name and path values.

       When  inserting data from standard input only the following column definitions are supported: name, path,
       content, content_text, sha256, md5 and size.

   Converting data in columns
       The convert command can be used to transform the data in a specified column - for example to parse a date
       string into an ISO timestamp, or to split a string of tags into a JSON array.

       The  command  accepts  a  database, table, one or more columns and a string of Python code to be executed
       against the values from those columns. The following example would replace the  values  in  the  headline
       column in the articles table with an upper-case version:

          sqlite-utils convert content.db articles headline 'value.upper()'

       The  Python  code  is passed as a string. Within that Python code the value variable will be the value of
       the current column.

       The code you provide will be compiled into a function that takes value as a single argument. If you break
       your function body into multiple lines the last line should be a return statement:

          sqlite-utils convert content.db articles headline '
          value = str(value)
          return value.upper()'

       Your  code  will  be  automatically  wrapped  in  a  function,  but you can also define a function called
       convert(value) which will be called, if available:

          sqlite-utils convert content.db articles headline '
          def convert(value):
              return value.upper()'

       Use a CODE value of - to read from standard input:

          cat mycode.py | sqlite-utils convert content.db articles headline -

       Where mycode.py contains a fragment of Python code that looks like this:

          def convert(value):
              return value.upper()

       The conversion will be applied to every row in the specified table. You can limit that to just rows  that
       match a WHERE clause using --where:

          sqlite-utils convert content.db articles headline 'value.upper()' \
              --where "headline like '%cat%'"

       You  can  include  named  parameters  in  your  where  clause and populate them using one or more --param
       options:

          sqlite-utils convert content.db articles headline 'value.upper()' \
              --where "headline like :query" \
              --param query '%cat%'

       The --dry-run option will output a preview  of  the  conversion  against  the  first  ten  rows,  without
       modifying the database.

       By  default  any  rows  with a falsey value for the column - such as 0 or null - will be skipped. Use the
       --no-skip-false option to disable this behaviour.

   Importing additional modules
       You can specify Python modules that should be imported and made available to your code using one or  more
       --import options. This example uses the textwrap module to wrap the content column at 100 characters:

          sqlite-utils convert content.db articles content \
              '"\n".join(textwrap.wrap(value, 100))' \
              --import=textwrap

       This supports nested imports as well, for example to use ElementTree:

          sqlite-utils convert content.db articles content \
              'xml.etree.ElementTree.fromstring(value).attrib["title"]' \
              --import=xml.etree.ElementTree

   Using the debugger
       If an error occurs while running your conversion operation you may see a message like this:

          user-defined function raised exception

       Add  the  --pdb  option  to  catch  the  error and open the Python debugger at that point. The conversion
       operation will exit after you type q in the debugger.

       Here's an example debugging session. First, create a articles table  with  invalid  XML  in  the  content
       column:

          echo '{"content": "This is not XML"}' | sqlite-utils insert content.db articles -

       Now run the conversion with the --pdb option:

          sqlite-utils convert content.db articles content \
              'xml.etree.ElementTree.fromstring(value).attrib["title"]' \
              --import=xml.etree.ElementTree \
              --pdb

       When the error occurs the debugger will open:

          Exception raised, dropping into pdb...: syntax error: line 1, column 0
          > .../python3.11/xml/etree/ElementTree.py(1338)XML()
          -> parser.feed(text)
          (Pdb) args
          text = 'This is not XML'
          parser = <xml.etree.ElementTree.XMLParser object at 0x102c405e0>
          (Pdb) q

       args here shows the arguments to the current function in the stack. The Python pdb documentation has full
       details on the other available commands.

   Defining a convert() function
       Instead of providing a single line of code to be executed against each value, you can define  a  function
       called convert(value).

       This  mechanism  can  be  used  to execute one-off initialization code that runs once at the start of the
       conversion run.

       The following example adds a new score column, then updates it to list a  random  number  -  after  first
       seeding the random number generator to ensure that multiple runs produce the same results:

          sqlite-utils add-column content.db articles score float --not-null-default 1.0
          sqlite-utils convert content.db articles score '
          import random
          random.seed(10)

          def convert(value):
              return random.random()
          '

   sqlite-utils convert recipes
       Various built-in recipe functions are available for common operations. These are:

       r.jsonsplit(value, delimiter=',', type=<class 'str'>)
              Convert a string like a,b,c into a JSON array ["a", "b", "c"]

              The delimiter parameter can be used to specify a different delimiter.

              The  type  parameter  can  be  set to float or int to produce a JSON array of different types, for
              example if the column's string value was 1.2,3,4.5 the following:

                 r.jsonsplit(value, type=float)

              Would produce an array like this: [1.2, 3.0, 4.5]

       r.parsedate(value, dayfirst=False, yearfirst=False, errors=None)
              Parse a date and convert it to ISO date format: yyyy-mm-dd

              In the case of dates such as 03/04/05 U.S. MM/DD/YY format is assumed - you can use  dayfirst=True
              or yearfirst=True to change how these ambiguous dates are interpreted.

              Use the errors= parameter to specify what should happen if a value cannot be parsed.

              By default, if any value cannot be parsed an error will be occurred and all values will be left as
              they were.

              Set errors=r.IGNORE to ignore any values that cannot be parsed, leaving them unchanged.

              Set errors=r.SET_NULL to set any values that cannot be parsed to null.

       r.parsedatetime(value, dayfirst=False, yearfirst=False, errors=None)
              Parse a datetime and convert it to ISO datetime format: yyyy-mm-ddTHH:MM:SS

       These recipes can be used in the code passed to sqlite-utils convert like this:

          sqlite-utils convert my.db mytable mycolumn \
            'r.jsonsplit(value)'

       To use any of the documented parameters, do this:

          sqlite-utils convert my.db mytable mycolumn \
            'r.jsonsplit(value, delimiter=":")'

   Saving the result to a different column
       The --output and --output-type options can be used to save the result of the  conversion  to  a  separate
       column, which will be created if that column does not already exist:

          sqlite-utils convert content.db articles headline 'value.upper()' \
            --output headline_upper

       The  type  of  the  created  column  defaults to text, but a different column type can be specified using
       --output-type. This example will create a new floating point column called id_as_a_float with a  copy  of
       each item's ID increased by 0.5:

          sqlite-utils convert content.db articles id 'float(value) + 0.5' \
            --output id_as_a_float \
            --output-type float

       You can drop the original column at the end of the operation by adding --drop.

   Converting a column into multiple columns
       Sometimes  you  may  wish  to convert a single column into multiple derived columns. For example, you may
       have a location column containing latitude,longitude values which you wish to  split  out  into  separate
       latitude and longitude columns.

       You  can  achieve  this using the --multi option to sqlite-utils convert. This option expects your Python
       code to return a Python dictionary: new columns well be created and populated for each  of  the  keys  in
       that dictionary.

       For the latitude,longitude example you would use the following:

          sqlite-utils convert demo.db places location \
          'bits = value.split(",")
          return {
            "latitude": float(bits[0]),
            "longitude": float(bits[1]),
          }' --multi

       The  type  of  the  returned  values  will  be  taken into account when creating the new columns. In this
       example, the resulting database schema will look like this:

          CREATE TABLE [places] (
              [location] TEXT,
              [latitude] FLOAT,
              [longitude] FLOAT
          );

       The code function can also return None, in which case its output  will  be  ignored.  You  can  drop  the
       original column at the end of the operation by adding --drop.

   Creating tables
       Most  of  the  time  creating  tables  by inserting example data is the quickest approach. If you need to
       create an empty table in advance of inserting data you can do so using the create-table command:

          sqlite-utils create-table mydb.db mytable id integer name text --pk=id

       This will create a table called mytable with two columns - an integer id column and a text  name  column.
       It will set the id column to be the primary key.

       You  can pass as many column-name column-type pairs as you like. Valid types are integer, text, float and
       blob.

       You can specify columns that should be NOT NULL using --not-null colname. You can specify default  values
       for columns using --default colname defaultvalue.

          sqlite-utils create-table mydb.db mytable \
              id integer \
              name text \
              age integer \
              is_good integer \
              --not-null name \
              --not-null age \
              --default is_good 1 \
              --pk=id

          sqlite-utils tables mydb.db --schema -t

          table    schema
          -------  --------------------------------
          mytable  CREATE TABLE [mytable] (
                      [id] INTEGER PRIMARY KEY,
                      [name] TEXT NOT NULL,
                      [age] INTEGER NOT NULL,
                      [is_good] INTEGER DEFAULT '1'
                  )

       You  can  specify  foreign  key  relationships  between  the  tables  you are creating using --fk colname
       othertable othercolumn:

          sqlite-utils create-table books.db authors \
              id integer \
              name text \
              --pk=id

          sqlite-utils create-table books.db books \
              id integer \
              title text \
              author_id integer \
              --pk=id \
              --fk author_id authors id

          sqlite-utils tables books.db --schema -t

          table    schema
          -------  -------------------------------------------------
          authors  CREATE TABLE [authors] (
                      [id] INTEGER PRIMARY KEY,
                      [name] TEXT
                   )
          books    CREATE TABLE [books] (
                      [id] INTEGER PRIMARY KEY,
                      [title] TEXT,
                      [author_id] INTEGER REFERENCES [authors]([id])
                   )

       You can create a table in SQLite STRICT mode using --strict:

          sqlite-utils create-table mydb.db mytable id integer name text --strict

          sqlite-utils tables mydb.db --schema -t

          table    schema
          -------  ------------------------
          mytable  CREATE TABLE [mytable] (
                      [id] INTEGER,
                      [name] TEXT
                   ) STRICT

       If a table with the same name already exists, you will get an error. You can choose  to  silently  ignore
       this error with --ignore, or you can replace the existing table with a new, empty table using --replace.

       You  can  also  pass  --transform to transform the existing table to match the new schema. See Explicitly
       creating a table in the Python library documentation for details of how this option works.

   Renaming a table
       Yo ucan rename a table using the rename-table command:

          sqlite-utils rename-table mydb.db oldname newname

       Pass --ignore to ignore any errors caused by the table not existing, or the new  name  already  being  in
       use.

   Duplicating tables
       The duplicate command duplicates a table - creating a new table with the same schema and a copy of all of
       the rows:

          sqlite-utils duplicate books.db authors authors_copy

   Dropping tables
       You can drop a table using the drop-table command:

          sqlite-utils drop-table mydb.db mytable

       Use --ignore to ignore the error if the table does not exist.

   Transforming tables
       The transform command allows you to apply complex transformations to a table that cannot  be  implemented
       using  a  regular SQLite ALTER TABLE command. See Transforming a table for details of how this works. The
       transform command preserves a table's STRICT mode.

          sqlite-utils transform mydb.db mytable \
              --drop column1 \
              --rename column2 column_renamed

       Every option for this table (with the exception of  --pk-none)  can  be  specified  multiple  times.  The
       options are as follows:

       --type column-name new-type
              Change the type of the specified column. Valid types are integer, text, float, blob.

       --drop column-name
              Drop the specified column.

       --rename column-name new-name
              Rename this column to a new name.

       --column-order column
              Use this multiple times to specify a new order for your columns. -o shortcut is also available.

       --not-null column-name
              Set this column as NOT NULL.

       --not-null-false column-name
              For a column that is currently set as NOT NULL, remove the NOT NULL.

       --pk column-name
              Change  the  primary  key  column for this table. Pass --pk multiple times if you want to create a
              compound primary key.

       --pk-none
              Remove the primary key from this table, turning it into a rowid table.

       --default column-name value
              Set the default value of this column.

       --default-none column
              Remove the default value for this column.

       --drop-foreign-key column
              Drop the specified foreign key.

       --add-foregn-key column other_table other_column
              Add a foreign key constraint to column pointing to other_table.other_column.

       If you want to see the SQL that will be executed to make the change without actually  executing  it,  add
       the --sql flag. For example:

          sqlite-utils transform fixtures.db roadside_attractions \
              --rename pk id \
              --default name Untitled \
              --column-order id \
              --column-order longitude \
              --column-order latitude \
              --drop address \
              --sql

          CREATE TABLE [roadside_attractions_new_4033a60276b9] (
             [id] INTEGER PRIMARY KEY,
             [longitude] FLOAT,
             [latitude] FLOAT,
             [name] TEXT DEFAULT 'Untitled'
          );
          INSERT INTO [roadside_attractions_new_4033a60276b9] ([longitude], [latitude], [id], [name])
             SELECT [longitude], [latitude], [pk], [name] FROM [roadside_attractions];
          DROP TABLE [roadside_attractions];
          ALTER TABLE [roadside_attractions_new_4033a60276b9] RENAME TO [roadside_attractions];

   Adding a primary key to a rowid table
       SQLite  tables  that  are created without an explicit primary key are created as rowid tables. They still
       have a numeric primary key which is available in the rowid column, but that column is not included in the
       output of select *. Here's an example:

          echo '[{"name": "Azi"}, {"name": "Suna"}]' | \
              sqlite-utils insert chickens.db chickens -
          sqlite-utils schema chickens.db

          CREATE TABLE [chickens] (
             [name] TEXT
          );

          sqlite-utils chickens.db 'select * from chickens'

          [{"name": "Azi"},
           {"name": "Suna"}]

          sqlite-utils chickens.db 'select rowid, * from chickens'

          [{"rowid": 1, "name": "Azi"},
           {"rowid": 2, "name": "Suna"}]

       You  can  use  sqlite-utils transform ... --pk id to add a primary key column called id to the table. The
       primary key will be created as an INTEGER PRIMARY KEY and the existing rowid values will be copied across
       to it. It will automatically increment as new rows are added to the table:

          sqlite-utils transform chickens.db chickens --pk id

          sqlite-utils schema chickens.db

          CREATE TABLE "chickens" (
             [id] INTEGER PRIMARY KEY,
             [name] TEXT
          );

          sqlite-utils chickens.db 'select * from chickens'

          [{"id": 1, "name": "Azi"},
           {"id": 2, "name": "Suna"}]

          echo '{"name": "Cardi"}' | sqlite-utils insert chickens.db chickens -

          sqlite-utils chickens.db 'select * from chickens'

          [{"id": 1, "name": "Azi"},
           {"id": 2, "name": "Suna"},
           {"id": 3, "name": "Cardi"}]

   Extracting columns into a separate table
       The sqlite-utils extract command can be used to extract specified columns into a separate table.

       Take  a  look at the Python API documentation for Extracting columns into a separate table for a detailed
       description of how this works, including examples of table schemas before and after running an extraction
       operation.

       The  command  takes  a  database,  table and one or more columns that should be extracted. To extract the
       species column from the trees table you would run:

          sqlite-utils extract my.db trees species

       This would produce the following schema:

          CREATE TABLE "trees" (
              [id] INTEGER PRIMARY KEY,
              [TreeAddress] TEXT,
              [species_id] INTEGER,
              FOREIGN KEY(species_id) REFERENCES species(id)
          );
          CREATE TABLE [species] (
              [id] INTEGER PRIMARY KEY,
              [species] TEXT
          );
          CREATE UNIQUE INDEX [idx_species_species]
              ON [species] ([species]);

       The command takes the following options:

       --table TEXT
              The name of the lookup to extract columns to. This defaults to using the name of the columns  that
              are being extracted.

       --fk-column TEXT
              The name of the foreign key column to add to the table. Defaults to columnname_id.

       --rename <TEXT TEXT>
              Use this option to rename the columns created in the new lookup table.

       --silent
              Don't display the progress bar.

       Here's  a  more complex example that makes use of these options. It converts this CSV file full of global
       power plants into SQLite, then extracts the country and country_long columns into  a  separate  countries
       table:

          wget 'https://github.com/wri/global-power-plant-database/blob/232a6666/output_database/global_power_plant_database.csv?raw=true'
          sqlite-utils insert global.db power_plants \
              'global_power_plant_database.csv?raw=true' --csv
          # Extract those columns:
          sqlite-utils extract global.db power_plants country country_long \
              --table countries \
              --fk-column country_id \
              --rename country_long name

       After running the above, the command sqlite-utils schema global.db reveals the following schema:

          CREATE TABLE [countries] (
             [id] INTEGER PRIMARY KEY,
             [country] TEXT,
             [name] TEXT
          );
          CREATE TABLE "power_plants" (
             [country_id] INTEGER,
             [name] TEXT,
             [gppd_idnr] TEXT,
             [capacity_mw] TEXT,
             [latitude] TEXT,
             [longitude] TEXT,
             [primary_fuel] TEXT,
             [other_fuel1] TEXT,
             [other_fuel2] TEXT,
             [other_fuel3] TEXT,
             [commissioning_year] TEXT,
             [owner] TEXT,
             [source] TEXT,
             [url] TEXT,
             [geolocation_source] TEXT,
             [wepp_id] TEXT,
             [year_of_capacity_data] TEXT,
             [generation_gwh_2013] TEXT,
             [generation_gwh_2014] TEXT,
             [generation_gwh_2015] TEXT,
             [generation_gwh_2016] TEXT,
             [generation_gwh_2017] TEXT,
             [generation_data_source] TEXT,
             [estimated_generation_gwh] TEXT,
             FOREIGN KEY([country_id]) REFERENCES [countries]([id])
          );
          CREATE UNIQUE INDEX [idx_countries_country_name]
              ON [countries] ([country], [name]);

   Creating views
       You can create a view using the create-view command:

          sqlite-utils create-view mydb.db version "select sqlite_version()"

          sqlite-utils mydb.db "select * from version"

          [{"sqlite_version()": "3.31.1"}]

       Use  --replace to replace an existing view of the same name, and --ignore to do nothing if a view already
       exists.

   Dropping views
       You can drop a view using the drop-view command:

          sqlite-utils drop-view myview

       Use --ignore to ignore the error if the view does not exist.

   Adding columns
       You can add a column using the add-column command:

          sqlite-utils add-column mydb.db mytable nameofcolumn text

       The last argument here is the type of the column to be created. This can be one of:

       • text or strinteger or intfloatblob or bytes

       This argument is optional and defaults to text.

       You can add a column that is a foreign key reference to another table using the --fk option:

          sqlite-utils add-column mydb.db dogs species_id --fk species

       This will automatically detect the name of the primary key on the species table and  use  that  (and  its
       type) for the new column.

       You can explicitly specify the column you wish to reference using --fk-col:

          sqlite-utils add-column mydb.db dogs species_id --fk species --fk-col ref

       You can set a NOT NULL DEFAULT 'x' constraint on the new column using --not-null-default:

          sqlite-utils add-column mydb.db dogs friends_count integer --not-null-default 0

   Adding columns automatically on insert/update
       You  can  use  the  --alter  option  to  automatically  add  new columns if the data you are inserting or
       upserting is of a different shape:

          sqlite-utils insert dogs.db dogs new-dogs.json --pk=id --alter

   Adding foreign key constraints
       The add-foreign-key command can be used to add  new  foreign  key  references  to  an  existing  table  -
       something which SQLite's ALTER TABLE command does not support.

       To  add  a  foreign key constraint pointing the books.author_id column to authors.id in another table, do
       this:

          sqlite-utils add-foreign-key books.db books author_id authors id

       If you omit the other table and other column references sqlite-utils will attempt to guess them - so  the
       above example could instead look like this:

          sqlite-utils add-foreign-key books.db books author_id

       Add --ignore to ignore an existing foreign key (as opposed to returning an error):

          sqlite-utils add-foreign-key books.db books author_id --ignore

       See Adding foreign key constraints in the Python API documentation for further details, including how the
       automatic table guessing mechanism works.

   Adding multiple foreign keys at once
       Adding a foreign key requires a VACUUM. On large databases this can be an expensive operation, so if  you
       are  adding  multiple  foreign  keys you can combine them into one operation (and hence one VACUUM) using
       add-foreign-keys:

          sqlite-utils add-foreign-keys books.db \
              books author_id authors id \
              authors country_id countries id

       When you are using this command each foreign key needs to be defined in full, as  four  arguments  -  the
       table, column, other table and other column.

   Adding indexes for all foreign keys
       If  you  want to ensure that every foreign key column in your database has a corresponding index, you can
       do so like this:

          sqlite-utils index-foreign-keys books.db

   Setting defaults and not null constraints
       You can use the --not-null and --default options (to both insert and  upsert)  to  specify  columns  that
       should be NOT NULL or to set database defaults for one or more specific columns:

          sqlite-utils insert dogs.db dogs_with_scores dogs-with-scores.json \
              --not-null=age \
              --not-null=name \
              --default age 2 \
              --default score 5

   Creating indexes
       You can add an index to an existing table using the create-index command:

          sqlite-utils create-index mydb.db mytable col1 [col2...]

       This can be used to create indexes against a single column or multiple columns.

       The  name  of  the index will be automatically derived from the table and columns. To specify a different
       name, use --name=name_of_index.

       Use the --unique option to create a unique index.

       Use --if-not-exists to avoid attempting to create the index if one with that name already exists.

       To add an index on a column in descending order, prefix the column with  a  hyphen.  Since  this  can  be
       confused for a command-line option you need to construct that like this:

          sqlite-utils create-index mydb.db mytable -- col1 -col2 col3

       This will create an index on that table on (col1, col2 desc, col3).

       If  your  column  names are already prefixed with a hyphen you'll need to manually execute a CREATE INDEX
       SQL statement to add indexes to them rather than using this tool.

       Add the --analyze option to run ANALYZE against the index after it has been created.

   Configuring full-text search
       You can enable SQLite full-text search on a table and a set of columns like this:

          sqlite-utils enable-fts mydb.db documents title summary

       This will use SQLite's FTS5 module by default. Use --fts4 if you want to use FTS4:

          sqlite-utils enable-fts mydb.db documents title summary --fts4

       The enable-fts command will populate the new index with all existing documents. If  you  later  add  more
       documents you will need to use populate-fts to cause them to be indexed as well:

          sqlite-utils populate-fts mydb.db documents title summary

       A  better  solution  here  is to use database triggers. You can set up database triggers to automatically
       update the full-text index using the --create-triggers option when you first run enable-fts:

          sqlite-utils enable-fts mydb.db documents title summary --create-triggers

       To set a custom FTS tokenizer, e.g. to enable Porter stemming, use --tokenize=:

          sqlite-utils populate-fts mydb.db documents title summary --tokenize=porter

       To remove the FTS tables and triggers you created, use disable-fts:

          sqlite-utils disable-fts mydb.db documents

       To rebuild one or more FTS tables (see Rebuilding a full-text search table), use rebuild-fts:

          sqlite-utils rebuild-fts mydb.db documents

       You can rebuild every FTS table by running rebuild-fts without passing any table names:

          sqlite-utils rebuild-fts mydb.db

   Executing searches
       Once you have configured full-text search for a table, you can search it using sqlite-utils search:

          sqlite-utils search mydb.db documents searchterm

       This command accepts the same output options as sqlite-utils query: --table, --csv, --tsv, --nl etc.

       By default it shows the most relevant matches first. You can specify a different sort order using the  -o
       option, which can take a column or a column followed by desc:

          # Sort by rowid
          sqlite-utils search mydb.db documents searchterm -o rowid
          # Sort by created in descending order
          sqlite-utils search mydb.db documents searchterm -o 'created desc'

       SQLite  advanced  search  syntax is enabled by default. To run a search with automatic quoting applied to
       the terms to avoid them being potentially interpreted as advanced search syntax use the --quote option.

       You can specify a subset of columns to be returned using the -c option one or more times:

          sqlite-utils search mydb.db documents searchterm -c title -c created

       By default all search results will be returned. You can use --limit  20  to  return  just  the  first  20
       results.

       Use the --sql option to output the SQL that would be executed, rather than running the query:

          sqlite-utils search mydb.db documents searchterm --sql

          with original as (
              select
                  rowid,
                  *
              from [documents]
          )
          select
              [original].*
          from
              [original]
              join [documents_fts] on [original].rowid = [documents_fts].rowid
          where
              [documents_fts] match :query
          order by
              [documents_fts].rank

   Enabling cached counts
       select  count(*)  queries  can  take a long time against large tables. sqlite-utils can speed these up by
       adding triggers to maintain a _counts table, see Cached table counts using triggers for details.

       The sqlite-utils enable-counts command can be used to configure these triggers, either for every table in
       the database or for specific tables.

          # Configure triggers for every table in the database
          sqlite-utils enable-counts mydb.db

          # Configure triggers just for specific tables
          sqlite-utils enable-counts mydb.db table1 table2

       If  the  _counts  table ever becomes out-of-sync with the actual table counts you can repair it using the
       reset-counts command:

          sqlite-utils reset-counts mydb.db

   Optimizing index usage with ANALYZE
       The SQLite ANALYZE command builds a table of statistics which the query planner can use  to  make  better
       decisions about which indexes to use for a given query.

       You  should run ANALYZE if your database is large and you do not think your indexes are being efficiently
       used.

       To run ANALYZE against every index in a database, use this:

          sqlite-utils analyze mydb.db

       You can run it against specific tables, or against specific named indexes, by passing  them  as  optional
       arguments:

          sqlite-utils analyze mydb.db mytable idx_mytable_name

       You  can also run ANALYZE as part of another command using the --analyze option. This is supported by the
       create-index, insert and upsert commands.

   Vacuum
       You can run VACUUM to optimize your database like so:

          sqlite-utils vacuum mydb.db

   Optimize
       The optimize command can dramatically reduce the size of your database if you are using SQLite  full-text
       search. It runs OPTIMIZE against all of your FTS4 and FTS5 tables, then runs VACUUM.

       If you just want to run OPTIMIZE without the VACUUM, use the --no-vacuum flag.

          # Optimize all FTS tables and then VACUUM
          sqlite-utils optimize mydb.db

          # Optimize but skip the VACUUM
          sqlite-utils optimize --no-vacuum mydb.db

       To optimize specific tables rather than every FTS table, pass those tables as extra arguments:

          sqlite-utils optimize mydb.db table_1 table_2

   WAL mode
       You can enable Write-Ahead Logging for a database file using the enable-wal command:

          sqlite-utils enable-wal mydb.db

       You can disable WAL mode using disable-wal:

          sqlite-utils disable-wal mydb.db

       Both of these commands accept one or more database files as arguments.

   Dumping the database to SQL
       The dump command outputs a SQL dump of the schema and full contents of the specified database file:

          sqlite-utils dump mydb.db
          BEGIN TRANSACTION;
          CREATE TABLE ...
          ...
          COMMIT;

   Loading SQLite extensions
       Many   of   these   commands   have   the   ability  to  load  additional  SQLite  extensions  using  the
       --load-extension=/path/to/extension option - use --help to check  for  support,  e.g.  sqlite-utils  rows
       --help.

       This option can be applied multiple times to load multiple extensions.

       Since  SpatiaLite  is  commonly  used  with  SQLite,  the value spatialite is special: it will search for
       SpatiaLite in the most common installation locations, saving you from needing to remember  exactly  where
       that module is located:

          sqlite-utils memory "select spatialite_version()" --load-extension=spatialite

          [{"spatialite_version()": "4.3.0a"}]

   SpatiaLite helpers
       SpatiaLite  adds  geographic  capability  to  SQLite  (similar  to how PostGIS builds on PostgreSQL). The
       SpatiaLite cookbook is a good resource for learning what's possible with it.

       You can convert an existing table to a geographic table by adding a geometry column, use the sqlite-utils
       add-geometry-column command:

          sqlite-utils add-geometry-column spatial.db locations geometry --type POLYGON --srid 4326

       The  table  (locations  in  the  example  above)  must already exist before adding a geometry column. Use
       sqlite-utils create-table first, then add-geometry-column.

       Use the --type option to specify  a  geometry  type.  By  default,  add-geometry-column  uses  a  generic
       GEOMETRY, which will work with any type, though it may not be supported by some desktop GIS applications.

       Eight (case-insensitive) types are allowed:

       • POINT

       • LINESTRING

       • POLYGON

       • MULTIPOINT

       • MULTILINESTRING

       • MULTIPOLYGON

       • GEOMETRYCOLLECTION

       • GEOMETRY

   Adding spatial indexes
       Once you have a geometry column, you can speed up bounding box queries by adding a spatial index:

          sqlite-utils create-spatial-index spatial.db locations geometry

       See this SpatiaLite Cookbook recipe for examples of how to use a spatial index.

   Installing packages
       The  convert  command  and  the  insert  -\-convert and query -\-functions options can be provided with a
       Python script that imports additional modules from the sqlite-utils environment.

       You can install packages from PyPI directly into  the  correct  environment  using  sqlite-utils  install
       <package>. This is a wrapper around pip install.

          sqlite-utils install beautifulsoup4

       Use -U to upgrade an existing package.

   Uninstalling packages
       You  can  uninstall  packages  that were installed using sqlite-utils install with sqlite-utils uninstall
       <package>:

          sqlite-utils uninstall beautifulsoup4

       Use -y to skip the request for confirmation.

   Experimental TUI
       A TUI is a "text user interface" (or "terminal user interface") - a keyboard and mouse  driven  graphical
       interface running in your terminal.

       sqlite-utils  has  experimental  support for a TUI for building command-line invocations, built on top of
       the Trogon TUI library.

       To enable this feature you will need to install the trogon dependency. You can do that like so:

          sqite-utils install trogon

       Once installed, running the sqlite-utils tui command will launch the TUI interface:

          sqlite-utils tui

       You can then construct a command by selecting options from  the  menus,  and  execute  it  using  Ctrl+R.
       [image:  A  TUI  interface  for  sqlite-utils - the left column shows a list of commands, while the right
       panel has a form for constructing arguments to the add-column command.]  [image]

   sqlite_utils Python libraryGetting startedConnecting to or creating a databaseAttaching additional databasesTracing queriesExecuting queriesdb.query(sql, params)db.execute(sql, params)Passing parametersAccessing tablesListing tablesListing viewsListing rowsCounting rowsListing rows with their primary keysRetrieving a specific recordShowing the schemaCreating tablesCustom column order and column typesExplicitly creating a tableCompound primary keysSpecifying foreign keysTable configuration optionsSetting defaults and not null constraintsRenaming a tableDuplicating tablesBulk insertsInsert-replacing dataUpdating a specific recordDeleting a specific recordDeleting multiple recordsUpserting dataConverting data in columnsWorking with lookup tablesCreating lookup tables explicitlyPopulating lookup tables automatically during insert/upsertWorking with many-to-many relationshipsUsing m2m and lookup tables togetherAnalyzing a columnAdding columnsAdding columns automatically on insert/updateAdding foreign key constraintsAdding multiple foreign key constraints at onceAdding indexes for all foreign keysDropping a table or viewTransforming a tableAltering column typesRenaming columnsDropping columnsChanging primary keysChanging not null statusAltering column defaultsChanging column orderAdding foreign key constraintsReplacing foreign key constraintsDropping foreign key constraintsCustom transformations with .transform_sql()Extracting columns into a separate tableSetting an ID based on the hash of the row contentsCreating viewsStoring JSONConverting column values using SQL functionsChecking the SQLite versionDumping the database to SQLIntrospecting tables and views.exists().count.columns.columns_dict.default_values.pks.use_rowid.foreign_keys.schema.strict.indexes.xindexes.triggers.triggers_dict.detect_fts().virtual_table_using.has_counts_triggersdb.supports_strictFull-text searchEnabling full-text search for a tableQuoting characters for use in searchSearching with table.search()Building SQL queries with table.search_sql()Rebuilding a full-text search tableOptimizing a full-text search tableCached table counts using triggersCreating indexesOptimizing index usage with ANALYZEVacuumWAL modeSuggesting column typesRegistering custom SQL functionsQuoting strings for use in SQLReading rows from a fileSetting the maximum CSV field size limitDetecting column types using TypeTrackerSpatiaLite helpersInitialize SpatiaLiteFinding SpatiaLiteAdding geometry columnsCreating a spatial index

   Getting started
       Here's how to create a new SQLite database file containing a new  chickens  table,  populated  with  four
       records:

          from sqlite_utils import Database

          db = Database("chickens.db")
          db["chickens"].insert_all([{
              "name": "Azi",
              "color": "blue",
          }, {
              "name": "Lila",
              "color": "blue",
          }, {
              "name": "Suna",
              "color": "gold",
          }, {
              "name": "Cardi",
              "color": "black",
          }])

       You can loop through those rows like this:

          for row in db["chickens"].rows:
              print(row)

       Which outputs the following:

          {'name': 'Azi', 'color': 'blue'}
          {'name': 'Lila', 'color': 'blue'}
          {'name': 'Suna', 'color': 'gold'}
          {'name': 'Cardi', 'color': 'black'}

       To run a SQL query, use db.query():

          for row in db.query("""
              select color, count(*)
              from chickens group by color
              order by count(*) desc
          """):
              print(row)

       Which outputs:

          {'color': 'blue', 'count(*)': 2}
          {'color': 'gold', 'count(*)': 1}
          {'color': 'black', 'count(*)': 1}

   Connecting to or creating a database
       Database  objects  are  constructed  by passing in either a path to a file on disk or an existing SQLite3
       database connection:

          from sqlite_utils import Database

          db = Database("my_database.db")

       This will create my_database.db if it does not already exist.

       If you want to recreate a database from scratch (first removing the existing file from disk if it already
       exists) you can use the recreate=True argument:

          db = Database("my_database.db", recreate=True)

       Instead of a file path you can pass in an existing SQLite connection:

          import sqlite3

          db = Database(sqlite3.connect("my_database.db"))

       If you want to create an in-memory database, you can do so like this:

          db = Database(memory=True)

       You  can also create a named in-memory database. Unlike regular memory databases these can be accessed by
       multiple threads, provided at least one reference to the database still exists. del  db  will  clear  the
       database from memory.

          db = Database(memory_name="my_shared_database")

       Connections  use PRAGMA recursive_triggers=on by default. If you don't want to use recursive triggers you
       can turn them off using:

          db = Database(memory=True, recursive_triggers=False)

       By default, any sqlite-utils plugins that implement the prepare_connection(conn) hook  will  be  executed
       against  the  connection  when you create the Database object. You can opt out of executing plugins using
       execute_plugins=False like this:

          db = Database(memory=True, execute_plugins=False)

       You can pass strict=True to enable SQLite STRICT mode for all tables created using this database object:

          db = Database("my_database.db", strict=True)

   Attaching additional databases
       SQLite supports cross-database SQL queries, which can join data from tables in  more  than  one  database
       file.

       You  can  attach  an  additional  database using the .attach() method, providing an alias to use for that
       database and the path to the SQLite file on disk.

          db = Database("first.db")
          db.attach("second", "second.db")
          # Now you can run queries like this one:
          print(db.query("""
          select * from table_in_first
              union all
          select * from second.table_in_second
          """))

       You can reference tables in the attached database using the alias value you  passed  to  db.attach(alias,
       filepath) as a prefix, for example the second.table_in_second reference in the SQL query above.

   Tracing queries
       You  can  use  the  tracer  mechanism to see SQL queries that are being executed by SQLite. A tracer is a
       function that you provide which will be called with sql and params arguments every time SQL is  executed,
       for example:

          def tracer(sql, params):
              print("SQL: {} - params: {}".format(sql, params))

       You can pass this function to the Database() constructor like so:

          db = Database(memory=True, tracer=tracer)

       You  can  also  turn  on  a tracer function temporarily for a block of code using the with db.tracer(...)
       context manager:

          db = Database(memory=True)
          # ... later
          with db.tracer(print):
              db["dogs"].insert({"name": "Cleo"})

       This example will print queries only for the duration of the with block.

   Executing queries
       The Database class offers several methods for directly executing SQL queries.

   db.query(sql, params)
       The db.query(sql) function executes a  SQL  query  and  returns  an  iterator  over  Python  dictionaries
       representing the resulting rows:

          db = Database(memory=True)
          db["dogs"].insert_all([{"name": "Cleo"}, {"name": "Pancakes"}])
          for row in db.query("select * from dogs"):
              print(row)
          # Outputs:
          # {'name': 'Cleo'}
          # {'name': 'Pancakes'}

   db.execute(sql, params)
       The  db.execute()  and db.executescript() methods provide wrappers around .execute() and .executescript()
       on the underlying SQLite connection.  These  wrappers  log  to  the  tracer  function  if  one  has  been
       registered.

       db.execute(sql) returns a sqlite3.Cursor that was used to execute the SQL.

          db = Database(memory=True)
          db["dogs"].insert({"name": "Cleo"})
          cursor = db.execute("update dogs set name = 'Cleopaws'")
          print(cursor.rowcount)
          # Outputs the number of rows affected by the update
          # In this case 2

       Other  cursor  methods  such  as .fetchone() and .fetchall() are also available, see the standard library
       documentation.

   Passing parameters
       Both db.query() and db.execute() accept an optional second argument for parameters to be  passed  to  the
       SQL query.

       This  can  take the form of either a tuple/list or a dictionary, depending on the type of parameters used
       in the query. Values passed in this way will be correctly quoted and escaped, helping avoid SQL injection
       vulnerabilities.

       ? parameters in the SQL query can be filled in using a list:

          db.execute("update dogs set name = ?", ["Cleopaws"])
          # This will rename ALL dogs to be called "Cleopaws"

       Named parameters using :name can be filled using a dictionary:

          dog = next(db.query(
              "select rowid, name from dogs where name = :name",
              {"name": "Cleopaws"}
          ))
          # dog is now {'rowid': 1, 'name': 'Cleopaws'}

       In  this  example  next() is used to retrieve the first result in the iterator returned by the db.query()
       method.

   Accessing tables
       Tables are accessed using the indexing operator, like so:

          table = db["my_table"]

       If the table does not yet exist, it will be created the first time you attempt to insert or  upsert  data
       into it.

       You can also access tables using the .table() method like so:

          table = db.table("my_table")

       Using this factory function allows you to set Table configuration options.

   Listing tables
       You can list the names of tables in a database using the .table_names() method:

          >>> db.table_names()
          ['dogs']

       To see just the FTS4 tables, use .table_names(fts4=True). For FTS5, use .table_names(fts5=True).

       You can also iterate through the table objects themselves using the .tables property:

          >>> db.tables
          [<Table dogs>]

   Listing views
       .view_names() shows you a list of views in the database:

          >>> db.view_names()
          ['good_dogs']

       You can iterate through view objects using the .views property:

          >>> db.views
          [<View good_dogs>]

       View  objects  are similar to Table objects, except that any attempts to insert or update data will throw
       an error. The full list of methods and properties available on a view object is as follows:

       • columnscolumns_dictcountschemarowsrows_where(where, where_args, order_by, select)drop()

   Listing rows
       To iterate through dictionaries for each of the rows in a table, use .rows:

          >>> db = sqlite_utils.Database("dogs.db")
          >>> for row in db["dogs"].rows:
          ...     print(row)
          {'id': 1, 'age': 4, 'name': 'Cleo'}
          {'id': 2, 'age': 2, 'name': 'Pancakes'}

       You can filter rows by a WHERE clause using .rows_where(where, where_args):

          >>> db = sqlite_utils.Database("dogs.db")
          >>> for row in db["dogs"].rows_where("age > ?", [3]):
          ...     print(row)
          {'id': 1, 'age': 4, 'name': 'Cleo'}

       The first argument is a fragment of SQL. The second, optional argument is values to  be  passed  to  that
       fragment  -  you  can  use  ? placeholders and pass an array, or you can use :named parameters and pass a
       dictionary, like this:

          >>> for row in db["dogs"].rows_where("age > :age", {"age": 3}):
          ...     print(row)
          {'id': 1, 'age': 4, 'name': 'Cleo'}

       To return custom columns (instead of the default that uses select *) pass select="column1, column2":

          >>> db = sqlite_utils.Database("dogs.db")
          >>> for row in db["dogs"].rows_where(select='name, age'):
          ...     print(row)
          {'name': 'Cleo', 'age': 4}

       To specify an order, use the order_by= argument:

          >>> for row in db["dogs"].rows_where("age > 1", order_by="age"):
          ...     print(row)
          {'id': 2, 'age': 2, 'name': 'Pancakes'}
          {'id': 1, 'age': 4, 'name': 'Cleo'}

       You can use order_by="age desc" for descending order.

       You can order all records in the table by excluding the where argument:

          >>> for row in db["dogs"].rows_where(order_by="age desc"):
          ...     print(row)
          {'id': 1, 'age': 4, 'name': 'Cleo'}
          {'id': 2, 'age': 2, 'name': 'Pancakes'}

       This method also accepts offset= and limit= arguments, for specifying an OFFSET and a LIMIT for  the  SQL
       query:

          >>> for row in db["dogs"].rows_where(order_by="age desc", limit=1):
          ...     print(row)
          {'id': 1, 'age': 4, 'name': 'Cleo'}

   Counting rows
       To  count  the  number  of  rows  that  would  be  returned  by  a  where filter, use .count_where(where,
       where_args):

       >>> db["dogs"].count_where("age > ?", [1])
       2

   Listing rows with their primary keys
       Sometimes it can be useful to retrieve the primary key along with each row, in order to pass that key (or
       primary key tuple) to the .get() or .update() methods.

       The  .pks_and_rows_where()  method  takes  the same signature as .rows_where() (with the exception of the
       select= parameter) but returns a generator that yields pairs of (primary key, row dictionary).

       The primary key value will usually be a single value but can also be a tuple if the table has a  compound
       primary key.

       If the table is a rowid table (with no explicit primary key column) then that ID will be returned.

          >>> db = sqlite_utils.Database(memory=True)
          >>> db["dogs"].insert({"name": "Cleo"})
          >>> for pk, row in db["dogs"].pks_and_rows_where():
          ...     print(pk, row)
          1 {'rowid': 1, 'name': 'Cleo'}

          >>> db["dogs_with_pk"].insert({"id": 5, "name": "Cleo"}, pk="id")
          >>> for pk, row in db["dogs_with_pk"].pks_and_rows_where():
          ...     print(pk, row)
          5 {'id': 5, 'name': 'Cleo'}

          >>> db["dogs_with_compound_pk"].insert(
          ...     {"species": "dog", "id": 3, "name": "Cleo"},
          ...     pk=("species", "id")
          ... )
          >>> for pk, row in db["dogs_with_compound_pk"].pks_and_rows_where():
          ...     print(pk, row)
          ('dog', 3) {'species': 'dog', 'id': 3, 'name': 'Cleo'}

   Retrieving a specific record
       You can retrieve a record by its primary key using table.get():

          >>> db = sqlite_utils.Database("dogs.db")
          >>> print(db["dogs"].get(1))
          {'id': 1, 'age': 4, 'name': 'Cleo'}

       If the table has a compound primary key you can pass in the primary key values as a tuple:

          >>> db["compound_dogs"].get(("mixed", 3))

       If the record does not exist a NotFoundError will be raised:

          from sqlite_utils.db import NotFoundError

          try:
              row = db["dogs"].get(5)
          except NotFoundError:
              print("Dog not found")

   Showing the schema
       The db.schema property returns the full SQL schema for the database as a string:

          >>> db = sqlite_utils.Database("dogs.db")
          >>> print(db.schema)
          CREATE TABLE "dogs" (
              [id] INTEGER PRIMARY KEY,
              [name] TEXT
          );

   Creating tables
       The easiest way to create a new table is to insert a record into it:

          from sqlite_utils import Database
          import sqlite3

          db = Database("dogs.db")
          dogs = db["dogs"]
          dogs.insert({
              "name": "Cleo",
              "twitter": "cleopaws",
              "age": 3,
              "is_good_dog": True,
          })

       This will automatically create a new table called "dogs" with the following schema:

          CREATE TABLE dogs (
              name TEXT,
              twitter TEXT,
              age INTEGER,
              is_good_dog INTEGER
          )

       You  can also specify a primary key by passing the pk= parameter to the .insert() call. This will only be
       obeyed if the record being inserted causes the table to be created:

          dogs.insert({
              "id": 1,
              "name": "Cleo",
              "twitter": "cleopaws",
              "age": 3,
              "is_good_dog": True,
          }, pk="id")

       After inserting a row like this, the dogs.last_rowid property will return the SQLite  rowid  assigned  to
       the most recently inserted record.

       The dogs.last_pk property will return the last inserted primary key value, if you specified one. This can
       be very useful when writing code that creates foreign keys or many-to-many relationships.

   Custom column order and column types
       The order of the columns in the table will be derived from the order  of  the  keys  in  the  dictionary,
       provided you are using Python 3.6 or later.

       If you want to explicitly set the order of the columns you can do so using the column_order= parameter:

          db["dogs"].insert({
              "id": 1,
              "name": "Cleo",
              "twitter": "cleopaws",
              "age": 3,
              "is_good_dog": True,
          }, pk="id", column_order=("id", "twitter", "name"))

       You don't need to pass all of the columns to the column_order parameter. If you only pass a subset of the
       columns the remaining columns will be ordered based on the key order of the dictionary.

       Column types are detected based on the example  data  provided.  Sometimes  you  may  find  you  need  to
       over-ride  these  detected types - to create an integer column for data that was provided as a string for
       example, or to ensure that a table where the first example was None is created as an INTEGER rather  than
       a TEXT column. You can do this using the columns= parameter:

          db["dogs"].insert({
              "id": 1,
              "name": "Cleo",
              "age": "5",
          }, pk="id", columns={"age": int, "weight": float})

       This will create a table with the following schema:

          CREATE TABLE [dogs] (
              [id] INTEGER PRIMARY KEY,
              [name] TEXT,
              [age] INTEGER,
              [weight] FLOAT
          )

   Explicitly creating a table
       You can directly create a new table without inserting any data into it using the .create() method:

          db["cats"].create({
              "id": int,
              "name": str,
              "weight": float,
          }, pk="id")

       The  first  argument here is a dictionary specifying the columns you would like to create. Each column is
       paired with a Python type indicating the type of column. See Adding columns for full details on how these
       types work.

       This   method   takes   optional   arguments   pk=,   column_order=,  foreign_keys=,  not_null=set()  and
       defaults=dict() - explained below.

       A sqlite_utils.utils.sqlite3.OperationalError will be raised if a table of that name already exists.

       You can pass ignore=True to ignore that error. You can also use if_not_exists=True to use the SQL  CREATE
       TABLE IF NOT EXISTS pattern to achieve the same effect:

          db["cats"].create({
              "id": int,
              "name": str,
          }, pk="id", if_not_exists=True)

       To  drop  and  replace  any existing table of that name, pass replace=True. This is a dangerous operation
       that will result in loss of existing data in the table.

       You can also pass transform=True to have  any  existing  tables  transformed  to  match  your  new  table
       specification.  This  is  a dangerous operation as it will drop columns that are no longer listed in your
       call to .create(), so be careful when running this.

          db["cats"].create({
              "id": int,
              "name": str,
              "weight": float,
          }, pk="id", transform=True)

       The transform=True option will update the table schema if any of the following have changed:

       • The specified columns or their types

       • The specified primary key

       • The order of the columns, defined using column_order=

       • The not_null= or defaults= arguments

       Changes to foreign_keys= are not currently detected and applied by transform=True.

       You can pass strict=True to create a table in STRICT mode:

          db["cats"].create({
              "id": int,
              "name": str,
          }, strict=True)

   Compound primary keys
       If you want to create a table with a compound primary key that spans multiple columns, you can do  so  by
       passing a tuple of column names to any of the methods that accept a pk= parameter. For example:

          db["cats"].create({
              "id": int,
              "breed": str,
              "name": str,
              "weight": float,
          }, pk=("breed", "id"))

       This also works for the .insert(), .insert_all(), .upsert() and .upsert_all() methods.

   Specifying foreign keys
       Any  operation that can create a table (.create(), .insert(), .insert_all(), .upsert() and .upsert_all())
       accepts an optional foreign_keys= argument which can be used to set up foreign key  constraints  for  the
       table that is being created.

       If  you  are  using your database with Datasette, Datasette will detect these constraints and use them to
       generate hyperlinks to associated records.

       The foreign_keys argument takes a list that indicates which foreign keys should be created. The list  can
       take several forms. The simplest is a list of columns:

          foreign_keys=["author_id"]

       The  library  will  guess  which  tables  you wish to reference based on the column names using the rules
       described in Adding foreign key constraints.

       You can also be more explicit, by passing in a list of tuples:

          foreign_keys=[
              ("author_id", "authors", "id")
          ]

       This means that the author_id column should be a foreign key that references the id column in the authors
       table.

       You  can  leave  off  the  third item in the tuple to have the referenced column automatically set to the
       primary key of that table. A full example:

          db["authors"].insert_all([
              {"id": 1, "name": "Sally"},
              {"id": 2, "name": "Asheesh"}
          ], pk="id")
          db["books"].insert_all([
              {"title": "Hedgehogs of the world", "author_id": 1},
              {"title": "How to train your wolf", "author_id": 2},
          ], foreign_keys=[
              ("author_id", "authors")
          ])

   Table configuration options
       The .insert(), .upsert(),  .insert_all()  and  .upsert_all()  methods  each  take  a  number  of  keyword
       arguments, some of which influence what happens should they cause a table to be created and some of which
       affect the behavior of those methods.

       You can set default values for these methods by accessing the  table  through  the  db.table(...)  method
       (instead of using db["table_name"]), like so:

          table = db.table(
              "authors",
              pk="id",
              not_null={"name", "score"},
              column_order=("id", "name", "score", "url")
          )
          # Now you can call .insert() like so:
          table.insert({"id": 1, "name": "Tracy", "score": 5})

       The configuration options that can be specified in this way are pk, foreign_keys, column_order, not_null,
       defaults, batch_size, hash_id, hash_id_columns, alter, ignore, replace, extracts,  conversions,  columns,
       strict. These are all documented below.

   Setting defaults and not null constraints
       Each  of  the  methods  that  can  cause a table to be created take optional arguments not_null=set() and
       defaults=dict(). The methods that take these optional arguments are:

       • db.create_table(...)table.create(...)table.insert(...)table.insert_all(...)table.upsert(...)table.upsert_all(...)

       You can use not_null= to pass a set of column names that should have a NOT NULL constraint  set  on  them
       when they are created.

       You  can use defaults= to pass a dictionary mapping columns to the default value that should be specified
       in the CREATE TABLE statement.

       Here's an example that uses these features:

          db["authors"].insert_all(
              [{"id": 1, "name": "Sally", "score": 2}],
              pk="id",
              not_null={"name", "score"},
              defaults={"score": 1},
          )
          db["authors"].insert({"name": "Dharma"})

          list(db["authors"].rows)
          # Outputs:
          # [{'id': 1, 'name': 'Sally', 'score': 2},
          #  {'id': 3, 'name': 'Dharma', 'score': 1}]
          print(db["authors"].schema)
          # Outputs:
          # CREATE TABLE [authors] (
          #     [id] INTEGER PRIMARY KEY,
          #     [name] TEXT NOT NULL,
          #     [score] INTEGER NOT NULL DEFAULT 1
          # )

   Renaming a table
       The db.rename_table(old_name, new_name) method can be used to rename a table:

          db.rename_table("my_table", "new_name_for_my_table")

       This executes the following SQL:

          ALTER TABLE [my_table] RENAME TO [new_name_for_my_table]

   Duplicating tables
       The table.duplicate() method creates a copy of the table, copying both the table schema and  all  of  the
       rows in that table:

          db["authors"].duplicate("authors_copy")

       The new authors_copy table will now contain a duplicate copy of the data from authors.

       This method raises sqlite_utils.db.NoTable if the table does not exist.

   Bulk inserts
       If  you  have  more  than  one  record to insert, the insert_all() method is a much more efficient way of
       inserting them. Just like insert() it will automatically detect the columns that should be  created,  but
       it will inspect the first batch of 100 items to help decide what those column types should be.

       Use it like this:

          db["dogs"].insert_all([{
              "id": 1,
              "name": "Cleo",
              "twitter": "cleopaws",
              "age": 3,
              "is_good_dog": True,
          }, {
              "id": 2,
              "name": "Marnie",
              "twitter": "MarnieTheDog",
              "age": 16,
              "is_good_dog": True,
          }], pk="id", column_order=("id", "twitter", "name"))

       The  column  types used in the CREATE TABLE statement are automatically derived from the types of data in
       that  first  batch  of  rows.   Any   additional   columns   in   subsequent   batches   will   cause   a
       sqlite3.OperationalError exception to be raised unless the alter=True argument is supplied, in which case
       the new columns will be created.

       The function can accept an iterator or generator of rows and will commit  them  according  to  the  batch
       size. The default batch size is 100, but you can specify a different size using the batch_size parameter:

          db["big_table"].insert_all(({
              "id": 1,
              "name": "Name {}".format(i),
          } for i in range(10000)), batch_size=1000)

       You  can  skip  inserting any records that have a primary key that already exists using ignore=True. This
       works with both .insert({...}, ignore=True) and .insert_all([...], ignore=True).

       You can delete all the existing rows in the table before inserting the new records  using  truncate=True.
       This is useful if you want to replace the data in the table.

       Pass analyze=True to run ANALYZE against the table after inserting the new records.

   Insert-replacing data
       If  you try to insert data using a primary key that already exists, the .insert() or .insert_all() method
       will raise a sqlite3.IntegrityError exception.

       This example that catches that exception:

          from sqlite_utils.utils import sqlite3

          try:
              db["dogs"].insert({"id": 1, "name": "Cleo"}, pk="id")
          except sqlite3.IntegrityError:
              print("Record already exists with that primary key")

       Importing from sqlite_utils.utils.sqlite3 ensures your code continues to work even if you are  using  the
       pysqlite3 library instead of the Python standard library sqlite3 module.

       Use the ignore=True parameter to ignore this error:

          # This fails silently if a record with id=1 already exists
          db["dogs"].insert({"id": 1, "name": "Cleo"}, pk="id", ignore=True)

       To  replace  any  existing  records  that  have a matching primary key, use the replace=True parameter to
       .insert() or .insert_all():

          db["dogs"].insert_all([{
              "id": 1,
              "name": "Cleo",
              "twitter": "cleopaws",
              "age": 3,
              "is_good_dog": True,
          }, {
              "id": 2,
              "name": "Marnie",
              "twitter": "MarnieTheDog",
              "age": 16,
              "is_good_dog": True,
          }], pk="id", replace=True)

       NOTE:
          Prior  to  sqlite-utils  2.0  the  .upsert()  and  .upsert_all()  methods  worked  the  same  way   as
          .insert(replace=True) does today. See Upserting data for the new behaviour of those methods introduced
          in 2.0.

   Updating a specific record
       You can update a record by its primary key using table.update():

          >>> db = sqlite_utils.Database("dogs.db")
          >>> print(db["dogs"].get(1))
          {'id': 1, 'age': 4, 'name': 'Cleo'}
          >>> db["dogs"].update(1, {"age": 5})
          >>> print(db["dogs"].get(1))
          {'id': 1, 'age': 5, 'name': 'Cleo'}

       The first argument to update() is the primary key. This can be a single value, or a tuple if  that  table
       has a compound primary key:

          >>> db["compound_dogs"].update((5, 3), {"name": "Updated"})

       The second argument is a dictionary of columns that should be updated, along with their new values.

       You can cause any missing columns to be added automatically using alter=True:

          >>> db["dogs"].update(1, {"breed": "Mutt"}, alter=True)

   Deleting a specific record
       You can delete a record using table.delete():

          >>> db = sqlite_utils.Database("dogs.db")
          >>> db["dogs"].delete(1)

       The  delete()  method takes the primary key of the record. This can be a tuple of values if the row has a
       compound primary key:

          >>> db["compound_dogs"].delete((5, 3))

   Deleting multiple records
       You can delete all records in a table that match a specific WHERE statement using table.delete_where():

          >>> db = sqlite_utils.Database("dogs.db")
          >>> # Delete every dog with age less than 3
          >>> db["dogs"].delete_where("age < ?", [3])

       Calling table.delete_where() with no other arguments will delete every row in the table.

       Pass analyze=True to run ANALYZE against the table after deleting the rows.

   Upserting data
       Upserting allows you to insert records if they do not exist and update them if they DO  exist,  based  on
       matching against their primary key.

       For example, given the dogs database you could upsert the record for Cleo like so:

          db["dogs"].upsert({
              "id": 1,
              "name": "Cleo",
              "twitter": "cleopaws",
              "age": 4,
              "is_good_dog": True,
          }, pk="id", column_order=("id", "twitter", "name"))

       If  a  record exists with id=1, it will be updated to match those fields. If it does not exist it will be
       created.

       Any existing columns that are not referenced in the dictionary passed to .upsert() will be unchanged.  If
       you want to replace a record entirely, use .insert(doc, replace=True) instead.

       Note  that  the  pk  and  column_order parameters here are optional if you are certain that the table has
       already been created. You should pass them if the table may not exist at the time  the  first  upsert  is
       performed.

       An upsert_all() method is also available, which behaves like insert_all() but performs upserts instead.

       NOTE:
          .upsert()   and   .upsert_all()  in  sqlite-utils  1.x  worked  like  .insert(...,  replace=True)  and
          .insert_all(..., replace=True) do in 2.x. See issue #66 for details of this change.

   Converting data in columns
       The table.convert(...) method can be used to apply a conversion function  to  the  values  in  a  column,
       either  to  update  that  column  or  to populate new columns. It is the Python library equivalent of the
       sqlite-utils convert command.

       This feature works by registering a custom SQLite function that applies  a  Python  transformation,  then
       running a SQL query equivalent to UPDATE table SET column = convert_value(column);

       To transform a specific column to uppercase, you would use the following:

          db["dogs"].convert("name", lambda value: value.upper())

       You can pass a list of columns, in which case the transformation will be applied to each one:

          db["dogs"].convert(["name", "twitter"], lambda value: value.upper())

       To save the output to of the transformation to a different column, use the output= parameter:

          db["dogs"].convert("name", lambda value: value.upper(), output="name_upper")

       This  will  add  the new column, if it does not already exist. You can pass output_type=int or some other
       type to control the type of the new column - otherwise it will default to text.

       If you want to drop the original column after saving the  results  in  a  separate  output  column,  pass
       drop=True.

       By  default  any  rows  with  a  falsey  value for the column - such as 0 or None - will be skipped. Pass
       skip_false=False to disable this behaviour.

       You can create multiple new columns from a single input column by passing  multi=True  and  a  conversion
       function  that  returns  a  Python dictionary. This example creates new upper and lower columns populated
       from the single title column:

          table.convert(
              "title", lambda v: {"upper": v.upper(), "lower": v.lower()}, multi=True
          )

       The .convert() method accepts optional where= and where_args= parameters which can be used to  apply  the
       conversion  to  a  subset of rows specified by a where clause. Here's how to apply the conversion only to
       rows with an id that is higher than 20:

          table.convert("title", lambda v: v.upper(), where="id > :id", where_args={"id": 20})

       These behave the same as the corresponding parameters to the .rows_where()  method,  so  you  can  use  ?
       placeholders and a list of values instead of :named placeholders with a dictionary.

   Working with lookup tables
       A  useful pattern when populating large tables in to break common values out into lookup tables. Consider
       a table of Trees, where each tree has a species. Ideally these species would be split out into a separate
       Species  table, with each one assigned an integer primary key that can be referenced from the Trees table
       species_id column.

   Creating lookup tables explicitly
       Calling db["Species"].lookup({"name": "Palm"}) creates a table called Species (if one  does  not  already
       exist)  with  two columns: id and name. It sets up a unique constraint on the name column to guarantee it
       will not contain duplicate rows. It then inserts a new row with the name set to Palm and returns the  new
       integer primary key value.

       If the Species table already exists, it will insert the new row and return the primary key. If a row with
       that name already exists, it will return the corresponding primary key value directly.

       If you call .lookup() against an existing table without the unique constraint it will attempt to add  the
       constraint, raising an IntegrityError if the constraint cannot be created.

       If  you  pass  in  a  dictionary with multiple values, both values will be used to insert or retrieve the
       corresponding ID and any unique constraint that is created will cover all of those columns, for example:

          db["Trees"].insert({
              "latitude": 49.1265976,
              "longitude": 2.5496218,
              "species": db["Species"].lookup({
                  "common_name": "Common Juniper",
                  "latin_name": "Juniperus communis"
              })
          })

       The .lookup() method has an optional second argument which can be used to populate other columns  in  the
       table but only if the row does not exist yet. These columns will not be included in the unique index.

       To create a species record with a note on when it was first seen, you can use this:

          db["Species"].lookup({"name": "Palm"}, {"first_seen": "2021-03-04"})

       The  first time this is called the record will be created for name="Palm". Any subsequent calls with that
       name will ignore the second argument, even if it includes different values.

       .lookup() also accepts keyword arguments, which are passed through to the insert() method and can be used
       to influence the shape of the created table. Supported parameters are:

       • pk - which defaults to idforeign_keyscolumn_ordernot_nulldefaultsextractsconversionscolumnsstrict

   Populating lookup tables automatically during insert/upsert
       A more efficient way to work with lookup tables is to define them using the extracts= parameter, which is
       accepted by .insert(), .upsert(), .insert_all(), .upsert_all() and by the .table(...) factory function.

       extracts= specifies columns which should be "extracted" out into a separate lookup table during the  data
       insertion.

       It  can  be  either a list of column names, in which case the extracted table names will match the column
       names exactly, or it can be a dictionary mapping column names to the desired name of the extracted table.

       To extract the species column out to a separate Species table, you can do this:

          # Using the table factory
          trees = db.table("Trees", extracts={"species": "Species"})
          trees.insert({
              "latitude": 49.1265976,
              "longitude": 2.5496218,
              "species": "Common Juniper"
          })

          # If you want the table to be called 'species', you can do this:
          trees = db.table("Trees", extracts=["species"])

          # Using .insert() directly
          db["Trees"].insert({
              "latitude": 49.1265976,
              "longitude": 2.5496218,
              "species": "Common Juniper"
          }, extracts={"species": "Species"})

   Working with many-to-many relationships
       sqlite-utils includes a shortcut for creating records using many-to-many relationships in the form of the
       table.m2m(...) method.

       Here's how to create two new records and connect them via a many-to-many table in a single line of code:

          db["dogs"].insert({"id": 1, "name": "Cleo"}, pk="id").m2m(
              "humans", {"id": 1, "name": "Natalie"}, pk="id"
          )

       Running this example actually creates three tables: dogs, humans and a many-to-many dogs_humans table. It
       will insert a record into each of those tables.

       The .m2m() method executes against the last record that was affected by  .insert()  or  .update()  -  the
       record  identified  by  the  table.last_pk  property. To execute .m2m() against a specific record you can
       first select it by passing its primary key to .update():

          db["dogs"].update(1).m2m(
              "humans", {"id": 2, "name": "Simon"}, pk="id"
          )

       The first argument to .m2m() can be either the name of a table as a string or it can be the table  object
       itself.

       The  second argument can be a single dictionary record or a list of dictionaries. These dictionaries will
       be passed to .upsert() against the specified table.

       Here's alternative code that creates the dog record and adds two people to it:

          db = Database(memory=True)
          dogs = db.table("dogs", pk="id")
          humans = db.table("humans", pk="id")
          dogs.insert({"id": 1, "name": "Cleo"}).m2m(
              humans, [
                  {"id": 1, "name": "Natalie"},
                  {"id": 2, "name": "Simon"}
              ]
          )

       The method will attempt to find an existing many-to-many table by looking for a table  that  has  foreign
       key relationships against both of the tables in the relationship.

       If  it cannot find such a table, it will create a new one using the names of the two tables - dogs_humans
       in this example. You can customize the name of this table using the m2m_table= argument to .m2m().

       It it finds multiple candidate tables with foreign keys to both of the specified tables it will  raise  a
       sqlite_utils.db.NoObviousTable  exception. You can avoid this error by specifying the correct table using
       m2m_table=.

       The .m2m() method also takes an optional pk= argument to specify the primary key that should be  used  if
       the  table  is  created,  and  an  optional alter=True argument to specify that any missing columns of an
       existing table should be added if they are needed.

   Using m2m and lookup tables together
       You can work with (or create) lookup tables as part of a call to .m2m() using the lookup= parameter. This
       accepts  the  same argument as table.lookup() does - a dictionary of values that should be used to lookup
       or create a row in the lookup table.

       This example creates a dogs table, populates it, creates a characteristics table, populates that and sets
       up  a  many-to-many  relationship  between  the  two.  It  chains  .m2m()  twice to create two associated
       characteristics:

          db = Database(memory=True)
          dogs = db.table("dogs", pk="id")
          dogs.insert({"id": 1, "name": "Cleo"}).m2m(
              "characteristics", lookup={
                  "name": "Playful"
              }
          ).m2m(
              "characteristics", lookup={
                  "name": "Opinionated"
              }
          )

       You can inspect the database to see the results like this:

          >>> db.table_names()
          ['dogs', 'characteristics', 'characteristics_dogs']
          >>> list(db["dogs"].rows)
          [{'id': 1, 'name': 'Cleo'}]
          >>> list(db["characteristics"].rows)
          [{'id': 1, 'name': 'Playful'}, {'id': 2, 'name': 'Opinionated'}]
          >>> list(db["characteristics_dogs"].rows)
          [{'characteristics_id': 1, 'dogs_id': 1}, {'characteristics_id': 2, 'dogs_id': 1}]
          >>> print(db["characteristics_dogs"].schema)
          CREATE TABLE [characteristics_dogs] (
              [characteristics_id] INTEGER REFERENCES [characteristics]([id]),
              [dogs_id] INTEGER REFERENCES [dogs]([id]),
              PRIMARY KEY ([characteristics_id], [dogs_id])
          )

   Analyzing a column
       The table.analyze_column(column) method is used by the analyze-tables CLI command.

       It takes the following arguments and options:

       column - required
              The name of the column to analyze

       common_limit
              The number of most common values to return. Defaults to 10.

       value_truncate
              If set to an integer, values longer than this will be truncated to this length. Defaults to None.

       most_common
              If set to False, the most_common field of the returned ColumnDetails will be set to None. Defaults
              to True.

       least_common
              If  set  to  False,  the  least_common  field  of  the returned ColumnDetails will be set to None.
              Defaults to True.

       And returns a ColumnDetails named tuple with the following fields:

       table  The name of the table

       column The name of the column

       total_rows
              The total number of rows in the table

       num_null
              The number of rows for which this column is null

       num_blank
              The number of rows for which this column is blank (the empty string)

       num_distinct
              The number of distinct values in this column

       most_common
              The N most common values as a list of (value, count)  tuples`,  or  None  if  the  table  consists
              entirely of distinct values

       least_common
              The  N  least  common values as a list of (value, count) tuples`, or None if the table is entirely
              distinct or if the number of distinct values is less than N (since they  will  already  have  been
              returned in most_common)

   Adding columns
       You can add a new column to a table using the .add_column(col_name, col_type) method:

          db["dogs"].add_column("instagram", str)
          db["dogs"].add_column("weight", float)
          db["dogs"].add_column("dob", datetime.date)
          db["dogs"].add_column("image", "BLOB")
          db["dogs"].add_column("website") # str by default

       You  can  specify  the col_type argument either using a SQLite type as a string, or by directly passing a
       Python type e.g. str or float.

       The col_type is optional - if you omit it the type of TEXT will be used.

       SQLite types you can specify are "TEXT", "INTEGER", "FLOAT" or "BLOB".

       If you pass a Python type, it will be mapped to SQLite types as shown here:

          float: "FLOAT"
          int: "INTEGER"
          bool: "INTEGER"
          str: "TEXT"
          bytes: "BLOB"
          datetime.datetime: "TEXT"
          datetime.date: "TEXT"
          datetime.time: "TEXT"
          datetime.timedelta: "TEXT"

          # If numpy is installed
          np.int8: "INTEGER"
          np.int16: "INTEGER"
          np.int32: "INTEGER"
          np.int64: "INTEGER"
          np.uint8: "INTEGER"
          np.uint16: "INTEGER"
          np.uint32: "INTEGER"
          np.uint64: "INTEGER"
          np.float16: "FLOAT"
          np.float32: "FLOAT"
          np.float64: "FLOAT"

       You can also add a column that is a foreign key reference to another table using the fk parameter:

          db["dogs"].add_column("species_id", fk="species")

       This will automatically detect the name of the primary key on the species table and  use  that  (and  its
       type) for the new column.

       You can explicitly specify the column you wish to reference using fk_col:

          db["dogs"].add_column("species_id", fk="species", fk_col="ref")

       You can set a NOT NULL DEFAULT 'x' constraint on the new column using not_null_default:

          db["dogs"].add_column("friends_count", int, not_null_default=0)

   Adding columns automatically on insert/update
       You  can  insert or update data that includes new columns and have the table automatically altered to fit
       the new schema using the alter=True argument. This can be passed to all  four  of  .insert(),  .upsert(),
       .insert_all()  and .upsert_all(), or it can be passed to db.table(table_name, alter=True) to enable it by
       default for all method calls against that table instance.

          db["new_table"].insert({"name": "Gareth"})
          # This will throw an exception:
          db["new_table"].insert({"name": "Gareth", "age": 32})
          # This will succeed and add a new "age" integer column:
          db["new_table"].insert({"name": "Gareth", "age": 32}, alter=True)
          # You can see confirm the new column like so:
          print(db["new_table"].columns_dict)
          # Outputs this:
          # {'name': <class 'str'>, 'age': <class 'int'>}

          # This works too:
          new_table = db.table("new_table", alter=True)
          new_table.insert({"name": "Gareth", "age": 32, "shoe_size": 11})

   Adding foreign key constraints
       The SQLite ALTER TABLE statement doesn't have the ability to add foreign key references  to  an  existing
       column.

       The add_foreign_key() method here is a convenient wrapper around table.transform().

       It's   also   possible   to   add  foreign  keys  by  directly  updating  the  sqlite_master  table.  The
       sqlite-utils-fast-fks plugin implements this pattern, using code  that  was  included  with  sqlite-utils
       prior to version 3.35.

       Here's an example of this mechanism in action:

          db["authors"].insert_all([
              {"id": 1, "name": "Sally"},
              {"id": 2, "name": "Asheesh"}
          ], pk="id")
          db["books"].insert_all([
              {"title": "Hedgehogs of the world", "author_id": 1},
              {"title": "How to train your wolf", "author_id": 2},
          ])
          db["books"].add_foreign_key("author_id", "authors", "id")

       The  table.add_foreign_key(column,  other_table,  other_column)  method takes the name of the column, the
       table that is being referenced and the key column within that other table. If you omit  the  other_column
       argument the primary key from that table will be used automatically. If you omit the other_table argument
       the table will be guessed based on some simple rules:

       • If the column is of format author_id, look for tables called author or authors

       • If the column does not end in _id, try looking for a table with the exact name of the  column  or  that
         name with an added s

       This method first checks that the specified foreign key references tables and columns that exist and does
       not clash with an existing foreign key. It will raise a  sqlite_utils.db.AlterError  exception  if  these
       checks fail.

       To ignore the case where the key already exists, use ignore=True:

          db["books"].add_foreign_key("author_id", "authors", "id", ignore=True)

   Adding multiple foreign key constraints at once
       You  can use db.add_foreign_keys(...) to add multiple foreign keys in one go. This method takes a list of
       four-tuples, each one specifying a table, column, other_table and other_column.

       Here's an example adding two foreign keys at once:

          db.add_foreign_keys([
              ("dogs", "breed_id", "breeds", "id"),
              ("dogs", "home_town_id", "towns", "id")
          ])

       This method runs the same checks as .add_foreign_keys()  and  will  raise  sqlite_utils.db.AlterError  if
       those checks fail.

   Adding indexes for all foreign keys
       If  you  want to ensure that every foreign key column in your database has a corresponding index, you can
       do so like this:

          db.index_foreign_keys()

   Dropping a table or view
       You can drop a table or view using the .drop() method:

          db["my_table"].drop()

       Pass ignore=True if you want to ignore the error caused by the table or view not existing.

          db["my_table"].drop(ignore=True)

   Transforming a table
       The SQLite ALTER TABLE statement is limited. It can add and drop columns and rename tables, but it cannot
       change column types, change NOT NULL status or change the primary key for a table.

       The  table.transform()  method can do all of these things, by implementing a multi-step pattern described
       in the SQLite documentation:

       1. Start a transaction

       2. CREATE TABLE tablename_new_x123 with the required changes

       3. Copy the old data into the new table using INSERT INTO tablename_new_x123 SELECT * FROM tablename;

       4. DROP TABLE tablename;

       5. ALTER TABLE tablename_new_x123 RENAME TO tablename;

       6. Commit the transaction

       The .transform() method takes a number of parameters, all of which are optional.

       As a bonus, calling .transform() will reformat the schema for the table that is stored in SQLite to  make
       it more readable. This works even if you call it without any arguments.

       To  keep  the  original  table around instead of dropping it, pass the keep_table= option and specify the
       name of the table you would like it to be renamed to:

          table.transform(types={"age": int}, keep_table="original_table")

   Altering column types
       To alter the type of a column, use the types= argument:

          # Convert the 'age' column to an integer, and 'weight' to a float
          table.transform(types={"age": int, "weight": float})

       See Adding columns for a list of available types.

   Renaming columns
       The rename= parameter can rename columns:

          # Rename 'age' to 'initial_age':
          table.transform(rename={"age": "initial_age"})

   Dropping columns
       To drop columns, pass them in the drop= set:

          # Drop the 'age' column:
          table.transform(drop={"age"})

   Changing primary keys
       To change the primary key for a table, use pk=. This can be passed a single column for a regular  primary
       key,  or a tuple of columns to create a compound primary key. Passing pk=None will remove the primary key
       and convert the table into a rowid table.

          # Make `user_id` the new primary key
          table.transform(pk="user_id")

   Changing not null status
       You can change the NOT NULL status of columns by using not_null=. You can pass this a set of  columns  to
       make those columns NOT NULL:

          # Make the 'age' and 'weight' columns NOT NULL
          table.transform(not_null={"age", "weight"})

       If  you  want  to  take  existing NOT NULL columns and change them to allow null values, you can do so by
       passing a dictionary of true/false values instead:

          # 'age' is NOT NULL but we want to allow NULL:
          table.transform(not_null={"age": False})

          # Make age allow NULL and switch weight to being NOT NULL:
          table.transform(not_null={"age": False, "weight": True})

   Altering column defaults
       The defaults= parameter can be used to set or change the defaults for different columns:

          # Set default age to 1:
          table.transform(defaults={"age": 1})

          # Now remove the default from that column:
          table.transform(defaults={"age": None})

   Changing column order
       The column_order= parameter can be used to change the order of the columns. If you pass the  names  of  a
       subset  of  the  columns  those will go first and columns you omitted will appear in their existing order
       after them.

          # Change column order
          table.transform(column_order=("name", "age", "id")

   Adding foreign key constraints
       You can add one or more foreign key constraints to a table using the add_foreign_keys= parameter:

          db["places"].transform(
              add_foreign_keys=(
                  ("country", "country", "id"),
                  ("continent", "continent", "id")
              )
          )

       This accepts the same arguments described in specifying foreign keys - so you can specify them as a  full
       tuple  of  (column,  other_table, other_column), or you can take a shortcut and pass just the name of the
       column, provided the table can be automatically derived from the column name:

          db["places"].transform(
              add_foreign_keys=(("country", "continent"))
          )

   Replacing foreign key constraints
       The foreign_keys= parameter is similar to  to add_foreign_keys= but can be be used to replace all foreign
       key constraints on a table, dropping any that are not explicitly mentioned:

          db["places"].transform(
              foreign_keys=(
                  ("continent", "continent", "id"),
              )
          )

   Dropping foreign key constraints
       You can use .transform() to remove foreign key constraints from a table.

       This  example  drops  two  foreign  keys  -  the  one  from places.country to country.id and the one from
       places.continent to continent.id:

          db["places"].transform(
              drop_foreign_keys=("country", "continent")
          )

   Custom transformations with .transform_sql()
       The .transform() method can handle most cases, but it does not automatically upgrade  indexes,  views  or
       triggers associated with the table that is being transformed.

       If you want to do something more advanced, you can call the table.transform_sql(...) method with the same
       arguments that you would have passed to table.transform(...).

       This method will return a list of SQL statements that should be executed to implement the change. You can
       then make modifications to that SQL - or add additional SQL statements - before executing it yourself.

   Extracting columns into a separate table
       The table.extract() method can be used to extract specified columns into a separate table.

       Imagine a Trees table that looks like this:

                                             ┌───┬──────────────┬─────────┐
                                             │id │ TreeAddress  │ Species │
                                             ├───┼──────────────┼─────────┤
                                             │1  │ 52 Vine St   │ Palm    │
                                             ├───┼──────────────┼─────────┤
                                             │2  │ 12 Draft St  │ Oak     │
                                             ├───┼──────────────┼─────────┤
                                             │3  │ 51 Dark Ave  │ Palm    │
                                             ├───┼──────────────┼─────────┤
                                             │4  │ 1252 Left St │ Palm    │
                                             └───┴──────────────┴─────────┘

       The  Species  column contains duplicate values. This database could be improved by extracting that column
       out into a separate Species table and pointing to it using a foreign key column.

       The schema of the above table is:

          CREATE TABLE [Trees] (
              [id] INTEGER PRIMARY KEY,
              [TreeAddress] TEXT,
              [Species] TEXT
          )

       Here's how to extract the Species column using .extract():

          db["Trees"].extract("Species")

       After running this code the table schema now looks like this:

          CREATE TABLE "Trees" (
              [id] INTEGER PRIMARY KEY,
              [TreeAddress] TEXT,
              [Species_id] INTEGER,
              FOREIGN KEY(Species_id) REFERENCES Species(id)
          )

       A new Species table will have been created with the following schema:

          CREATE TABLE [Species] (
              [id] INTEGER PRIMARY KEY,
              [Species] TEXT
          )

       The .extract() method defaults to creating a table with the same name as the column that  was  extracted,
       and adding a foreign key column called tablename_id.

       You  can  specify  a custom table name using table=, and a custom foreign key name using fk_column=. This
       example creates a table called tree_species and a foreign key column called tree_species_id:

          db["Trees"].extract("Species", table="tree_species", fk_column="tree_species_id")

       The resulting schema looks like this:

          CREATE TABLE "Trees" (
              [id] INTEGER PRIMARY KEY,
              [TreeAddress] TEXT,
              [tree_species_id] INTEGER,
              FOREIGN KEY(tree_species_id) REFERENCES tree_species(id)
          )

          CREATE TABLE [tree_species] (
              [id] INTEGER PRIMARY KEY,
              [Species] TEXT
          )

       You can also extract multiple columns into the same external table. Say for example you have a table like
       this:

                                     ┌───┬──────────────┬────────────┬───────────┐
                                     │id │ TreeAddress  │ CommonName │ LatinName │
                                     ├───┼──────────────┼────────────┼───────────┤
                                     │1  │ 52 Vine St   │ Palm       │ Arecaceae │
                                     ├───┼──────────────┼────────────┼───────────┤
                                     │2  │ 12 Draft St  │ Oak        │ Quercus   │
                                     ├───┼──────────────┼────────────┼───────────┤
                                     │3  │ 51 Dark Ave  │ Palm       │ Arecaceae │
                                     ├───┼──────────────┼────────────┼───────────┤
                                     │4  │ 1252 Left St │ Palm       │ Arecaceae │
                                     └───┴──────────────┴────────────┴───────────┘

       You can pass ["CommonName", "LatinName"] to .extract() to extract both of those columns:

          db["Trees"].extract(["CommonName", "LatinName"])

       This produces the following schema:

          CREATE TABLE "Trees" (
              [id] INTEGER PRIMARY KEY,
              [TreeAddress] TEXT,
              [CommonName_LatinName_id] INTEGER,
              FOREIGN KEY(CommonName_LatinName_id) REFERENCES CommonName_LatinName(id)
          )
          CREATE TABLE [CommonName_LatinName] (
              [id] INTEGER PRIMARY KEY,
              [CommonName] TEXT,
              [LatinName] TEXT
          )

       The  table  name  CommonName_LatinName  is  derived  from  the  extract  columns.  You can use table= and
       fk_column= to specify custom names like this:

          db["Trees"].extract(["CommonName", "LatinName"], table="Species", fk_column="species_id")

       This produces the following schema:

          CREATE TABLE "Trees" (
              [id] INTEGER PRIMARY KEY,
              [TreeAddress] TEXT,
              [species_id] INTEGER,
              FOREIGN KEY(species_id) REFERENCES Species(id)
          )
          CREATE TABLE [Species] (
              [id] INTEGER PRIMARY KEY,
              [CommonName] TEXT,
              [LatinName] TEXT
          )

       You can use the rename= argument to rename columns in the lookup table. To create a  Species  table  with
       columns called name and latin you can do this:

          db["Trees"].extract(
              ["CommonName", "LatinName"],
              table="Species",
              fk_column="species_id",
              rename={"CommonName": "name", "LatinName": "latin"}
          )

       This produces a lookup table like so:

          CREATE TABLE [Species] (
              [id] INTEGER PRIMARY KEY,
              [name] TEXT,
              [latin] TEXT
          )

   Setting an ID based on the hash of the row contents
       Sometimes  you  will  find yourself working with a dataset that includes rows that do not have a provided
       obvious ID, but where you would like to assign one so that you can later upsert into that  table  without
       creating duplicate records.

       In  these  cases,  a  useful  technique  is to create an ID that is derived from the sha1 hash of the row
       contents.

       sqlite-utils can do this for you using the hash_id= option. For example:

          db = sqlite_utils.Database("dogs.db")
          db["dogs"].upsert({"name": "Cleo", "twitter": "cleopaws"}, hash_id="id")
          print(list(db["dogs]))

       Outputs:

          [{'id': 'f501265970505d9825d8d9f590bfab3519fb20b1', 'name': 'Cleo', 'twitter': 'cleopaws'}]

       If you are going to use that ID straight away, you can access it using last_pk:

          dog_id = db["dogs"].upsert({
              "name": "Cleo",
              "twitter": "cleopaws"
          }, hash_id="id").last_pk
          # dog_id is now "f501265970505d9825d8d9f590bfab3519fb20b1"

       The hash will be created using all of the column values. To create a hash using a subset of the  columns,
       pass the hash_id_columns= parameter:

          db["dogs"].upsert(
              {"name": "Cleo", "twitter": "cleopaws", "age": 7},
              hash_id_columns=("name", "twitter")
          )

       The  hash_id= parameter is optional if you specify hash_id_columns= - it will default to putting the hash
       in a column called id.

       You can manually calculate these hashes using the hash_record(record, keys=...) utility function.

   Creating views
       The .create_view() method on the database class can be used to create a view:

          db.create_view("good_dogs", """
              select * from dogs where is_good_dog = 1
          """)

       This will raise a sqlite_utils.utils.OperationalError if a view with that name already exists.

       You can pass ignore=True to silently ignore an existing view and do nothing, or replace=True  to  replace
       an existing view with a new definition if your select statement differs from the current view:

          db.create_view("good_dogs", """
              select * from dogs where is_good_dog = 1
          """, replace=True)

   Storing JSON
       SQLite  has  excellent JSON support, and sqlite-utils can help you take advantage of this: if you attempt
       to insert a value that can be represented as a JSON list or dictionary,  sqlite-utils  will  create  TEXT
       column  and  store  your  data  as  serialized  JSON.  This means you can quickly store even complex data
       structures in SQLite and query them using JSON features.

       For example:

          db["niche_museums"].insert({
              "name": "The Bigfoot Discovery Museum",
              "url": "http://bigfootdiscoveryproject.com/"
              "hours": {
                  "Monday": [11, 18],
                  "Wednesday": [11, 18],
                  "Thursday": [11, 18],
                  "Friday": [11, 18],
                  "Saturday": [11, 18],
                  "Sunday": [11, 18]
              },
              "address": {
                  "streetAddress": "5497 Highway 9",
                  "addressLocality": "Felton, CA",
                  "postalCode": "95018"
              }
          })
          db.execute("""
              select json_extract(address, '$.addressLocality')
              from niche_museums
          """).fetchall()
          # Returns [('Felton, CA',)]

   Converting column values using SQL functions
       Sometimes it can be useful to run values through a SQL function prior to inserting them. A simple example
       might be converting a value to upper case while it is being inserted.

       The  conversions={...}  parameter  can  be  used  to specify custom SQL to be used as part of a INSERT or
       UPDATE SQL statement.

       You can specify an upper case conversion for a specific column like so:

          db["example"].insert({
              "name": "The Bigfoot Discovery Museum"
          }, conversions={"name": "upper(?)"})

          # list(db["example"].rows) now returns:
          # [{'name': 'THE BIGFOOT DISCOVERY MUSEUM'}]

       The dictionary key is the column name to be converted. The value is the SQL fragment to  use,  with  a  ?
       placeholder for the original value.

       A  more  useful  example:  if  you  are  working  with SpatiaLite you may find yourself wanting to create
       geometry values from a WKT value. Code to do that could look like this:

          import sqlite3
          import sqlite_utils
          from shapely.geometry import shape
          import httpx

          db = sqlite_utils.Database("places.db")
          # Initialize SpatiaLite
          db.init_spatialite()
          # Use sqlite-utils to create a places table
          places = db["places"].create({"id": int, "name": str})

          # Add a SpatiaLite 'geometry' column
          places.add_geometry_column("geometry", "MULTIPOLYGON")

          # Fetch some GeoJSON from Who's On First:
          geojson = httpx.get(
              "https://raw.githubusercontent.com/whosonfirst-data/"
              "whosonfirst-data-admin-gb/master/data/404/227/475/404227475.geojson"
          ).json()

          # Convert to "Well Known Text" format using shapely
          wkt = shape(geojson["geometry"]).wkt

          # Insert the record, converting the WKT to a SpatiaLite geometry:
          db["places"].insert(
              {"name": "Wales", "geometry": wkt},
              conversions={"geometry": "GeomFromText(?, 4326)"},
          )

       This example uses gographical data from Who's On First and  depends  on  the  Shapely  and  HTTPX  Python
       libraries.

   Checking the SQLite version
       The  db.sqlite_version  property  returns a tuple of integers representing the version of SQLite used for
       that database object:

          >>> db.sqlite_version
          (3, 36, 0)

   Dumping the database to SQL
       The db.iterdump() method returns a sequence of SQL strings representing a complete dump of the  database.
       Use it like this:

          full_sql = "".join(db.iterdump())

       This uses the sqlite3.Connection.iterdump() method.

       If  you  are  using  pysqlite3  or  sqlean.py  the  underlying  method may be missing. If you install the
       sqlite-dump package then the db.iterdump() method will use that implementation instead:

          pip install sqlite-dump

   Introspecting tables and views
       If you have loaded an existing table or view, you can use introspection to find out more about it:

          >>> db["PlantType"]
          <Table PlantType (id, value)>

   .exists()
       The .exists() method can be used to find out if a table exists or not:

          >>> db["PlantType"].exists()
          True
          >>> db["PlantType2"].exists()
          False

   .count
       The .count property shows the current number of rows (select count(*) from table):

          >>> db["PlantType"].count
          3
          >>> db["Street_Tree_List"].count
          189144

       This property will take advantage of Cached table counts using triggers if the use_counts_table  property
       is  set  on the database. You can avoid that optimization entirely by calling table.count_where() instead
       of accessing the property.

   .columns
       The .columns property shows the columns in the table or view. It returns  a  list  of  Column(cid,  name,
       type, notnull, default_value, is_pk) named tuples.

          >>> db["PlantType"].columns
          [Column(cid=0, name='id', type='INTEGER', notnull=0, default_value=None, is_pk=1),
           Column(cid=1, name='value', type='TEXT', notnull=0, default_value=None, is_pk=0)]

   .columns_dict
       The  .columns_dict  property  returns  a dictionary version of the columns with just the names and Python
       types:

          >>> db["PlantType"].columns_dict
          {'id': <class 'int'>, 'value': <class 'str'>}

   .default_values
       The .default_values property returns a dictionary of default values for each column that has a default:

          >>> db["table_with_defaults"].default_values
          {'score': 5}

   .pks
       The .pks property returns a list of strings naming the primary key columns for the table:

          >>> db["PlantType"].pks
          ['id']

       If a table has no primary keys but is a rowid table, this property will return ['rowid'].

   .use_rowid
       Almost all SQLite tables have a rowid column, but a table with no explicitly defined  primary  keys  must
       use  that rowid as the primary key for identifying individual rows. The .use_rowid property checks to see
       if a table needs to use the rowid in this way - it returns True if the table has  no  explicitly  defined
       primary keys and False otherwise.

       >>> db["PlantType"].use_rowid
       False

   .foreign_keys
       The  .foreign_keys  property  returns  any  foreign  key  relationships  for  the  table,  as  a  list of
       ForeignKey(table, column, other_table, other_column) named tuples. It is not available on views.

          >>> db["Street_Tree_List"].foreign_keys
          [ForeignKey(table='Street_Tree_List', column='qLegalStatus', other_table='qLegalStatus', other_column='id'),
           ForeignKey(table='Street_Tree_List', column='qCareAssistant', other_table='qCareAssistant', other_column='id'),
           ForeignKey(table='Street_Tree_List', column='qSiteInfo', other_table='qSiteInfo', other_column='id'),
           ForeignKey(table='Street_Tree_List', column='qSpecies', other_table='qSpecies', other_column='id'),
           ForeignKey(table='Street_Tree_List', column='qCaretaker', other_table='qCaretaker', other_column='id'),
           ForeignKey(table='Street_Tree_List', column='PlantType', other_table='PlantType', other_column='id')]

   .schema
       The .schema property outputs the table's schema as a SQL string:

          >>> print(db["Street_Tree_List"].schema)
          CREATE TABLE "Street_Tree_List" (
          "TreeID" INTEGER,
            "qLegalStatus" INTEGER,
            "qSpecies" INTEGER,
            "qAddress" TEXT,
            "SiteOrder" INTEGER,
            "qSiteInfo" INTEGER,
            "PlantType" INTEGER,
            "qCaretaker" INTEGER,
            "qCareAssistant" INTEGER,
            "PlantDate" TEXT,
            "DBH" INTEGER,
            "PlotSize" TEXT,
            "PermitNotes" TEXT,
            "XCoord" REAL,
            "YCoord" REAL,
            "Latitude" REAL,
            "Longitude" REAL,
            "Location" TEXT
          ,
          FOREIGN KEY ("PlantType") REFERENCES [PlantType](id),
              FOREIGN KEY ("qCaretaker") REFERENCES [qCaretaker](id),
              FOREIGN KEY ("qSpecies") REFERENCES [qSpecies](id),
              FOREIGN KEY ("qSiteInfo") REFERENCES [qSiteInfo](id),
              FOREIGN KEY ("qCareAssistant") REFERENCES [qCareAssistant](id),
              FOREIGN KEY ("qLegalStatus") REFERENCES [qLegalStatus](id))

   .strict
       The .strict property identifies if the table is a SQLite STRICT table.

          >>> db["ny_times_us_counties"].strict
          False

   .indexes
       The .indexes property returns all indexes created for a table, as a  list  of  Index(seq,  name,  unique,
       origin, partial, columns) named tuples. It is not available on views.

          >>> db["Street_Tree_List"].indexes
          [Index(seq=0, name='"Street_Tree_List_qLegalStatus"', unique=0, origin='c', partial=0, columns=['qLegalStatus']),
           Index(seq=1, name='"Street_Tree_List_qCareAssistant"', unique=0, origin='c', partial=0, columns=['qCareAssistant']),
           Index(seq=2, name='"Street_Tree_List_qSiteInfo"', unique=0, origin='c', partial=0, columns=['qSiteInfo']),
           Index(seq=3, name='"Street_Tree_List_qSpecies"', unique=0, origin='c', partial=0, columns=['qSpecies']),
           Index(seq=4, name='"Street_Tree_List_qCaretaker"', unique=0, origin='c', partial=0, columns=['qCaretaker']),
           Index(seq=5, name='"Street_Tree_List_PlantType"', unique=0, origin='c', partial=0, columns=['PlantType'])]

   .xindexes
       The .xindexes property returns more detailed information about the indexes on the table, using the SQLite
       PRAGMA index_xinfo() mechanism. It returns a list of XIndex(name, columns) named tuples, where columns is
       a list of XIndexColumn(seqno, cid, name, desc, coll, key) named tuples.

          >>> db["ny_times_us_counties"].xindexes
          [
              XIndex(
                  name='idx_ny_times_us_counties_date',
                  columns=[
                      XIndexColumn(seqno=0, cid=0, name='date', desc=1, coll='BINARY', key=1),
                      XIndexColumn(seqno=1, cid=-1, name=None, desc=0, coll='BINARY', key=0)
                  ]
              ),
              XIndex(
                  name='idx_ny_times_us_counties_fips',
                  columns=[
                      XIndexColumn(seqno=0, cid=3, name='fips', desc=0, coll='BINARY', key=1),
                      XIndexColumn(seqno=1, cid=-1, name=None, desc=0, coll='BINARY', key=0)
                  ]
              )
          ]

   .triggers
       The  .triggers  property  lists  database triggers. It can be used on both database and table objects. It
       returns a list of Trigger(name, table, sql) named tuples.

          >>> db["authors"].triggers
          [Trigger(name='authors_ai', table='authors', sql='CREATE TRIGGER [authors_ai] AFTER INSERT...'),
           Trigger(name='authors_ad', table='authors', sql="CREATE TRIGGER [authors_ad] AFTER DELETE..."),
           Trigger(name='authors_au', table='authors', sql="CREATE TRIGGER [authors_au] AFTER UPDATE")]
          >>> db.triggers
          ... similar output to db["authors"].triggers

   .triggers_dict
       The .triggers_dict property returns the triggers for that table as a dictionary mapping  their  names  to
       their SQL definitions.

          >>> db["authors"].triggers_dict
          {'authors_ai': 'CREATE TRIGGER [authors_ai] AFTER INSERT...',
           'authors_ad': 'CREATE TRIGGER [authors_ad] AFTER DELETE...',
           'authors_au': 'CREATE TRIGGER [authors_au] AFTER UPDATE'}

       The same property exists on the database, and will return all triggers across all tables:

          >>> db.triggers_dict
          {'authors_ai': 'CREATE TRIGGER [authors_ai] AFTER INSERT...',
           'authors_ad': 'CREATE TRIGGER [authors_ad] AFTER DELETE...',
           'authors_au': 'CREATE TRIGGER [authors_au] AFTER UPDATE'}

   .detect_fts()
       The  detect_fts()  method  returns the associated SQLite FTS table name, if one exists for this table. If
       the table has not been configured for full-text search it returns None.

          >>> db["authors"].detect_fts()
          "authors_fts"

   .virtual_table_using
       The .virtual_table_using property reveals if a table is a virtual table.  It  returns  None  for  regular
       tables and the upper case version of the type of virtual table otherwise. For example:

          >>> db["authors"].enable_fts(["name"])
          >>> db["authors_fts"].virtual_table_using
          "FTS5"

   .has_counts_triggers
       The  .has_counts_triggers  property  shows  if  a  table has been configured with triggers for updating a
       _counts table, as described in Cached table counts using triggers.

          >>> db["authors"].has_counts_triggers
          False
          >>> db["authors"].enable_counts()
          >>> db["authors"].has_counts_triggers
          True

   db.supports_strict
       This property on the database object returns True if the available SQLite version supports  STRICT  mode,
       which was added in SQLite 3.37.0 (on 2021-11-27).

          >>> db.supports_strict
          True

   Full-text search
       SQLite includes bundled extensions that implement powerful full-text search.

   Enabling full-text search for a table
       You can enable full-text search on a table using .enable_fts(columns):

          db["dogs"].enable_fts(["name", "twitter"])

       You can then run searches using the .search() method:

          rows = list(db["dogs"].search("cleo"))

       This  method  returns  a  generator  that can be looped over to get dictionaries for each row, similar to
       Listing rows.

       If you insert additional records into the  table  you  will  need  to  refresh  the  search  index  using
       populate_fts():

          db["dogs"].insert({
              "id": 2,
              "name": "Marnie",
              "twitter": "MarnieTheDog",
              "age": 16,
              "is_good_dog": True,
          }, pk="id")
          db["dogs"].populate_fts(["name", "twitter"])

       A  better  solution is to use database triggers. You can set up database triggers to automatically update
       the full-text index using create_triggers=True:

          db["dogs"].enable_fts(["name", "twitter"], create_triggers=True)

       .enable_fts() defaults to using FTS5. If you wish to use FTS4 instead, use the following:

          db["dogs"].enable_fts(["name", "twitter"], fts_version="FTS4")

       You can customize the tokenizer configured for the table using the tokenize= parameter. For  example,  to
       enable Porter stemming, where English words like "running" will match stemmed alternatives such as "run",
       use tokenize="porter":

          db["articles"].enable_fts(["headline", "body"], tokenize="porter")

       The SQLite documentation has more on FTS5 tokenizers and FTS4 tokenizers. porter is a  valid  option  for
       both.

       If  you  attempt  to configure a FTS table where one already exists, a sqlite3.OperationalError exception
       will be raised.

       You can replace the existing table with a new configuration using replace=True:

          db["articles"].enable_fts(["headline"], tokenize="porter", replace=True)

       This will have no effect if the FTS table already exists, otherwise it will drop and recreate  the  table
       with the new settings. This takes into consideration the columns, the tokenizer, the FTS version used and
       whether or not the table has triggers.

       To remove the FTS tables and triggers you created, use the disable_fts() table method:

          db["dogs"].disable_fts()

   Quoting characters for use in search
       SQLite supports advanced search query syntax. In some situations you may  wish  to  disable  this,  since
       characters  such  as . may have special meaning that causes errors when searching for strings provided by
       your users.

       The db.quote_fts(query) method returns the query with SQLite full-text search quoting applied  such  that
       the query should be safe to use in a search:

          db.quote_fts("Search term.")
          # Returns: '"Search" "term."'

   Searching with table.search()
       The  table.search(q) method returns a generator over Python dictionaries representing rows that match the
       search phrase q, ordered by relevance with the most relevant results first.

          for article in db["articles"].search("jquery"):
              print(article)

       The .search() method also accepts the following optional parameters:

       order_by string
              The column to sort by. Defaults to relevance score. Can optionally  include  a  desc,  e.g.  rowid
              desc.

       columns array of strings
              Columns to return. Defaults to all columns.

       limit integer
              Number of results to return. Defaults to all results.

       offset integer
              Offset to use along side the limit parameter.

       where string
              Extra SQL fragment for the WHERE clause

       where_args dictionary
              Arguments to use for :param placeholders in the extra WHERE clause

       quote bool
              Apply  FTS quoting rules to the search query, disabling advanced query syntax in a way that avoids
              surprising errors.

       To return just the title and published columns for three matches for "dog" where the id is  greater  than
       10 ordered by published with the most recent first, use the following:

          for article in db["articles"].search(
              "dog",
              order_by="published desc",
              limit=3,
              where="id > :min_id",
              where_args={"min_id": 10},
              columns=["title", "published"]
          ):
              print(article)

   Building SQL queries with table.search_sql()
       You  can  generate  the SQL query that would be used for a search using the table.search_sql() method. It
       takes the same arguments as table.search(), with the exception of the search  query  and  the  where_args
       parameter, since those should be provided when the returned SQL is executed.

          print(db["articles"].search_sql(columns=["title", "author"]))

       Outputs:

          with original as (
              select
                  rowid,
                  [title],
                  [author]
              from [articles]
          )
          select
              [original].[title],
              [original].[author]
          from
              [original]
              join [articles_fts] on [original].rowid = [articles_fts].rowid
          where
              [articles_fts] match :query
          order by
              [articles_fts].rank

       This  method  detects  if  a  SQLite table uses FTS4 or FTS5, and outputs the correct SQL for ordering by
       relevance depending on the search type.

       The FTS4 output looks something like this:

          with original as (
              select
                  rowid,
                  [title],
                  [author]
              from [articles]
          )
          select
              [original].[title],
              [original].[author]
          from
              [original]
              join [articles_fts] on [original].rowid = [articles_fts].rowid
          where
              [articles_fts] match :query
          order by
              rank_bm25(matchinfo([articles_fts], 'pcnalx'))

       This uses the rank_bm25() custom SQL function from sqlite-fts4. You can  register  that  custom  function
       against a Database connection using this method:

          db.register_fts4_bm25()

   Rebuilding a full-text search table
       You  can  rebuild  a  table  using  the  table.rebuild_fts()  method.  This  is  useful  for if the table
       configuration changes or the indexed data has become corrupted in some way.

          db["dogs"].rebuild_fts()

       This method can be called on a table that has been  configured  for  full-text  search  -  dogs  in  this
       instance -  or directly on a _fts table:

          db["dogs_fts"].rebuild_fts()

       This runs the following SQL:

          INSERT INTO dogs_fts (dogs_fts) VALUES ("rebuild");

   Optimizing a full-text search table
       Once you have populated a FTS table you can optimize it to dramatically reduce its size like so:

          db["dogs"].optimize()

       This runs the following SQL:

          INSERT INTO dogs_fts (dogs_fts) VALUES ("optimize");

   Cached table counts using triggers
       The  select  count(*)  query  in  SQLite  requires  a full scan of the primary key index, and can take an
       increasingly long time as the table grows larger.

       The table.enable_counts() method can be used to configure triggers to continuously update a record  in  a
       _counts table. This value can then be used to quickly retrieve the count of rows in the associated table.

          db["dogs"].enable_counts()

       This will create the _counts table if it does not already exist, with the following schema:

          CREATE TABLE [_counts] (
             [table] TEXT PRIMARY KEY,
             [count] INTEGER DEFAULT 0
          )

       You  can  enable  cached  counts for every table in a database (except for virtual tables and the _counts
       table itself) using the database enable_counts() method:

          db.enable_counts()

       Once enabled, table counts will be stored in the _counts table. The count records will  be  automatically
       kept up-to-date by the triggers when rows are added or deleted to the table.

       To  access  these  counts  you can query the _counts table directly or you can use the db.cached_counts()
       method. This method returns a dictionary mapping tables to their counts:

          >>> db.cached_counts()
          {'global-power-plants': 33643,
           'global-power-plants_fts_data': 136,
           'global-power-plants_fts_idx': 199,
           'global-power-plants_fts_docsize': 33643,
           'global-power-plants_fts_config': 1}

       You can pass a list of table names to this method to retrieve just those counts:

          >>> db.cached_counts(["global-power-plants"])
          {'global-power-plants': 33643}

       The table.count property executes a select count(*) query  by  default,  unless  the  db.use_counts_table
       property is set to True.

       You can set use_counts_table to True when you instantiate the database object:

          db = Database("global-power-plants.db", use_counts_table=True)

       If the property is True any calls to the table.count property will first attempt to find the cached count
       in the _counts table, and fall back on a count(*) query if the value is not available  or  the  table  is
       missing.

       Calling  the  .enable_counts() method on a database or table object will set use_counts_table to True for
       the lifetime of that database object.

       If the _counts table ever becomes out-of-sync with the actual table counts you can repair  it  using  the
       .reset_counts() method:

          db.reset_counts()

   Creating indexes
       You  can  create  an index on a table using the .create_index(columns) method. The method takes a list of
       columns:

          db["dogs"].create_index(["is_good_dog"])

       By default the index will be named idx_{table-name}_{columns}. If you pass find_unique_name=True and  the
       automatically  derived  name  already  exists,  an  available name will be found by incrementing a suffix
       number, for example idx_items_title_2.

       You can customize the name of the created index by passing the index_name parameter:

          db["dogs"].create_index(
              ["is_good_dog", "age"],
              index_name="good_dogs_by_age"
          )

       To create an index in descending order for a column, wrap the column name in db.DescIndex() like this:

          from sqlite_utils.db import DescIndex

          db["dogs"].create_index(
              ["is_good_dog", DescIndex("age")],
              index_name="good_dogs_by_age"
          )

       You can create a unique index by passing unique=True:

          db["dogs"].create_index(["name"], unique=True)

       Use if_not_exists=True to do nothing if an index with that name already exists.

       Pass analyze=True to run ANALYZE against the new index after creating it.

   Optimizing index usage with ANALYZE
       The SQLite ANALYZE command builds a table of statistics which the query planner can use  to  make  better
       decisions about which indexes to use for a given query.

       You  should run ANALYZE if your database is large and you do not think your indexes are being efficiently
       used.

       To run ANALYZE against every index in a database, use this:

          db.analyze()

       To run it just against a specific named index, pass the name of the index to that method:

          db.analyze("idx_countries_country_name")

       To run against all indexes attached to  a  specific  table,  you  can  either  pass  the  table  name  to
       db.analyze(...) or you can call the method directly on the table, like this:

          db["dogs"].analyze()

   Vacuum
       You can optimize your database by running VACUUM against it like so:

          Database("my_database.db").vacuum()

   WAL mode
       You can enable Write-Ahead Logging for a database with .enable_wal():

          Database("my_database.db").enable_wal()

       You can disable WAL mode using .disable_wal():

          Database("my_database.db").disable_wal()

       You can check the current journal mode for a database using the journal_mode property:

          journal_mode = Database("my_database.db").journal_mode

       This  will usually be wal or delete (meaning WAL is disabled), but can have other values - see the PRAGMA
       journal_mode documentation.

   Suggesting column types
       When you create a new table for a list of inserted or upserted Python dictionaries, those methods  detect
       the correct types for the database columns based on the data you pass in.

       In  some  situations  you  may need to intervene in this process, to customize the columns that are being
       created in some way - see Explicitly creating a table.

       That table .create() method takes a dictionary mapping column names to the Python type they should store:

          db["cats"].create({
              "id": int,
              "name": str,
              "weight": float,
          })

       You can use the suggest_column_types() helper function to derive a dictionary of column names  and  types
       from a list of records, suitable to be passed to table.create().

       For example:

          from sqlite_utils import Database, suggest_column_types

          cats = [{
              "id": 1,
              "name": "Snowflake"
          }, {
              "id": 2,
              "name": "Crabtree",
              "age": 4
          }]
          types = suggest_column_types(cats)
          # types now looks like this:
          # {"id": <class 'int'>,
          #  "name": <class 'str'>,
          #  "age": <class 'int'>}

          # Manually add an extra field:
          types["thumbnail"] = bytes
          # types now looks like this:
          # {"id": <class 'int'>,
          #  "name": <class 'str'>,
          #  "age": <class 'int'>,
          #  "thumbnail": <class 'bytes'>}

          # Create the table
          db = Database("cats.db")
          db["cats"].create(types, pk="id")
          # Insert the records
          db["cats"].insert_all(cats)

          # list(db["cats"].rows) now returns:
          # [{"id": 1, "name": "Snowflake", "age": None, "thumbnail": None}
          #  {"id": 2, "name": "Crabtree", "age": 4, "thumbnail": None}]

          # The table schema looks like this:
          # print(db["cats"].schema)
          # CREATE TABLE [cats] (
          #    [id] INTEGER PRIMARY KEY,
          #    [name] TEXT,
          #    [age] INTEGER,
          #    [thumbnail] BLOB
          # )

   Registering custom SQL functions
       SQLite  supports  registering  custom  SQL functions written in Python. The db.register_function() method
       lets you register these functions, and keeps track of functions that have already been registered.

       If you use it as a method it will automatically detect the name and number of  arguments  needed  by  the
       function:

          from sqlite_utils import Database

          db = Database(memory=True)

          def reverse_string(s):
              return "".join(reversed(list(s)))

          db.register_function(reverse_string)
          print(db.execute('select reverse_string("hello")').fetchone()[0])
          # This prints "olleh"

       You can also use the method as a function decorator like so:

          @db.register_function
          def reverse_string(s):
              return "".join(reversed(list(s)))

          print(db.execute('select reverse_string("hello")').fetchone()[0])

       By  default,  the  name  of  the  Python  function  will be used as the name of the SQL function. You can
       customize this with the name= keyword argument:

          @db.register_function(name="rev")
          def reverse_string(s):
              return "".join(reversed(list(s)))

          print(db.execute('select rev("hello")').fetchone()[0])

       Python 3.8 added the ability to register deterministic SQLite functions, allowing you to indicate that  a
       function  will  return the exact same result for any given inputs and hence allowing SQLite to apply some
       performance optimizations. You can mark a function as deterministic using deterministic=True, like this:

          @db.register_function(deterministic=True)
          def reverse_string(s):
              return "".join(reversed(list(s)))

       If you run this on a version of Python prior to 3.8 your code will still work, but the deterministic=True
       parameter will be ignored.

       By  default  registering  a function with the same name and number of arguments will have no effect - the
       Database instance keeps track of functions that have already been registered and skips  registering  them
       if @db.register_function is called a second time.

       If  you  want  to  deliberately  replace  the  registered  function  with  a  new implementation, use the
       replace=True argument:

          @db.register_function(deterministic=True, replace=True)
          def reverse_string(s):
              return s[::-1]

       Exceptions that occur inside a user-defined function default to returning the following error:

          Unexpected error: user-defined function raised exception

       You can cause sqlite3 to return more useful errors, including the traceback from the custom function,  by
       executing the following before your custom functions are executed:

          from sqlite_utils.utils import sqlite3

          sqlite3.enable_callback_tracebacks(True)

   Quoting strings for use in SQL
       In  almost all cases you should pass values to your SQL queries using the optional parameters argument to
       db.query(), as described in Passing parameters.

       If that option isn't relevant to your use-case you can to quote a string for use with  SQLite  using  the
       db.quote() method, like so:

          >>> db = Database(memory=True)
          >>> db.quote("hello")
          "'hello'"
          >>> db.quote("hello'this'has'quotes")
          "'hello''this''has''quotes'"

   Reading rows from a file
       The  sqlite_utils.utils.rows_from_file()  helper function can read rows (a sequence of dictionaries) from
       CSV, TSV, JSON or newline-delimited JSON files.

   Setting the maximum CSV field size limit
       Sometimes when working with CSV files that include extremely long fields you may see an error that  looks
       like this:

          _csv.Error: field larger than field limit (131072)

       The Python standard library csv module enforces a field size limit. You can increase that limit using the
       csv.field_size_limit(new_limit) method (documented here) but if you don't want to pick a  new  level  you
       may instead want to increase it to the maximum possible.

       The maximum possible value for this is not documented, and varies between systems.

       Calling sqlite_utils.utils.maximize_csv_field_size_limit() will set the value to the highest possible for
       the current system:

          from sqlite_utils.utils import maximize_csv_field_size_limit

          maximize_csv_field_size_limit()

       If you need to reset to the original value after calling this function you can do so like this:

          from sqlite_utils.utils import ORIGINAL_CSV_FIELD_SIZE_LIMIT
          import csv

          csv.field_size_limit(ORIGINAL_CSV_FIELD_SIZE_LIMIT)

   Detecting column types using TypeTracker
       Sometimes you may find yourself working with data that lacks type information - data from a CSV file  for
       example.

       The TypeTracker class can be used to try to automatically identify the most likely types for data that is
       initially represented as strings.

       Consider this example:

          import csv, io

          csv_file = io.StringIO("id,name\n1,Cleo\n2,Cardi")
          rows = list(csv.DictReader(csv_file))

          # rows is now this:
          # [{'id': '1', 'name': 'Cleo'}, {'id': '2', 'name': 'Cardi'}]

       If we insert this data directly into a table we will get a schema that is entirely TEXT columns:

          from sqlite_utils import Database

          db = Database(memory=True)
          db["creatures"].insert_all(rows)
          print(db.schema)
          # Outputs:
          # CREATE TABLE [creatures] (
          #    [id] TEXT,
          #    [name] TEXT
          # );

       We can detect the best column types using a TypeTracker instance:

          from sqlite_utils.utils import TypeTracker

          tracker = TypeTracker()
          db["creatures2"].insert_all(tracker.wrap(rows))
          print(tracker.types)
          # Outputs {'id': 'integer', 'name': 'text'}

       We can then apply those types to our new table using the table.transform() method:

          db["creatures2"].transform(types=tracker.types)
          print(db["creatures2"].schema)
          # Outputs:
          # CREATE TABLE [creatures2] (
          #    [id] INTEGER,
          #    [name] TEXT
          # );

   SpatiaLite helpers
       SpatiaLite is a geographic extension to SQLite (similar to PostgreSQL + PostGIS). Using requires finding,
       loading  and  initializing  the  extension,  adding  geometry  columns  to existing tables and optionally
       creating spatial indexes. The utilities here help streamline that setup.

   Initialize SpatiaLite
   Finding SpatiaLite
   Adding geometry columns
   Creating a spatial index
   Plugins
       sqlite-utils supports plugins, which can be used to add extra features to the software.

       Plugins can add new commands, for example sqlite-utils some-command ...

       Plugins can be installed using the sqlite-utils install command:

          sqlite-utils install sqlite-utils-name-of-plugin

       You can see a JSON list of plugins that have been installed by running this:

          sqlite-utils plugins

       Plugin hooks such as prepare_connection(conn) affect each instance of the Database class. You can opt-out
       of these plugins by creating that class instance like so:

          db = Database(memory=True, execute_plugins=False)

   Building a plugin
       Plugins are created in a directory named after the plugin. To create a "hello world" plugin, first create
       a hello-world directory:

          mkdir hello-world
          cd hello-world

       In that folder create two files. The first is a pyproject.toml file describing the plugin:

          [project]
          name = "sqlite-utils-hello-world"
          version = "0.1"

          [project.entry-points.sqlite_utils]
          hello_world = "sqlite_utils_hello_world"

       The [project.entry-points.sqlite_utils] section tells sqlite-utils which module to  load  when  executing
       the plugin.

       Then create sqlite_utils_hello_world.py with the following content:

          import click
          import sqlite_utils

          @sqlite_utils.hookimpl
          def register_commands(cli):
              @cli.command()
              def hello_world():
                  "Say hello world"
                  click.echo("Hello world!")

       Install  the  plugin  in  "editable"  mode  - so you can make changes to the code and have them picked up
       instantly by sqlite-utils - like this:

          sqlite-utils install -e .

       Or pass the path to your plugin directory:

          sqlite-utils install -e /dev/sqlite-utils-hello-world

       Now, running this should execute your new command:

          sqlite-utils hello-world

       Your command will also be listed in the output of sqlite-utils --help.

       See the LLM plugin documentation for tips on distributing your plugin.

   Plugin hooks
       Plugin hooks allow sqlite-utils to be customized.

   register_commands(cli)
       This hook can be used to register additional commands with the sqlite-utils CLI. It is  called  with  the
       cli object, which is a click.Group instance.

       Example implementation:

          import click
          import sqlite_utils

          @sqlite_utils.hookimpl
          def register_commands(cli):
              @cli.command()
              def hello_world():
                  "Say hello world"
                  click.echo("Hello world!")

   prepare_connection(conn)
       This  hook  is called when a new SQLite database connection is created. You can use it to register custom
       SQL functions, aggregates and collations. For example:

          import sqlite_utils

          @sqlite_utils.hookimpl
          def prepare_connection(conn):
              conn.create_function(
                  "hello", 1, lambda name: f"Hello, {name}!"
              )

       This registers a SQL function called hello which takes a single argument and can be called like this:

          select hello("world"); -- "Hello, world!"

   API referencesqlite_utils.db.Databasesqlite_utils.db.Queryablesqlite_utils.db.Tablesqlite_utils.db.ViewOthersqlite_utils.db.Columnsqlite_utils.db.ColumnDetailssqlite_utils.utilssqlite_utils.utils.hash_recordsqlite_utils.utils.rows_from_filesqlite_utils.utils.TypeTrackersqlite_utils.utils.chunkssqlite_utils.utils.flatten

   sqlite_utils.db.Database
   sqlite_utils.db.Queryable
       Table and View are  both subclasses of Queryable, providing access to the following methods:

   sqlite_utils.db.Table
   sqlite_utils.db.View
   Other
   sqlite_utils.db.Column
   sqlite_utils.db.ColumnDetails
   sqlite_utils.utils
   sqlite_utils.utils.hash_record
   sqlite_utils.utils.rows_from_file
   sqlite_utils.utils.TypeTracker
   sqlite_utils.utils.chunks
   sqlite_utils.utils.flatten
   CLI reference
       This page lists the --help for every sqlite-utils CLI sub-command.

       • querymemoryinsertupsertbulksearchtransformextractschemainsert-filesanalyze-tablesconverttablesviewsrowstriggersindexescreate-databasecreate-tablecreate-indexenable-ftspopulate-ftsrebuild-ftsdisable-ftstuioptimizeanalyzevacuumdumpadd-columnadd-foreign-keyadd-foreign-keysindex-foreign-keysenable-waldisable-walenable-countsreset-countsduplicaterename-tabledrop-tablecreate-viewdrop-viewinstalluninstalladd-geometry-columncreate-spatial-indexplugins

   query
       See Running SQL queries.

          Usage: sqlite-utils query [OPTIONS] PATH SQL

            Execute SQL query and return the results as JSON

            Example:

                sqlite-utils data.db \
                    "select * from chickens where age > :age" \
                    -p age 1

          Options:
            --attach <TEXT FILE>...     Additional databases to attach - specify alias and
                                        filepath
            --nl                        Output newline-delimited JSON
            --arrays                    Output rows as arrays instead of objects
            --csv                       Output CSV
            --tsv                       Output TSV
            --no-headers                Omit CSV headers
            -t, --table                 Output as a formatted table
            --fmt TEXT                  Table format - one of asciidoc, double_grid,
                                        double_outline, fancy_grid, fancy_outline, github,
                                        grid, heavy_grid, heavy_outline, html, jira,
                                        latex, latex_booktabs, latex_longtable, latex_raw,
                                        mediawiki, mixed_grid, mixed_outline, moinmoin,
                                        orgtbl, outline, pipe, plain, presto, pretty,
                                        psql, rounded_grid, rounded_outline, rst, simple,
                                        simple_grid, simple_outline, textile, tsv,
                                        unsafehtml, youtrack
            --json-cols                 Detect JSON cols and output them as JSON, not
                                        escaped strings
            -r, --raw                   Raw output, first column of first row
            --raw-lines                 Raw output, first column of each row
            -p, --param <TEXT TEXT>...  Named :parameters for SQL query
            --functions TEXT            Python code defining one or more custom SQL
                                        functions
            --load-extension TEXT       Path to SQLite extension, with optional
                                        :entrypoint
            -h, --help                  Show this message and exit.

   memory
       See Querying data directly using an in-memory database.

          Usage: sqlite-utils memory [OPTIONS] [PATHS]... SQL

            Execute SQL query against an in-memory database, optionally populated by
            imported data

            To import data from CSV, TSV or JSON files pass them on the command-line:

                sqlite-utils memory one.csv two.json \
                    "select * from one join two on one.two_id = two.id"

            For data piped into the tool from standard input, use "-" or "stdin":

                cat animals.csv | sqlite-utils memory - \
                    "select * from stdin where species = 'dog'"

            The format of the data will be automatically detected. You can specify the
            format explicitly using :json, :csv, :tsv or :nl (for newline-delimited JSON)
            - for example:

                cat animals.csv | sqlite-utils memory stdin:csv places.dat:nl \
                    "select * from stdin where place_id in (select id from places)"

            Use --schema to view the SQL schema of any imported files:

                sqlite-utils memory animals.csv --schema

          Options:
            --functions TEXT            Python code defining one or more custom SQL
                                        functions
            --attach <TEXT FILE>...     Additional databases to attach - specify alias and
                                        filepath
            --flatten                   Flatten nested JSON objects, so {"foo": {"bar":
                                        1}} becomes {"foo_bar": 1}
            --nl                        Output newline-delimited JSON
            --arrays                    Output rows as arrays instead of objects
            --csv                       Output CSV
            --tsv                       Output TSV
            --no-headers                Omit CSV headers
            -t, --table                 Output as a formatted table
            --fmt TEXT                  Table format - one of asciidoc, double_grid,
                                        double_outline, fancy_grid, fancy_outline, github,
                                        grid, heavy_grid, heavy_outline, html, jira,
                                        latex, latex_booktabs, latex_longtable, latex_raw,
                                        mediawiki, mixed_grid, mixed_outline, moinmoin,
                                        orgtbl, outline, pipe, plain, presto, pretty,
                                        psql, rounded_grid, rounded_outline, rst, simple,
                                        simple_grid, simple_outline, textile, tsv,
                                        unsafehtml, youtrack
            --json-cols                 Detect JSON cols and output them as JSON, not
                                        escaped strings
            -r, --raw                   Raw output, first column of first row
            --raw-lines                 Raw output, first column of each row
            -p, --param <TEXT TEXT>...  Named :parameters for SQL query
            --encoding TEXT             Character encoding for CSV input, defaults to
                                        utf-8
            -n, --no-detect-types       Treat all CSV/TSV columns as TEXT
            --schema                    Show SQL schema for in-memory database
            --dump                      Dump SQL for in-memory database
            --save FILE                 Save in-memory database to this file
            --analyze                   Analyze resulting tables and output results
            --load-extension TEXT       Path to SQLite extension, with optional
                                        :entrypoint
            -h, --help                  Show this message and exit.

   insert
       See Inserting JSON data, Inserting CSV or TSV data, Inserting unstructured data with --lines and  --text,
       Applying conversions while inserting data.

          Usage: sqlite-utils insert [OPTIONS] PATH TABLE FILE

            Insert records from FILE into a table, creating the table if it does not
            already exist.

            Example:

                echo '{"name": "Lila"}' | sqlite-utils insert data.db chickens -

            By default the input is expected to be a JSON object or array of objects.

            - Use --nl for newline-delimited JSON objects
            - Use --csv or --tsv for comma-separated or tab-separated input
            - Use --lines to write each incoming line to a column called "line"
            - Use --text to write the entire input to a column called "text"

            You can also use --convert to pass a fragment of Python code that will be used
            to convert each input.

            Your Python code will be passed a "row" variable representing the imported
            row, and can return a modified row.

            This example uses just the name, latitude and longitude columns from a CSV
            file, converting name to upper case and latitude and longitude to floating
            point numbers:

                sqlite-utils insert plants.db plants plants.csv --csv --convert '
                  return {
                    "name": row["name"].upper(),
                    "latitude": float(row["latitude"]),
                    "longitude": float(row["longitude"]),
                  }'

            If you are using --lines your code will be passed a "line" variable, and for
            --text a "text" variable.

            When using --text your function can return an iterator of rows to insert. This
            example inserts one record per word in the input:

                echo 'A bunch of words' | sqlite-utils insert words.db words - \
                  --text --convert '({"word": w} for w in text.split())'

          Options:
            --pk TEXT                 Columns to use as the primary key, e.g. id
            --flatten                 Flatten nested JSON objects, so {"a": {"b": 1}}
                                      becomes {"a_b": 1}
            --nl                      Expect newline-delimited JSON
            -c, --csv                 Expect CSV input
            --tsv                     Expect TSV input
            --empty-null              Treat empty strings as NULL
            --lines                   Treat each line as a single value called 'line'
            --text                    Treat input as a single value called 'text'
            --convert TEXT            Python code to convert each item
            --import TEXT             Python modules to import
            --delimiter TEXT          Delimiter to use for CSV files
            --quotechar TEXT          Quote character to use for CSV/TSV
            --sniff                   Detect delimiter and quote character
            --no-headers              CSV file has no header row
            --encoding TEXT           Character encoding for input, defaults to utf-8
            --batch-size INTEGER      Commit every X records
            --stop-after INTEGER      Stop after X records
            --alter                   Alter existing table to add any missing columns
            --not-null TEXT           Columns that should be created as NOT NULL
            --default <TEXT TEXT>...  Default value that should be set for a column
            -d, --detect-types        Detect types for columns in CSV/TSV data
            --analyze                 Run ANALYZE at the end of this operation
            --load-extension TEXT     Path to SQLite extension, with optional :entrypoint
            --silent                  Do not show progress bar
            --strict                  Apply STRICT mode to created table
            --ignore                  Ignore records if pk already exists
            --replace                 Replace records if pk already exists
            --truncate                Truncate table before inserting records, if table
                                      already exists
            -h, --help                Show this message and exit.

   upsert
       See Upserting data.

          Usage: sqlite-utils upsert [OPTIONS] PATH TABLE FILE

            Upsert records based on their primary key. Works like 'insert' but if an
            incoming record has a primary key that matches an existing record the existing
            record will be updated.

            Example:

                echo '[
                    {"id": 1, "name": "Lila"},
                    {"id": 2, "name": "Suna"}
                ]' | sqlite-utils upsert data.db chickens - --pk id

          Options:
            --pk TEXT                 Columns to use as the primary key, e.g. id
                                      [required]
            --flatten                 Flatten nested JSON objects, so {"a": {"b": 1}}
                                      becomes {"a_b": 1}
            --nl                      Expect newline-delimited JSON
            -c, --csv                 Expect CSV input
            --tsv                     Expect TSV input
            --empty-null              Treat empty strings as NULL
            --lines                   Treat each line as a single value called 'line'
            --text                    Treat input as a single value called 'text'
            --convert TEXT            Python code to convert each item
            --import TEXT             Python modules to import
            --delimiter TEXT          Delimiter to use for CSV files
            --quotechar TEXT          Quote character to use for CSV/TSV
            --sniff                   Detect delimiter and quote character
            --no-headers              CSV file has no header row
            --encoding TEXT           Character encoding for input, defaults to utf-8
            --batch-size INTEGER      Commit every X records
            --stop-after INTEGER      Stop after X records
            --alter                   Alter existing table to add any missing columns
            --not-null TEXT           Columns that should be created as NOT NULL
            --default <TEXT TEXT>...  Default value that should be set for a column
            -d, --detect-types        Detect types for columns in CSV/TSV data
            --analyze                 Run ANALYZE at the end of this operation
            --load-extension TEXT     Path to SQLite extension, with optional :entrypoint
            --silent                  Do not show progress bar
            --strict                  Apply STRICT mode to created table
            -h, --help                Show this message and exit.

   bulk
       See Executing SQL in bulk.

          Usage: sqlite-utils bulk [OPTIONS] PATH SQL FILE

            Execute parameterized SQL against the provided list of documents.

            Example:

                echo '[
                    {"id": 1, "name": "Lila2"},
                    {"id": 2, "name": "Suna2"}
                ]' | sqlite-utils bulk data.db '
                    update chickens set name = :name where id = :id
                ' -

          Options:
            --batch-size INTEGER   Commit every X records
            --functions TEXT       Python code defining one or more custom SQL functions
            --flatten              Flatten nested JSON objects, so {"a": {"b": 1}} becomes
                                   {"a_b": 1}
            --nl                   Expect newline-delimited JSON
            -c, --csv              Expect CSV input
            --tsv                  Expect TSV input
            --empty-null           Treat empty strings as NULL
            --lines                Treat each line as a single value called 'line'
            --text                 Treat input as a single value called 'text'
            --convert TEXT         Python code to convert each item
            --import TEXT          Python modules to import
            --delimiter TEXT       Delimiter to use for CSV files
            --quotechar TEXT       Quote character to use for CSV/TSV
            --sniff                Detect delimiter and quote character
            --no-headers           CSV file has no header row
            --encoding TEXT        Character encoding for input, defaults to utf-8
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   search
       See Executing searches.

          Usage: sqlite-utils search [OPTIONS] PATH DBTABLE Q

            Execute a full-text search against this table

            Example:

                sqlite-utils search data.db chickens lila

          Options:
            -o, --order TEXT       Order by ('column' or 'column desc')
            -c, --column TEXT      Columns to return
            --limit INTEGER        Number of rows to return - defaults to everything
            --sql                  Show SQL query that would be run
            --quote                Apply FTS quoting rules to search term
            --nl                   Output newline-delimited JSON
            --arrays               Output rows as arrays instead of objects
            --csv                  Output CSV
            --tsv                  Output TSV
            --no-headers           Omit CSV headers
            -t, --table            Output as a formatted table
            --fmt TEXT             Table format - one of asciidoc, double_grid,
                                   double_outline, fancy_grid, fancy_outline, github,
                                   grid, heavy_grid, heavy_outline, html, jira, latex,
                                   latex_booktabs, latex_longtable, latex_raw, mediawiki,
                                   mixed_grid, mixed_outline, moinmoin, orgtbl, outline,
                                   pipe, plain, presto, pretty, psql, rounded_grid,
                                   rounded_outline, rst, simple, simple_grid,
                                   simple_outline, textile, tsv, unsafehtml, youtrack
            --json-cols            Detect JSON cols and output them as JSON, not escaped
                                   strings
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   transform
       See Transforming tables.

          Usage: sqlite-utils transform [OPTIONS] PATH TABLE

            Transform a table beyond the capabilities of ALTER TABLE

            Example:

                sqlite-utils transform mydb.db mytable \
                    --drop column1 \
                    --rename column2 column_renamed

          Options:
            --type <TEXT CHOICE>...         Change column type to INTEGER, TEXT, FLOAT or
                                            BLOB
            --drop TEXT                     Drop this column
            --rename <TEXT TEXT>...         Rename this column to X
            -o, --column-order TEXT         Reorder columns
            --not-null TEXT                 Set this column to NOT NULL
            --not-null-false TEXT           Remove NOT NULL from this column
            --pk TEXT                       Make this column the primary key
            --pk-none                       Remove primary key (convert to rowid table)
            --default <TEXT TEXT>...        Set default value for this column
            --default-none TEXT             Remove default from this column
            --add-foreign-key <TEXT TEXT TEXT>...
                                            Add a foreign key constraint from a column to
                                            another table with another column
            --drop-foreign-key TEXT         Drop foreign key constraint for this column
            --sql                           Output SQL without executing it
            --load-extension TEXT           Path to SQLite extension, with optional
                                            :entrypoint
            -h, --help                      Show this message and exit.

   extract
       See Extracting columns into a separate table.

          Usage: sqlite-utils extract [OPTIONS] PATH TABLE COLUMNS...

            Extract one or more columns into a separate table

            Example:

                sqlite-utils extract trees.db Street_Trees species

          Options:
            --table TEXT             Name of the other table to extract columns to
            --fk-column TEXT         Name of the foreign key column to add to the table
            --rename <TEXT TEXT>...  Rename this column in extracted table
            --load-extension TEXT    Path to SQLite extension, with optional :entrypoint
            -h, --help               Show this message and exit.

   schema
       See Showing the schema.

          Usage: sqlite-utils schema [OPTIONS] PATH [TABLES]...

            Show full schema for this database or for specified tables

            Example:

                sqlite-utils schema trees.db

          Options:
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   insert-files
       See Inserting data from files.

          Usage: sqlite-utils insert-files [OPTIONS] PATH TABLE FILE_OR_DIR...

            Insert one or more files using BLOB columns in the specified table

            Example:

                sqlite-utils insert-files pics.db images *.gif \
                    -c name:name \
                    -c content:content \
                    -c content_hash:sha256 \
                    -c created:ctime_iso \
                    -c modified:mtime_iso \
                    -c size:size \
                    --pk name

          Options:
            -c, --column TEXT      Column definitions for the table
            --pk TEXT              Column to use as primary key
            --alter                Alter table to add missing columns
            --replace              Replace files with matching primary key
            --upsert               Upsert files with matching primary key
            --name TEXT            File name to use
            --text                 Store file content as TEXT, not BLOB
            --encoding TEXT        Character encoding for input, defaults to utf-8
            -s, --silent           Don't show a progress bar
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   analyze-tables
       See Analyzing tables.

          Usage: sqlite-utils analyze-tables [OPTIONS] PATH [TABLES]...

            Analyze the columns in one or more tables

            Example:

                sqlite-utils analyze-tables data.db trees

          Options:
            -c, --column TEXT       Specific columns to analyze
            --save                  Save results to _analyze_tables table
            --common-limit INTEGER  How many common values
            --no-most               Skip most common values
            --no-least              Skip least common values
            --load-extension TEXT   Path to SQLite extension, with optional :entrypoint
            -h, --help              Show this message and exit.

   convert
       See Converting data in columns.

          Usage: sqlite-utils convert [OPTIONS] DB_PATH TABLE COLUMNS... CODE

            Convert columns using Python code you supply. For example:

                sqlite-utils convert my.db mytable mycolumn \
                    '"\n".join(textwrap.wrap(value, 10))' \
                    --import=textwrap

            "value" is a variable with the column value to be converted.

            Use "-" for CODE to read Python code from standard input.

            The following common operations are available as recipe functions:

            r.jsonsplit(value, delimiter=',', type=<class 'str'>)

                Convert a string like a,b,c into a JSON array ["a", "b", "c"]

            r.parsedate(value, dayfirst=False, yearfirst=False, errors=None)

                Parse a date and convert it to ISO date format: yyyy-mm-dd

                - dayfirst=True: treat xx as the day in xx/yy/zz
                - yearfirst=True: treat xx as the year in xx/yy/zz
                - errors=r.IGNORE to ignore values that cannot be parsed
                - errors=r.SET_NULL to set values that cannot be parsed to null

            r.parsedatetime(value, dayfirst=False, yearfirst=False, errors=None)

                Parse a datetime and convert it to ISO datetime format: yyyy-mm-ddTHH:MM:SS

                - dayfirst=True: treat xx as the day in xx/yy/zz
                - yearfirst=True: treat xx as the year in xx/yy/zz
                - errors=r.IGNORE to ignore values that cannot be parsed
                - errors=r.SET_NULL to set values that cannot be parsed to null

            You can use these recipes like so:

                sqlite-utils convert my.db mytable mycolumn \
                    'r.jsonsplit(value, delimiter=":")'

          Options:
            --import TEXT                   Python modules to import
            --dry-run                       Show results of running this against first 10
                                            rows
            --multi                         Populate columns for keys in returned
                                            dictionary
            --where TEXT                    Optional where clause
            -p, --param <TEXT TEXT>...      Named :parameters for where clause
            --output TEXT                   Optional separate column to populate with the
                                            output
            --output-type [integer|float|blob|text]
                                            Column type to use for the output column
            --drop                          Drop original column afterwards
            --no-skip-false                 Don't skip falsey values
            -s, --silent                    Don't show a progress bar
            --pdb                           Open pdb debugger on first error
            -h, --help                      Show this message and exit.

   tables
       See Listing tables.

          Usage: sqlite-utils tables [OPTIONS] PATH

            List the tables in the database

            Example:

                sqlite-utils tables trees.db

          Options:
            --fts4                 Just show FTS4 enabled tables
            --fts5                 Just show FTS5 enabled tables
            --counts               Include row counts per table
            --nl                   Output newline-delimited JSON
            --arrays               Output rows as arrays instead of objects
            --csv                  Output CSV
            --tsv                  Output TSV
            --no-headers           Omit CSV headers
            -t, --table            Output as a formatted table
            --fmt TEXT             Table format - one of asciidoc, double_grid,
                                   double_outline, fancy_grid, fancy_outline, github,
                                   grid, heavy_grid, heavy_outline, html, jira, latex,
                                   latex_booktabs, latex_longtable, latex_raw, mediawiki,
                                   mixed_grid, mixed_outline, moinmoin, orgtbl, outline,
                                   pipe, plain, presto, pretty, psql, rounded_grid,
                                   rounded_outline, rst, simple, simple_grid,
                                   simple_outline, textile, tsv, unsafehtml, youtrack
            --json-cols            Detect JSON cols and output them as JSON, not escaped
                                   strings
            --columns              Include list of columns for each table
            --schema               Include schema for each table
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   views
       See Listing views.

          Usage: sqlite-utils views [OPTIONS] PATH

            List the views in the database

            Example:

                sqlite-utils views trees.db

          Options:
            --counts               Include row counts per view
            --nl                   Output newline-delimited JSON
            --arrays               Output rows as arrays instead of objects
            --csv                  Output CSV
            --tsv                  Output TSV
            --no-headers           Omit CSV headers
            -t, --table            Output as a formatted table
            --fmt TEXT             Table format - one of asciidoc, double_grid,
                                   double_outline, fancy_grid, fancy_outline, github,
                                   grid, heavy_grid, heavy_outline, html, jira, latex,
                                   latex_booktabs, latex_longtable, latex_raw, mediawiki,
                                   mixed_grid, mixed_outline, moinmoin, orgtbl, outline,
                                   pipe, plain, presto, pretty, psql, rounded_grid,
                                   rounded_outline, rst, simple, simple_grid,
                                   simple_outline, textile, tsv, unsafehtml, youtrack
            --json-cols            Detect JSON cols and output them as JSON, not escaped
                                   strings
            --columns              Include list of columns for each view
            --schema               Include schema for each view
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   rows
       See Returning all rows in a table.

          Usage: sqlite-utils rows [OPTIONS] PATH DBTABLE

            Output all rows in the specified table

            Example:

                sqlite-utils rows trees.db Trees

          Options:
            -c, --column TEXT           Columns to return
            --where TEXT                Optional where clause
            -o, --order TEXT            Order by ('column' or 'column desc')
            -p, --param <TEXT TEXT>...  Named :parameters for where clause
            --limit INTEGER             Number of rows to return - defaults to everything
            --offset INTEGER            SQL offset to use
            --nl                        Output newline-delimited JSON
            --arrays                    Output rows as arrays instead of objects
            --csv                       Output CSV
            --tsv                       Output TSV
            --no-headers                Omit CSV headers
            -t, --table                 Output as a formatted table
            --fmt TEXT                  Table format - one of asciidoc, double_grid,
                                        double_outline, fancy_grid, fancy_outline, github,
                                        grid, heavy_grid, heavy_outline, html, jira,
                                        latex, latex_booktabs, latex_longtable, latex_raw,
                                        mediawiki, mixed_grid, mixed_outline, moinmoin,
                                        orgtbl, outline, pipe, plain, presto, pretty,
                                        psql, rounded_grid, rounded_outline, rst, simple,
                                        simple_grid, simple_outline, textile, tsv,
                                        unsafehtml, youtrack
            --json-cols                 Detect JSON cols and output them as JSON, not
                                        escaped strings
            --load-extension TEXT       Path to SQLite extension, with optional
                                        :entrypoint
            -h, --help                  Show this message and exit.

   triggers
       See Listing triggers.

          Usage: sqlite-utils triggers [OPTIONS] PATH [TABLES]...

            Show triggers configured in this database

            Example:

                sqlite-utils triggers trees.db

          Options:
            --nl                   Output newline-delimited JSON
            --arrays               Output rows as arrays instead of objects
            --csv                  Output CSV
            --tsv                  Output TSV
            --no-headers           Omit CSV headers
            -t, --table            Output as a formatted table
            --fmt TEXT             Table format - one of asciidoc, double_grid,
                                   double_outline, fancy_grid, fancy_outline, github,
                                   grid, heavy_grid, heavy_outline, html, jira, latex,
                                   latex_booktabs, latex_longtable, latex_raw, mediawiki,
                                   mixed_grid, mixed_outline, moinmoin, orgtbl, outline,
                                   pipe, plain, presto, pretty, psql, rounded_grid,
                                   rounded_outline, rst, simple, simple_grid,
                                   simple_outline, textile, tsv, unsafehtml, youtrack
            --json-cols            Detect JSON cols and output them as JSON, not escaped
                                   strings
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   indexes
       See Listing indexes.

          Usage: sqlite-utils indexes [OPTIONS] PATH [TABLES]...

            Show indexes for the whole database or specific tables

            Example:

                sqlite-utils indexes trees.db Trees

          Options:
            --aux                  Include auxiliary columns
            --nl                   Output newline-delimited JSON
            --arrays               Output rows as arrays instead of objects
            --csv                  Output CSV
            --tsv                  Output TSV
            --no-headers           Omit CSV headers
            -t, --table            Output as a formatted table
            --fmt TEXT             Table format - one of asciidoc, double_grid,
                                   double_outline, fancy_grid, fancy_outline, github,
                                   grid, heavy_grid, heavy_outline, html, jira, latex,
                                   latex_booktabs, latex_longtable, latex_raw, mediawiki,
                                   mixed_grid, mixed_outline, moinmoin, orgtbl, outline,
                                   pipe, plain, presto, pretty, psql, rounded_grid,
                                   rounded_outline, rst, simple, simple_grid,
                                   simple_outline, textile, tsv, unsafehtml, youtrack
            --json-cols            Detect JSON cols and output them as JSON, not escaped
                                   strings
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   create-database
       See Creating an empty database.

          Usage: sqlite-utils create-database [OPTIONS] PATH

            Create a new empty database file

            Example:

                sqlite-utils create-database trees.db

          Options:
            --enable-wal           Enable WAL mode on the created database
            --init-spatialite      Enable SpatiaLite on the created database
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   create-table
       See Creating tables.

          Usage: sqlite-utils create-table [OPTIONS] PATH TABLE COLUMNS...

            Add a table with the specified columns. Columns should be specified using
            name, type pairs, for example:

                sqlite-utils create-table my.db people \
                    id integer \
                    name text \
                    height float \
                    photo blob --pk id

            Valid column types are text, integer, float and blob.

          Options:
            --pk TEXT                 Column to use as primary key
            --not-null TEXT           Columns that should be created as NOT NULL
            --default <TEXT TEXT>...  Default value that should be set for a column
            --fk <TEXT TEXT TEXT>...  Column, other table, other column to set as a
                                      foreign key
            --ignore                  If table already exists, do nothing
            --replace                 If table already exists, replace it
            --transform               If table already exists, try to transform the schema
            --load-extension TEXT     Path to SQLite extension, with optional :entrypoint
            --strict                  Apply STRICT mode to created table
            -h, --help                Show this message and exit.

   create-index
       See Creating indexes.

          Usage: sqlite-utils create-index [OPTIONS] PATH TABLE COLUMN...

            Add an index to the specified table for the specified columns

            Example:

                sqlite-utils create-index chickens.db chickens name

            To create an index in descending order:

                sqlite-utils create-index chickens.db chickens -- -name

          Options:
            --name TEXT                Explicit name for the new index
            --unique                   Make this a unique index
            --if-not-exists, --ignore  Ignore if index already exists
            --analyze                  Run ANALYZE after creating the index
            --load-extension TEXT      Path to SQLite extension, with optional :entrypoint
            -h, --help                 Show this message and exit.

   enable-fts
       See Configuring full-text search.

          Usage: sqlite-utils enable-fts [OPTIONS] PATH TABLE COLUMN...

            Enable full-text search for specific table and columns"

            Example:

                sqlite-utils enable-fts chickens.db chickens name

          Options:
            --fts4                 Use FTS4
            --fts5                 Use FTS5
            --tokenize TEXT        Tokenizer to use, e.g. porter
            --create-triggers      Create triggers to update the FTS tables when the
                                   parent table changes.
            --replace              Replace existing FTS configuration if it exists
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   populate-fts
          Usage: sqlite-utils populate-fts [OPTIONS] PATH TABLE COLUMN...

            Re-populate full-text search for specific table and columns

            Example:

                sqlite-utils populate-fts chickens.db chickens name

          Options:
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   rebuild-fts
          Usage: sqlite-utils rebuild-fts [OPTIONS] PATH [TABLES]...

            Rebuild all or specific full-text search tables

            Example:

                sqlite-utils rebuild-fts chickens.db chickens

          Options:
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   disable-fts
          Usage: sqlite-utils disable-fts [OPTIONS] PATH TABLE

            Disable full-text search for specific table

            Example:

                sqlite-utils disable-fts chickens.db chickens

          Options:
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   tui
       See Experimental TUI.

          Usage: sqlite-utils tui [OPTIONS]

            Open Textual TUI.

          Options:
            -h, --help  Show this message and exit.

   optimize
       See Optimize.

          Usage: sqlite-utils optimize [OPTIONS] PATH [TABLES]...

            Optimize all full-text search tables and then run VACUUM - should shrink the
            database file

            Example:

                sqlite-utils optimize chickens.db

          Options:
            --no-vacuum            Don't run VACUUM
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   analyze
       See Optimizing index usage with ANALYZE.

          Usage: sqlite-utils analyze [OPTIONS] PATH [NAMES]...

            Run ANALYZE against the whole database, or against specific named indexes and
            tables

            Example:

                sqlite-utils analyze chickens.db

          Options:
            -h, --help  Show this message and exit.

   vacuum
       See Vacuum.

          Usage: sqlite-utils vacuum [OPTIONS] PATH

            Run VACUUM against the database

            Example:

                sqlite-utils vacuum chickens.db

          Options:
            -h, --help  Show this message and exit.

   dump
       See Dumping the database to SQL.

          Usage: sqlite-utils dump [OPTIONS] PATH

            Output a SQL dump of the schema and full contents of the database

            Example:

                sqlite-utils dump chickens.db

          Options:
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   add-column
       See Adding columns.

          Usage: sqlite-utils add-column [OPTIONS] PATH TABLE COL_NAME
                                [[integer|int|float|text|str|blob|bytes]]

            Add a column to the specified table

            Example:

                sqlite-utils add-column chickens.db chickens weight float

          Options:
            --fk TEXT                Table to reference as a foreign key
            --fk-col TEXT            Referenced column on that foreign key table - if
                                     omitted will automatically use the primary key
            --not-null-default TEXT  Add NOT NULL DEFAULT 'TEXT' constraint
            --ignore                 If column already exists, do nothing
            --load-extension TEXT    Path to SQLite extension, with optional :entrypoint
            -h, --help               Show this message and exit.

   add-foreign-key
       See Adding foreign key constraints.

          Usage: sqlite-utils add-foreign-key [OPTIONS] PATH TABLE COLUMN [OTHER_TABLE]
                                     [OTHER_COLUMN]

            Add a new foreign key constraint to an existing table

            Example:

                sqlite-utils add-foreign-key my.db books author_id authors id

          Options:
            --ignore               If foreign key already exists, do nothing
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   add-foreign-keys
       See Adding multiple foreign keys at once.

          Usage: sqlite-utils add-foreign-keys [OPTIONS] PATH [FOREIGN_KEY]...

            Add multiple new foreign key constraints to a database

            Example:

                sqlite-utils add-foreign-keys my.db \
                    books author_id authors id \
                    authors country_id countries id

          Options:
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   index-foreign-keys
       See Adding indexes for all foreign keys.

          Usage: sqlite-utils index-foreign-keys [OPTIONS] PATH

            Ensure every foreign key column has an index on it

            Example:

                sqlite-utils index-foreign-keys chickens.db

          Options:
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   enable-wal
       See WAL mode.

          Usage: sqlite-utils enable-wal [OPTIONS] PATH...

            Enable WAL for database files

            Example:

                sqlite-utils enable-wal chickens.db

          Options:
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   disable-wal
          Usage: sqlite-utils disable-wal [OPTIONS] PATH...

            Disable WAL for database files

            Example:

                sqlite-utils disable-wal chickens.db

          Options:
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   enable-counts
       See Enabling cached counts.

          Usage: sqlite-utils enable-counts [OPTIONS] PATH [TABLES]...

            Configure triggers to update a _counts table with row counts

            Example:

                sqlite-utils enable-counts chickens.db

          Options:
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   reset-counts
          Usage: sqlite-utils reset-counts [OPTIONS] PATH

            Reset calculated counts in the _counts table

            Example:

                sqlite-utils reset-counts chickens.db

          Options:
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   duplicate
       See Duplicating tables.

          Usage: sqlite-utils duplicate [OPTIONS] PATH TABLE NEW_TABLE

            Create a duplicate of this table, copying across the schema and all row data.

          Options:
            --ignore               If table does not exist, do nothing
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   rename-table
       See Renaming a table.

          Usage: sqlite-utils rename-table [OPTIONS] PATH TABLE NEW_NAME

            Rename this table.

          Options:
            --ignore               If table does not exist, do nothing
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   drop-table
       See Dropping tables.

          Usage: sqlite-utils drop-table [OPTIONS] PATH TABLE

            Drop the specified table

            Example:

                sqlite-utils drop-table chickens.db chickens

          Options:
            --ignore               If table does not exist, do nothing
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   create-view
       See Creating views.

          Usage: sqlite-utils create-view [OPTIONS] PATH VIEW SELECT

            Create a view for the provided SELECT query

            Example:

                sqlite-utils create-view chickens.db heavy_chickens \
                  'select * from chickens where weight > 3'

          Options:
            --ignore               If view already exists, do nothing
            --replace              If view already exists, replace it
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   drop-view
       See Dropping views.

          Usage: sqlite-utils drop-view [OPTIONS] PATH VIEW

            Drop the specified view

            Example:

                sqlite-utils drop-view chickens.db heavy_chickens

          Options:
            --ignore               If view does not exist, do nothing
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   install
       See Installing packages.

          Usage: sqlite-utils install [OPTIONS] [PACKAGES]...

            Install packages from PyPI into the same environment as sqlite-utils

          Options:
            -U, --upgrade        Upgrade packages to latest version
            -e, --editable TEXT  Install a project in editable mode from this path
            -h, --help           Show this message and exit.

   uninstall
       See Uninstalling packages.

          Usage: sqlite-utils uninstall [OPTIONS] PACKAGES...

            Uninstall Python packages from the sqlite-utils environment

          Options:
            -y, --yes   Don't ask for confirmation
            -h, --help  Show this message and exit.

   add-geometry-column
       See SpatiaLite helpers.

          Usage: sqlite-utils add-geometry-column [OPTIONS] DB_PATH TABLE COLUMN_NAME

            Add a SpatiaLite geometry column to an existing table. Requires SpatiaLite
            extension.

            By default, this command will try to load the SpatiaLite extension from usual
            paths. To load it from a specific path, use --load-extension.

          Options:
            -t, --type [POINT|LINESTRING|POLYGON|MULTIPOINT|MULTILINESTRING|MULTIPOLYGON|GEOMETRYCOLLECTION|GEOMETRY]
                                            Specify a geometry type for this column.
                                            [default: GEOMETRY]
            --srid INTEGER                  Spatial Reference ID. See
                                            https://spatialreference.org for details on
                                            specific projections.  [default: 4326]
            --dimensions TEXT               Coordinate dimensions. Use XYZ for three-
                                            dimensional geometries.
            --not-null                      Add a NOT NULL constraint.
            --load-extension TEXT           Path to SQLite extension, with optional
                                            :entrypoint
            -h, --help                      Show this message and exit.

   create-spatial-index
       See Adding spatial indexes.

          Usage: sqlite-utils create-spatial-index [OPTIONS] DB_PATH TABLE COLUMN_NAME

            Create a spatial index on a SpatiaLite geometry column. The table and geometry
            column must already exist before trying to add a spatial index.

            By default, this command will try to load the SpatiaLite extension from usual
            paths. To load it from a specific path, use --load-extension.

          Options:
            --load-extension TEXT  Path to SQLite extension, with optional :entrypoint
            -h, --help             Show this message and exit.

   plugins
          Usage: sqlite-utils plugins [OPTIONS]

            List installed plugins

          Options:
            -h, --help  Show this message and exit.

   Contributing
       Development of sqlite-utils takes place in the sqlite-utils GitHub repository.

       All  improvements  to  the software should start with an issue. Read How I build a feature for a detailed
       description of the recommended process for building bug fixes or enhancements.

   Obtaining the code
       To work on this library locally, first checkout the code. Then create a new virtual environment:

          git clone git@github.com:simonw/sqlite-utils
          cd sqlite-utils
          python3 -mvenv venv
          source venv/bin/activate

       Or if you are using pipenv:

          pipenv shell

       Within the virtual environment running sqlite-utils should run your locally editable version of the tool.
       You  can  use  which  sqlite-utils to confirm that you are running the version that lives in your virtual
       environment.

   Running the tests
       To install the dependencies and test dependencies:

          pip install -e '.[test]'

       To run the tests:

          pytest

   Building the documentation
       To build the documentation, first install the documentation dependencies:

          pip install -e '.[docs]'

       Then run make livehtml from the docs/ directory to start a server  on  port  8000  that  will  serve  the
       documentation and live-reload any time you make an edit to a .rst file:

          cd docs
          make livehtml

       The cog tool is used to maintain portions of the documentation. You can run it like so:

          cog -r docs/*.rst

   Linting and formatting
       sqlite-utils uses Black for code formatting, and flake8 and mypy for linting and type checking.

       Black  is  installed as part of pip install -e '.[test]' - you can then format your code by running it in
       the root of the project:

          black .

       To install mypy and flake8 run the following:

          pip install -e '.[flake8,mypy]'

       Both commands can then be run in the root of the project like this:

          flake8
          mypy sqlite_utils

       All three of these tools are run by our CI mechanism against every commit and pull request.

   Using Just and pipenv
       If you install Just and pipenv you can use them to manage your local development environment.

       To create a virtual environment and install all development dependencies, run:

          cd sqlite-utils
          just init

       To run all of the tests and linters:

          just

       To run tests, or run a specific test module or test by name:

          just test # All tests
          just test tests/test_cli_memory.py # Just this module
          just test -k test_memory_no_detect_types # Just this test

       To run just the linters:

          just lint

       To apply Black to your code:

          just black

       To update documentation using Cog:

          just cog

       To run the live documentation server (this will run Cog first):

          just docs

       And to list all available commands:

          just -l

   Release process
       Releases are performed using tags. When a new release is published on GitHub, a GitHub  Actions  workflow
       will perform the following:

       • Run the unit tests against all supported Python versions. If the tests pass...

       • Build a wheel bundle of the underlying Python source code

       • Push that new wheel up to PyPI: https://pypi.org/project/sqlite-utils/

       To deploy new releases you will need to have push access to the GitHub repository.

       sqlite-utils follows Semantic Versioning:

          major.minor.patch

       We increment major for backwards-incompatible releases.

       We increment minor for new features.

       We increment patch for bugfix releass.

       To  release  a new version, first create a commit that updates the version number in setup.py and the the
       changelog with highlights of the new version. An example commit can be seen here:

          # Update changelog
          git commit -m " Release 3.29

          Refs #423, #458, #467, #469, #470, #471, #472, #475" -a
          git push

       Referencing the issues that are part of the release in the commit message ensures the name of the release
       shows up on those issue pages, e.g. here.

       You can generate the list of issue references for a specific release by copying and pasting text from the
       release notes or GitHub changes-since-last-release view into this Extract issue numbers from pasted  text
       tool.

       To  create  the  tag for the release, create a new release on GitHub matching the new version number. You
       can convert the release notes to Markdown by copying and pasting the rendered HTML  into  this  Paste  to
       Markdown tool.

   Changelog
   3.36 (2023-12-07)Support for creating tables in SQLite STRICT mode. Thanks, Taj Khattra. (#344)

                • CLI commands create-table, insert and upsert all now accept a --strict option.

                • Python     methods     that     can     create     a     table     -     table.create()    and
                  insert/upsert/insert_all/upsert_all all now accept an optional strict=True parameter.

                • The transform command and table.transform() method preserve strict mode  when  transforming  a
                  table.

       • The  sqlite-utils  create-table command now accepts str, int and bytes as aliases for text, integer and
         blob respectively. (#606)

   3.35.2 (2023-11-03)
       • The --load-extension=spatialite option and find_spatialite() utility function now both  work  correctly
         on arm64 Linux. Thanks, Mike Coats. (#599)

       • Fix  for  bug  where  sqlite-utils  insert  could cause your terminal cursor to disappear. Thanks, Luke
         Plant. (#433)

       • datetime.timedelta values are now stored as TEXT columns. Thanks, Harald Nezbeda. (#522)

       • Test suite is now also run against Python 3.12.

   3.35.1 (2023-09-08)
       • Fixed a bug where table.transform() would sometimes re-assign the rowid values for a table rather  than
         keeping them consistent across the operation. (#592)

   3.35 (2023-08-17)
       Adding  foreign  keys  to  a  table  no longer uses PRAGMA writable_schema = 1 to directly manipulate the
       sqlite_master table. This was resulting in errors in some Python installations where the  SQLite  library
       was  compiled  in  a  way  that prevented this from working, in particular on macOS. Foreign keys are now
       added using the table transformation mechanism instead. (#577)

       This new mechanism creates a full copy of the table, so it is likely to be significantly slower for large
       tables,  but  will  no longer trigger table sqlite_master may not be modified errors on platforms that do
       not support PRAGMA writable_schema = 1.

       A new plugin, sqlite-utils-fast-fks, is now available for developers who still want to  use  that  faster
       but riskier implementation.

       Other changes:

       • The  table.transform()  method  has two new parameters: foreign_keys= allows you to replace the foreign
         key constraints defined on a table, and add_foreign_keys= lets you specify new  foreign  keys  to  add.
         These complement the existing drop_foreign_keys= parameter. (#577)

       • The  sqlite-utils  transform  command  has  a new --add-foreign-key option which can be called multiple
         times to add foreign keys to a table that is being transformed. (#585)

       • sqlite-utils convert now has a --pdb option for opening a debugger on the first  encountered  error  in
         your conversion script. (#581)

       • Fixed a bug where sqlite-utils install -e '.[test]' option did not work correctly.

   3.34 (2023-07-22)
       This  release  introduces a new plugin system. Read more about this in sqlite-utils now supports plugins.
       (#567)

       • Documentation describing how to build a plugin.

       • Plugin hook: register_commands(cli), for plugins to add extra commands to sqlite-utils. (#569)

       • Plugin hook: prepare_connection(conn). Plugins can use this to help prepare the SQLite connection to do
         things like registering custom SQL functions. Thanks, Alex Garcia. (#574)

       • sqlite_utils.Database(..., execute_plugins=False) option for disabling plugin execution. (#575)

       • sqlite-utils  install  -e  path-to-directory option for installing editable code. This option is useful
         during the development of a plugin. (#570)

       • table.create(...) method now accepts replace=True to drop and replace an existing table with  the  same
         name, or ignore=True to silently do nothing if a table already exists with the same name. (#568)

       • sqlite-utils  insert  ...  --stop-after  10  option for stopping the insert after a specified number of
         records. Works for the upsert command as well. (#561)

       • The --csv and --tsv modes for insert now accept a --empty-null option, which causes  empty  strings  in
         the CSV file to be stored as null in the database. (#563)

       • New db.rename_table(table_name, new_name) method for renaming tables. (#565)

       • sqlite-utils rename-table my.db table_name new_name command for renaming tables. (#565)

       • The  table.transform(...)  method now takes an optional keep_table=new_table_name parameter, which will
         cause the original table to be renamed to new_table_name rather than being dropped at the  end  of  the
         transformation. (#571)

       • Documentation  now  notes  that  calling  table.transform() without any arguments will reformat the SQL
         schema stored by SQLite to be more aesthetically pleasing. (#564)

   3.33 (2023-06-25)sqlite-utils will now use sqlean.py in place of  sqlite3  if  it  is  installed  in  the  same  virtual
         environment.  This  is useful for Python environments with either an outdated version of SQLite or with
         restrictions  on  SQLite  such  as  disabled  extension  loading  or  restrictions  resulting  in   the
         sqlite3.OperationalError: table sqlite_master may not be modified error. (#559)

       • New  with  db.ensure_autocommit_off() context manager, which ensures that the database is in autocommit
         mode for the duration of a block of code. This is  used  by  db.enable_wal()  and  db.disable_wal()  to
         ensure they work correctly with pysqlite3 and sqlean.py.

       • New  db.iterdump()  method, providing an iterator over SQL strings representing a dump of the database.
         This uses sqlite-dump if it is available, otherwise falling back on  the  conn.iterdump()  method  from
         sqlite3.  Both  pysqlite3 and sqlean.py omit support for iterdump() - this method helps paper over that
         difference.

   3.32.1 (2023-05-21)
       • Examples in the CLI documentation can now all be copied and pasted without needing to remove a  leading
         $. (#551)

       • Documentation now covers Setting up shell completion for bash and zsh. (#552)

   3.32 (2023-05-21)
       • New  experimental  sqlite-utils  tui  interface  for  interactively  building command-line invocations,
         powered by Trogon. This requires an optional dependency, installed using sqlite-utils  install  trogon.
         There is a screenshot in the documentation. (#545)

       • sqlite-utils analyze-tables command (documentation) now has a --common-limit 20 option for changing the
         number of common/least-common values shown for each column. (#544)

       • sqlite-utils analyze-tables --no-most and --no-least options for disabling calculation  of  most-common
         and least-common values.

       • If  a  column  contains  only  null values, analyze-tables will no longer attempt to calculate the most
         common and least common values for that column. (#547)

       • Calling sqlite-utils analyze-tables with non-existent columns in the -c/--column option now results  in
         an error message. (#548)

       • The    table.analyze_column()    method   (documented   here)   now   accepts   most_common=False   and
         least_common=False options for disabling calculation of those values.

   3.31 (2023-05-08)
       • Dropped support for Python 3.6. Tests now ensure compatibility with Python 3.11. (#517)

       • Automatically locates the SpatiaLite extension on Apple Silicon. Thanks, Chris Amico. (#536)

       • New --raw-lines option for the sqlite-utils query and sqlite-utils memory commands, which outputs  just
         the raw value of the first column of every row. (#539)

       • Fixed a bug where table.upsert_all() failed if the not_null= option was passed. (#538)

       • Fixed a ResourceWarning when using sqlite-utils insert. (#534)

       • Now shows a more detailed error message when sqlite-utils insert is called with invalid JSON. (#532)

       • table.convert(...,  skip_false=False)  and sqlite-utils convert --no-skip-false options, for avoiding a
         misfeature where the convert() mechanism skips rows in  the  database  with  a  falsey  value  for  the
         specified  column.  Fixing  this  by  default  would  be  a  backwards-incompatible change and is under
         consideration for a 4.0 release in the future. (#527)

       • Tables can now be created with self-referential foreign keys. Thanks, Scott Perry. (#537)

       • sqlite-utils transform no longer breaks if a table defines default values for  columns.  Thanks,  Kenny
         Song. (#509)

       • Fixed a bug where repeated calls to table.transform() did not work correctly. Thanks, Martin Carpenter.
         (#525)

       • Improved error message if rows_from_file() is passed a non-binary-mode file-like object. (#520)

   3.30 (2022-10-25)
       • Now tested against Python 3.11. (#502)

       • New table.search_sql(include_rank=True) option, which adds a rank column to the generated SQL.  Thanks,
         Jacob Chapman. (#480)

       • Progress  bars  now  display  for  newline-delimited  JSON  files using the --nl option. Thanks, Mischa
         Untaga. (#485)

       • New db.close() method. (#504)

       • Conversion functions passed to table.convert(...) can now return lists or dictionaries, which  will  be
         inserted into the database as JSON strings. (#495)

       • sqlite-utils  install and sqlite-utils uninstall commands for installing packages into the same virtual
         environment as sqlite-utils, described here. (#483)

       • New sqlite_utils.utils.flatten() utility function. (#500)

       • Documentation on using Just to run tests, linters and build documentation.

       • Documentation now covers the Release process for this package.

   3.29 (2022-08-27)
       • The sqlite-utils query, memory and bulk commands now all accept a new --functions option. This  can  be
         passed a string of Python code, and any callable objects defined in that code will be made available to
         SQL queries as custom SQL functions. See Defining custom SQL functions for details. (#471)

       • db[table].create(...) method now accepts a new transform=True parameter. If the table already exists it
         will  be  transformed to match the schema configuration options passed to the function. This may result
         in columns being added or dropped, column types being changed, column order being updated or  not  null
         and default values for columns being set. (#467)

       • Related to the above, the sqlite-utils create-table command now accepts a --transform option.

       • New  introspection  property: table.default_values returns a dictionary mapping each column name with a
         default value to the configured default value. (#475)

       • The --load-extension option can  now  be  provided  a  path  to  a  compiled  SQLite  extension  module
         accompanied  by  the  name  of  an  entrypoint,  separated  by  a  colon - for example --load-extension
         ./lines0:sqlite3_lines0_noread_init. This feature is modelled on code first contributed to Datasette by
         Alex Garcia. (#470)

       • Functions registered using the db.register_function() method can now have a custom name specified using
         the new db.register_function(fn, name=...) parameter. (#458)

       • sqlite-utils rows has a new --order option for specifying the sort order for the returned rows. (#469)

       • All of the CLI options that accept Python code blocks can now all be used to define functions that  can
         access modules imported in that same block of code without needing to use the global keyword. (#472)

       • Fixed  bug where table.extract() would not behave correctly for columns containing null values. Thanks,
         Forest Gregg. (#423)

       • New tutorial: Cleaning data with sqlite-utils and Datasette shows how to use sqlite-utils to import and
         clean an example CSV file.

       • Datasette and sqlite-utils now have a Discord community. Join the Discord here.

   3.28 (2022-07-15)
       • New  table.duplicate(new_name)  method  for  creating  a copy of a table with a matching schema and row
         contents. Thanks, David. (#449)

       • New sqlite-utils duplicate data.db table_name new_name CLI command for Duplicating tables. (#454)

       • sqlite_utils.utils.rows_from_file() is now a documented API. It can be  used  to  read  a  sequence  of
         dictionaries  from  a  file-like  object containing CSV, TSV, JSON or newline-delimited JSON. It can be
         passed an explicit format or can attempt to detect the format automatically. (#443)

       • sqlite_utils.utils.TypeTracker is now a documented API for detecting the  likely  column  types  for  a
         sequence of string rows, see Detecting column types using TypeTracker. (#445)

       • sqlite_utils.utils.chunks() is now a documented API for splitting an iterator into chunks. (#451)

       • sqlite-utils  enable-fts  now has a --replace option for replacing the existing FTS configuration for a
         table. (#450)

       • The create-index, add-column and duplicate commands all now take a --ignore option for ignoring  errors
         should the database not be in the right state for them to operate. (#450)

   3.27 (2022-06-14)
       See also the annotated release notes for this release.

       • Documentation now uses the Furo Sphinx theme. (#435)

       • Code examples in documentation now have a "copy to clipboard" button. (#436)

       • sqlite_utils.utils.utils.rows_from_file() is now a documented API, see Reading rows from a file. (#443)

       • rows_from_file()  has  two  new  parameters to help handle CSV files with rows that contain more values
         than are listed in that CSV file's headings: ignore_extras=True and extras_key="name-of-key". (#440)

       • sqlite_utils.utils.maximize_csv_field_size_limit() helper function for increasing the field size  limit
         for reading CSV files to its maximum, see Setting the maximum CSV field size limit. (#442)

       • table.search(where=, where_args=) parameters for adding additional WHERE clauses to a search query. The
         where= parameter is available on table.search_sql(...) as well. See Searching with  table.search().  (‐
         #441)

       • Fixed  bug  where  table.detect_fts()  and other search-related functions could fail if two FTS-enabled
         tables had names that were prefixes of each other. (#434)

   3.26.1 (2022-05-02)
       • Now depends on click-default-group-wheel, a pure Python wheel package. This means you can  install  and
         use this package with Pyodide, which can run Python entirely in your browser using WebAssembly. (#429)

         Try that out using the Pyodide REPL:

            >>> import micropip
            >>> await micropip.install("sqlite-utils")
            >>> import sqlite_utils
            >>> db = sqlite_utils.Database(memory=True)
            >>> list(db.query("select 3 * 5"))
            [{'3 * 5': 15}]

   3.26 (2022-04-13)
       • New  errors=r.IGNORE/r.SET_NULL  parameter for the r.parsedatetime() and r.parsedate() convert recipes.
         (#416)

       • Fixed a bug where --multi could not be used in combination with --dry-run for the convert  command.  (‐
         #415)

       • New documentation: Defining a convert() function. (#420)

       • More robust detection for whether or not deterministic=True is supported. (#425)

   3.25.1 (2022-03-11)
       • Improved display of type information and parameters in the API reference documentation. (#413)

   3.25 (2022-03-01)
       • New  hash_id_columns=  parameter  for  creating  a primary key that's a hash of the content of specific
         columns - see Setting an ID based on the hash of the row contents for details. (#343)

       • New db.sqlite_version property, returning a tuple of integers representing the version of  SQLite,  for
         example (3, 38, 0).

       • Fixed  a  bug  where register_function(deterministic=True) caused errors on versions of SQLite prior to
         3.8.3. (#408)

       • New documented hash_record(record, keys=...) function.

   3.24 (2022-02-15)
       • SpatiaLite helpers for the sqlite-utils command-line tool - thanks, Chris Amico. (#398)

         • sqlite-utils create-database --init-spatialite option for initializing SpatiaLite on a newly  created
           database.

         • sqlite-utils add-geometry-column command for adding geometry columns.

         • sqlite-utils create-spatial-index command for adding spatial indexes.

       • db[table].create(...,  if_not_exists=True)  option  for  creating  a  table only if it does not already
         exist. (#397)

       • Database(memory_name="my_shared_database") parameter for creating a named in-memory database  that  can
         be shared between multiple connections. (#405)

       • Documentation  now describes how to add a primary key to a rowid table using sqlite-utils transform. (‐
         #403)

   3.23 (2022-02-03)
       This release introduces four new utility methods for working with SpatiaLite. Thanks, Chris Amico. (#385)

       • sqlite_utils.utils.find_spatialite() finds the location of the SpatiaLite module on disk.

       • db.init_spatialite() initializes SpatiaLite for the given database.

       • table.add_geometry_column(...) adds a geometry column to an existing table.

       • table.create_spatial_index(...) creates a spatial index for a column.

       • sqlite-utils batch now accepts a --batch-size option. (#392)

   3.22.1 (2022-01-25)
       • All commands now include example usage in their --help - see CLI reference. (#384)

       • Python library documentation has a new Getting started section. (#387)

       • Documentation now uses Plausible analytics. (#389)

   3.22 (2022-01-11)
       • New CLI reference documentation page, listing the output of --help for every one of the  CLI  commands.
         (#383)

       • sqlite-utils rows now has --limit and --offset options for paginating through data. (#381)

       • sqlite-utils  rows  now  has  --where  and  -p options for filtering the table using a WHERE query, see
         Returning all rows in a table. (#382)

   3.21 (2022-01-10)
       CLI and Python library improvements to help run ANALYZE after creating indexes or inserting rows, to gain
       better performance from the SQLite query planner when it runs against indexes.

       Three new CLI commands: create-database, analyze and bulk.

       More details and examples can be found in the annotated release notes.

       • New sqlite-utils create-database command for creating new empty database files. (#348)

       • New  Python  methods  for  running  ANALYZE  against  a  database,  table  or  index:  db.analyze() and
         table.analyze(), see Optimizing index usage with ANALYZE. (#366)

       • New sqlite-utils analyze command for running ANALYZE using the CLI. (#379)

       • The create-index, insert and upsert commands now have a new --analyze option for running ANALYZE  after
         the command has completed. (#379)

       • New  sqlite-utils  bulk  command  which can import records in the same way as sqlite-utils insert (from
         JSON, CSV or TSV) and use them to bulk execute a parametrized SQL query. (#375)

       • The CLI tool can now also be run using python -m sqlite_utils. (#368)

       • Using --fmt now implies --table, so you don't need to pass both options. (#374)

       • The --convert function applied to rows can now modify the row in place. (#371)

       • The insert-files command supports two new columns: stem and suffix. (#372)

       • The --nl import option now ignores blank lines in the input. (#376)

       • Fixed bug where streaming input to the insert command with --batch-size 1 would appear to  only  commit
         after several rows had been ingested, due to unnecessary input buffering. (#364)

   3.20 (2022-01-05)sqlite-utils insert ... --lines to insert the lines from a file into a table with a single line column,
         see Inserting unstructured data with --lines and --text.

       • sqlite-utils insert ... --text to insert the contents of the file into  a  table  with  a  single  text
         column and a single row.

       • sqlite-utils  insert ... --convert allows a Python function to be provided that will be used to convert
         each row that is being inserted into the database.  See  Applying  conversions  while  inserting  data,
         including details on special behavior when combined with --lines and --text. (#356)

       • sqlite-utils convert now accepts a code value of - to read code from standard input. (#353)

       • sqlite-utils convert also now accepts code that defines a named convert(value) function, see Converting
         data in columns.

       • db.supports_strict property showing if the database connection supports SQLite strict tables.

       • table.strict property (see .strict) indicating if the table uses strict mode. (#344)

       • Fixed bug where sqlite-utils upsert ... --detect-types ignored the --detect-types option. (#362)

   3.19 (2021-11-20)
       • The  table.lookup()  method  now  accepts  keyword  arguments  that  match  those  on  the   underlying
         table.insert()  method: foreign_keys=, column_order=, not_null=, defaults=, extracts=, conversions= and
         columns=. You can also now pass pk= to specify a different column name to use for the primary  key.  (‐
         #342)

   3.18 (2021-11-14)
       • The  table.lookup()  method  now  has an optional second argument which can be used to populate columns
         only the first time the record is created, see Working with lookup tables. (#339)

       • sqlite-utils memory now has a --flatten  option  for  flattening  nested  JSON  objects  into  separate
         columns, consistent with sqlite-utils insert. (#332)

       • table.create_index(..., find_unique_name=True) parameter, which finds an available name for the created
         index even if the default name has already been taken. This means  that  index-foreign-keys  will  work
         even if one of the indexes it tries to create clashes with an existing index name. (#335)

       • Added  py.typed  to  the  module,  so  mypy  should now correctly pick up the type annotations. Thanks,
         Andreas Longo. (#331)

       • Now depends on python-dateutil instead of depending on dateutils. Thanks, Denys Pavlov. (#324)

       • table.create() (see Explicitly creating a table) now handles dict, list and tuple types,  mapping  them
         to TEXT columns in SQLite so that they can be stored encoded as JSON. (#338)

       • Inserted  data with square braces in the column names (for example a CSV file containing a item[price])
         column now have the braces converted to underscores: item_price_.  Previously  such  columns  would  be
         rejected with an error. (#329)

       • Now also tested against Python 3.10. (#330)

   3.17.1 (2021-09-22)sqlite-utils memory now works if files passed to it share the same file name. (#325)

       • sqlite-utils query now returns [] in JSON mode if no rows are returned. (#328)

   3.17 (2021-08-24)
       • The  sqlite-utils  memory  command  has  a  new  --analyze  option,  which  runs  the equivalent of the
         analyze-tables command directly against the in-memory database created from the incoming  CSV  or  JSON
         data. (#320)

       • sqlite-utils insert-files now has the ability to insert file contents in to TEXT columns in addition to
         the default BLOB. Pass the --text option or use content_text as a column specifier. (#319)

   3.16 (2021-08-18)
       • Type signatures added to  more methods, including table.resolve_foreign_keys(),  db.create_table_sql(),
         db.create_table() and table.create(). (#314)

       • New db.quote_fts(value) method, see Quoting characters for use in search - thanks, Mark Neumann. (#246)

       • table.search() now accepts an optional quote=True parameter. (#296)

       • CLI command sqlite-utils search now accepts a --quote option. (#296)

       • Fixed  bug  where  --no-headers and --tsv options to sqlite-utils insert could not be used together. (‐
         #295)

       • Various small improvements to API reference documentation.

   3.15.1 (2021-08-10)
       • Python library now includes type annotations on almost all of the  methods,  plus  detailed  docstrings
         describing each one. (#311)

       • New API reference documentation page, powered by those docstrings.

       • Fixed bug where .add_foreign_keys() failed to raise an error if called against a View. (#313)

       • Fixed  bug  where  .delete_where()  returned  a  []  instead  of  returning  self  if  called against a
         non-existent table. (#315)

   3.15 (2021-08-09)sqlite-utils insert --flatten option for flattening nested JSON objects to create  tables  with  column
         names like topkey_nestedkey. (#310)

       • Fixed several spelling mistakes in the documentation, spotted using codespell.

       • Errors  that  occur  while  using  the  sqlite-utils  CLI  tool  now show the responsible SQL and query
         parameters, if possible. (#309)

   3.14 (2021-08-02)
       This release introduces the new sqlite-utils convert command (#251) and corresponding  table.convert(...)
       Python  method  (#302).  These  tools  can  be  used to apply a Python conversion function to one or more
       columns of a table, either updating the column in place or using transformed data  from  that  column  to
       populate one or more other columns.

       This  command-line  example  uses  the Python standard library textwrap module to wrap the content of the
       content column in the articles table to 100 characters:

          $ sqlite-utils convert content.db articles content \
              '"\n".join(textwrap.wrap(value, 100))' \
              --import=textwrap

       The same operation in Python code looks like this:

          import sqlite_utils, textwrap

          db = sqlite_utils.Database("content.db")
          db["articles"].convert("content", lambda v: "\n".join(textwrap.wrap(v, 100)))

       See the full documentation for the sqlite-utils convert command and the table.convert(...) Python  method
       for more details.

       Also in this release:

       • The  new  table.count_where(...)  method,  for counting rows in a table that match a specific SQL WHERE
         clause. (#305)

       • New --silent option for the sqlite-utils insert-files  command  to  hide  the  terminal  progress  bar,
         consistent with the --silent option for sqlite-utils convert. (#301)

   3.13 (2021-07-24)sqlite-utils schema my.db table1 table2 command now accepts optional table names. (#299)

       • sqlite-utils memory --help now describes the --schema option.

   3.12 (2021-06-25)
       • New  db.query(sql,  params)  method,  which executes a SQL query and returns the results as an iterator
         over Python dictionaries. (#290)

       • This project now uses flake8 and has started to use mypy. (#291)

       • New documentation on contributing to this project. (#292)

   3.11 (2021-06-20)
       • New sqlite-utils memory data.csv --schema option, for outputting the schema of the  in-memory  database
         generated from one or more files. See --schema, --analyze, --dump and --save. (#288)

       • Added installation instructions. (#286)

   3.10 (2021-06-19)
       This  release introduces the sqlite-utils memory command, which can be used to load CSV or JSON data into
       a temporary in-memory database and run SQL queries  (including  joins  across  multiple  files)  directly
       against that data.

       Also new: sqlite-utils insert --detect-types, sqlite-utils dump, table.use_rowid plus some smaller fixes.

   sqlite-utils memory
       This  example  of  sqlite-utils  memory  retrieves  information  about the all of the repositories in the
       Dogsheep organization on GitHub using this JSON API, sorts them by their number of stars  and  outputs  a
       table of the top five (using -t):

          $ curl -s 'https://api.github.com/users/dogsheep/repos' \
            | sqlite-utils memory - '
                select full_name, forks_count, stargazers_count
                from stdin order by stargazers_count desc limit 5
              ' -t
          full_name                            forks_count    stargazers_count
          ---------------------------------  -------------  ------------------
          dogsheep/twitter-to-sqlite                    12                 225
          dogsheep/github-to-sqlite                     14                 139
          dogsheep/dogsheep-photos                       5                 116
          dogsheep/dogsheep.github.io                    7                  90
          dogsheep/healthkit-to-sqlite                   4                  85

       The tool works against files on disk as well. This example joins data from two CSV files:

          $ cat creatures.csv
          species_id,name
          1,Cleo
          2,Bants
          2,Dori
          2,Azi
          $ cat species.csv
          id,species_name
          1,Dog
          2,Chicken
          $ sqlite-utils memory species.csv creatures.csv '
            select * from creatures join species on creatures.species_id = species.id
          '
          [{"species_id": 1, "name": "Cleo", "id": 1, "species_name": "Dog"},
           {"species_id": 2, "name": "Bants", "id": 2, "species_name": "Chicken"},
           {"species_id": 2, "name": "Dori", "id": 2, "species_name": "Chicken"},
           {"species_id": 2, "name": "Azi", "id": 2, "species_name": "Chicken"}]

       Here  the  species.csv file becomes the species table, the creatures.csv file becomes the creatures table
       and the output is JSON, the default output format.

       You can also use the --attach option to attach existing SQLite database files to the in-memory  database,
       in order to join data from CSV or JSON directly against your existing tables.

       Full  documentation  of  this  new  feature  is  available  in  Querying data directly using an in-memory
       database. (#272)

   sqlite-utils insert --detect-types
       The sqlite-utils insert command can be used to insert data from JSON, CSV or  TSV  files  into  a  SQLite
       database  file.  The  new --detect-types option (shortcut -d), when used in conjunction with a CSV or TSV
       import, will automatically detect if columns in the file  are  integers  or  floating  point  numbers  as
       opposed  to  treating everything as a text column and create the new table with the corresponding schema.
       See Inserting CSV or TSV data for details. (#282)

   Other changesBug fix: table.transform(), when run against a table without explicit primary keys,  would  incorrectly
         create a new version of the table with an explicit primary key column called rowid. (#284)

       • New table.use_rowid introspection property, see .use_rowid. (#285)

       • The  new  sqlite-utils dump file.db command outputs a SQL dump that can be used to recreate a database.
         (#274)

       • -h now works as a shortcut for --help, thanks Loren McIntyre. (#276)

       • Now using pytest-cov and Codecov to track test coverage - currently at 96%. (#275)

       • SQL errors that occur when using sqlite-utils query are now displayed as CLI errors.

   3.9.1 (2021-06-12)
       • Fixed bug when using table.upsert_all() to create a table with only a single column that is treated  as
         the primary key. (#271)

   3.9 (2021-06-11)
       • New  sqlite-utils  schema  command  showing  the full SQL schema for a database, see Showing the schema
         (CLI). (#268)

       • db.schema introspection property exposing the same feature to  the  Python  library,  see  Showing  the
         schema (Python library).

   3.8 (2021-06-02)
       • New sqlite-utils indexes command to list indexes in a database, see Listing indexes. (#263)

       • table.xindexes introspection property returning more details about that table's indexes, see .xindexes.
         (#261)

   3.7 (2021-05-28)
       • New table.pks_and_rows_where() method returning (primary_key, row_dictionary) tuples - see Listing rows
         with their primary keys. (#240)

       • Fixed bug with table.add_foreign_key() against columns containing spaces. (#238)

       • table_or_view.drop(ignore=True) option for avoiding errors if the table or view does not exist. (#237)

       • sqlite-utils drop-view --ignore and sqlite-utils drop-table --ignore options. (#237)

       • Fixed a bug with inserts of nested JSON containing non-ascii strings - thanks, Dylan Wu. (#257)

       • Suggest --alter if an error occurs caused by a missing column. (#259)

       • Support creating indexes with columns in descending order, see API documentation and CLI documentation.
         (#260)

       • Correctly handle CSV files that start with a UTF-8 BOM. (#250)

   3.6 (2021-02-18)
       This release adds the ability to execute queries joining data from more than one database file -  similar
       to the cross database querying feature introduced in Datasette 0.55.

       • The  db.attach(alias,  filepath)  Python  method  can  be  used  to  attach extra databases to the same
         connection, see db.attach() in the Python API documentation. (#113)

       • The --attach option attaches extra aliased databases  to  run  SQL  queries  against  directly  on  the
         command-line, see attaching additional databases in the CLI documentation. (#236)

   3.5 (2021-02-14)sqlite-utils  insert --sniff option for detecting the delimiter and quote character used by a CSV file,
         see Alternative delimiters and quote characters. (#230)

       • The table.rows_where(), table.search() and table.search_sql() methods all now take optional offset= and
         limit= arguments. (#231)

       • New  --no-headers  option for sqlite-utils insert --csv to handle CSV files that are missing the header
         row, see CSV files without a header row. (#228)

       • Fixed bug where inserting data with extra columns in subsequent chunks would  throw  an  error.  Thanks
         @nieuwenhoven for the fix. (#234)

       • Fixed bug importing CSV files with columns containing more than 128KB of data. (#229)

       • Test  suite now runs in CI against Ubuntu, macOS and Windows. Thanks @nieuwenhoven for the Windows test
         fixes. (#232)

   3.4.1 (2021-02-05)
       • Fixed a code import bug that slipped in to 3.4. (#226)

   3.4 (2021-02-05)sqlite-utils insert --csv now accepts optional --delimiter and  --quotechar  options.  See  Alternative
         delimiters and quote characters. (#223)

   3.3 (2021-01-17)
       • The  table.m2m() method now accepts an optional alter=True argument to specify that any missing columns
         should be added to the referenced table. See Working with many-to-many relationships. (#222)

   3.2.1 (2021-01-12)
       • Fixed a bug where .add_missing_columns() failed to take case insensitive column names into account.  (‐
         #221)

   3.2 (2021-01-03)
       This  release  introduces  a  new  mechanism  for speeding up count(*) queries using cached table counts,
       stored in a _counts table and updated by triggers. This mechanism is described  in  Cached  table  counts
       using triggers, and can be enabled using Python API methods or the new enable-counts CLI command. (#212)

       • table.enable_counts() method for enabling these triggers on a specific table.

       • db.enable_counts() method for enabling triggers on every table in the database. (#213)

       • New  sqlite-utils  enable-counts  my.db  command  for  enabling  counts  on all or specific tables, see
         Enabling cached counts. (#214)

       • New sqlite-utils triggers command for listing the triggers defined for a database or  specific  tables,
         see Listing triggers. (#218)

       • New  db.use_counts_table property which, if True, causes table.count to read from the _counts table. (‐
         #215)

       • table.has_counts_triggers property revealing if a table  has  been  configured  with  the  new  _counts
         database triggers.

       • db.reset_counts()  method and sqlite-utils reset-counts command for resetting the values in the _counts
         table. (#219)

       • The previously undocumented db.escape() method has been renamed to db.quote() and is now covered by the
         documentation: Quoting strings for use in SQL. (#217)

       • New table.triggers_dict and db.triggers_dict introspection properties. (#211, #216)

       • sqlite-utils insert now shows a more useful error message for invalid JSON. (#206)

   3.1.1 (2021-01-01)
       • Fixed failing test caused by optimize sometimes creating larger database files. (#209)

       • Documentation now lives on https://sqlite-utils.datasette.io/

       • README now includes brew install sqlite-utils installation method.

   3.1 (2020-12-12)
       • New  command:  sqlite-utils  analyze-tables my.db outputs useful information about the table columns in
         the database, such as the number of distinct values and how many rows are null.  See  Analyzing  tables
         for documentation. (#207)

       • New  table.analyze_column(column)  Python  method  used by the analyze-tables command - see Analyzing a
         column.

       • The table.update() method now correctly handles values that should be stored as JSON.  Thanks,  Andreas
         Madsack. (#204)

   3.0 (2020-11-08)
       This  release  introduces a new sqlite-utils search command for searching tables, see Executing searches.
       (#192)

       The table.search() method has been redesigned, see Searching with table.search(). (#197)

       The release includes minor backwards-incompatible changes, hence the version bump to 3.0. Those  changes,
       which should not affect most users, are:

       • The  -c  shortcut  option  for outputting CSV is no longer available. The full --csv option is required
         instead.

       • The -f shortcut for --fmt has also been removed - use --fmt.

       • The table.search() method now defaults to sorting by relevance, not sorting by rowid. (#198)

       • The table.search() method now returns a generator over a list of  Python  dictionaries.  It  previously
         returned a list of tuples.

       Also in this release:

       • The query, tables, rows and search CLI commands now accept a new --tsv option which outputs the results
         in TSV. (#193)

       • A new table.virtual_table_using property reveals if a table is a virtual table, and returns  the  upper
         case  type of virtual table (e.g. FTS4 or FTS5) if it is. It returns None if the table is not a virtual
         table. (#196)

       • The new table.search_sql() method returns the SQL for searching a table, see Building SQL queries  with
         table.search_sql().

       • sqlite-utils rows now accepts multiple optional -c parameters specifying the columns to return. (#200)

       Changes since the 3.0a0 alpha release:

       • The  sqlite-utils  search  command  now defaults to returning every result, unless you add a --limit 20
         option.

       • The sqlite-utils search -c and table.search(columns=[]) options are now fully respected. (#201)

   2.23 (2020-10-28)table.m2m(other_table, records) method now takes any iterable, not just a list or tuple.  Thanks,  Adam
         Wolf. (#189)

       • sqlite-utils insert now displays a progress bar for CSV or TSV imports. (#173)

       • New  @db.register_function(deterministic=True) option for registering deterministic SQLite functions in
         Python 3.8 or higher. (#191)

   2.22 (2020-10-16)
       • New --encoding option for processing CSV and TSV files that use a  non-utf-8  encoding,  for  both  the
         insert and update commands. (#182)

       • The --load-extension option is now available to many more commands. (#137)

       • --load-extension=spatialite can be used to load SpatiaLite from common installation locations, if it is
         available. (#136)

       • Tests now also run against Python 3.9. (#184)

       • Passing pk=["id"] now has the same effect as passing pk="id". (#181)

   2.21 (2020-09-24)table.extract() and sqlite-utils extract now apply much, much faster - one  example  operation  reduced
         from twelve minutes to just four seconds! (#172)

       • sqlite-utils extract no longer shows a progress bar, because it's fast enough not to need one.

       • New  column_order=  option  for  table.transform() which can be used to alter the order of columns in a
         table. (#175)

       • sqlite-utils transform --column-order= option (with a -o shortcut) for changing column order. (#176)

       • The table.transform(drop_foreign_keys=) parameter and  the  sqlite-utils  transform  --drop-foreign-key
         option have changed. They now accept just the name of the column rather than requiring all three of the
         column, other table and other column. This is technically a backwards-incompatible change but  I  chose
         not to bump the major version number because the transform feature is so new. (#177)

       • The table .disable_fts(), .rebuild_fts(), .delete(), .delete_where() and .add_missing_columns() methods
         all now return self, which means they can be chained together with other table operations.

   2.20 (2020-09-22)
       This release introduces two key new capabilities: transform (#114) and extract (#42).

   Transform
       SQLite's ALTER TABLE  has  several  documented  limitations.  The  table.transform()  Python  method  and
       sqlite-utils  transform  CLI command work around these limitations using a pattern where a new table with
       the desired structure is created, data is copied over to it  and  the  old  table  is  then  dropped  and
       replaced by the new one.

       You can use these tools to change column types, rename columns, drop columns, add and remove NOT NULL and
       defaults, remove foreign key constraints and more. See the transforming  tables  (CLI)  and  transforming
       tables (Python library) documentation for full details of how to use them.

   Extract
       Sometimes  a  database  table  - especially one imported from a CSV file - will contain duplicate data. A
       Trees table may include a Species column with only a few dozen  unique  values,  when  the  table  itself
       contains thousands of rows.

       The table.extract() method and sqlite-utils extract commands can extract a column - or multiple columns -
       out into a separate lookup table, and set up a foreign key relationship from the original table.

       The Python library extract() documentation describes how  extraction  works  in  detail,  and  Extracting
       columns into a separate table in the CLI documentation includes a detailed example.

   Other changes
       • The  @db.register_function  decorator  can  be  used to quickly register Python functions as custom SQL
         functions, see Registering custom SQL functions. (#162)

       • The table.rows_where() method now accepts an optional select= argument  for  specifying  which  columns
         should be selected, see Listing rows.

   2.19 (2020-09-20)
       • New sqlite-utils add-foreign-keys command for Adding multiple foreign keys at once. (#157)

       • New  table.enable_fts(...,  replace=True)  argument  for  replacing  an  existing  FTS table with a new
         configuration. (#160)

       • New table.add_foreign_key(..., ignore=True) argument for ignoring a foreign key if it  already  exists.
         (#112)

   2.18 (2020-09-08)table.rebuild_fts() method for rebuilding a FTS index, see Rebuilding a full-text search table. (#155)

       • sqlite-utils rebuild-fts data.db command for rebuilding FTS indexes across all tables, or just specific
         tables. (#155)

       • table.optimize() method no longer deletes junk rows from the *_fts_docsize table.  This  was  added  in
         2.17 but it turns out running table.rebuild_fts() is a better solution to this problem.

       • Fixed a bug where rows with additional columns that are inserted after the first batch of records could
         cause an error due to breaking SQLite's maximum number of parameters. Thanks, Simon Wiles. (#145)

   2.17 (2020-09-07)
       This release handles a bug where replacing rows  in  FTS  tables  could  result  in  growing  numbers  of
       unnecessary rows in the associated *_fts_docsize table. (#149)

       • PRAGMA   recursive_triggers=on   by   default   for   all   connections.  You  can  turn  it  off  with
         Database(recursive_triggers=False). (#152)

       • table.optimize() method now deletes unnecessary rows from the *_fts_docsize table. (#153)

       • New tracer method for tracking underlying SQL queries, see Tracing queries. (#150)

       • Neater indentation for schema SQL. (#148)

       • Documentation for sqlite_utils.AlterError exception thrown by in add_foreign_keys().

   2.16.1 (2020-08-28)insert_all(..., alter=True) now works for columns introduced after the first 100 records. Thanks, Simon
         Wiles! (#139)

       • Continuous Integration is now powered by GitHub Actions. (#143)

   2.16 (2020-08-21)--load-extension option for sqlite-utils query for loading SQLite extensions. (#134)

       • New sqlite_utils.utils.find_spatialite() function for finding SpatiaLite in common locations. (#135)

   2.15.1 (2020-08-12)
       • Now available as a sdist package on PyPI in addition to a wheel. (#133)

   2.15 (2020-08-10)
       • New  db.enable_wal()  and db.disable_wal() methods for enabling and disabling Write-Ahead Logging for a
         database file - see WAL mode in the Python API documentation.

       • Also sqlite-utils enable-wal file.db and sqlite-utils disable-wal file.db commands for doing  the  same
         thing on the command-line, see WAL mode (CLI). (#132)

   2.14.1 (2020-08-05)
       • Documentation improvements.

   2.14 (2020-08-01)
       • The  insert-files  command  can  now  read from standard input: cat dog.jpg | sqlite-utils insert-files
         dogs.db pics - --name=dog.jpg. (#127)

       • You can now specify a full-text search tokenizer using the new  tokenize=  parameter  to  enable_fts().
         This  means you can enable Porter stemming on a table by running db["articles"].enable_fts(["headline",
         "body"], tokenize="porter"). (#130)

       • You can also set a custom tokenizer  using  the  sqlite-utils  enable-fts  CLI  command,  via  the  new
         --tokenize option.

   2.13 (2020-07-29)memoryview  and  uuid.UUID  objects are now supported. memoryview objects will be stored using BLOB and
         uuid.UUID objects will be stored using TEXT. (#128)

   2.12 (2020-07-27)
       The theme of this release is better tools for working with binary data. The new insert-files command  can
       be used to insert binary files directly into a database table, and other commands have been improved with
       better support for BLOB columns.

       • sqlite-utils insert-files my.db gifs *.gif can now insert the contents of files into a specified table.
         The  columns  in  the  table can be customized to include different pieces of metadata derived from the
         files. See Inserting data from files. (#122)

       • --raw option to sqlite-utils query - for outputting just a single raw column value - see Returning  raw
         data, such as binary content. (#123)

       • JSON output now encodes BLOB values as special base64 objects - see Returning JSON. (#125)

       • The same format of JSON base64 objects can now be used to insert binary data - see Inserting JSON data.
         (#126)

       • The sqlite-utils query command can now accept named parameters, e.g. sqlite-utils :memory: "select :num
         * :num2" -p num 5 -p num2 6 - see Returning JSON. (#124)

   2.11 (2020-07-08)
       • New  --truncate  option  to  sqlite-utils  insert, and truncate=True argument to .insert_all(). Thanks,
         Thomas Sibley. (#118)

       • The sqlite-utils query command now runs updates in a transaction. Thanks, Thomas Sibley. (#120)

   2.10.1 (2020-06-23)
       • Added documentation for the table.pks introspection property. (#116)

   2.10 (2020-06-12)
       • The sqlite-utils command now supports UPDATE/INSERT/DELETE in addition to SELECT. (#115)

   2.9.1 (2020-05-11)
       • Added custom project links to the PyPI listing.

   2.9 (2020-05-10)
       • New sqlite-utils drop-table command, see Dropping tables. (#111)

       • New sqlite-utils drop-view command, see Dropping views.

       • Python decimal.Decimal objects are now stored as FLOAT. (#110)

   2.8 (2020-05-03)
       • New sqlite-utils create-table command, see Creating tables. (#27)

       • New sqlite-utils create-view command, see Creating views. (#107)

   2.7.2 (2020-05-02)db.create_view(...) now has additional parameters ignore=True or replace=True, see Creating  views.  (‐
         #106)

   2.7.1 (2020-05-01)
       • New sqlite-utils views my.db command for listing views in a database, see Listing views. (#105)

       • sqlite-utils  tables  (and  views)  has  a new --schema option which outputs the table/view schema, see
         Listing tables. (#104)

       • Nested structures containing invalid JSON values (e.g. Python bytestrings)  are  now  serialized  using
         repr() instead of throwing an error. (#102)

   2.7 (2020-04-17)
       • New  columns=  argument  for  the  .insert(),  .insert_all(),  .upsert() and .upsert_all() methods, for
         over-riding the auto-detected types for columns and specifying additional columns that should be  added
         when the table is created. See Custom column order and column types. (#100)

   2.6 (2020-04-15)
       • New table.rows_where(..., order_by="age desc") argument, see Listing rows. (#76)

   2.5 (2020-04-12)
       • Panda's Timestamp is now stored as a SQLite TEXT column. Thanks, b0b5h4rp13! (#96)

       • table.last_pk is now only available for inserts or upserts of a single record. (#98)

       • New Database(filepath, recreate=True) parameter for deleting and recreating the database. (#97)

   2.4.4 (2020-03-23)
       • Fixed bug where columns with only null values were not correctly created. (#95)

   2.4.3 (2020-03-23)
       • Column type suggestion code is no longer confused by null values. (#94)

   2.4.2 (2020-03-14)table.column_dicts  now  works  with all column types - previously it would throw errors on types other
         than TEXT, BLOB, INTEGER or FLOAT. (#92)

       • Documentation for NotFoundError thrown by table.get(pk) - see Retrieving a specific record.

   2.4.1 (2020-03-01)table.enable_fts() now works with columns that contain spaces. (#90)

   2.4 (2020-02-26)table.disable_fts() can now be used  to  remove  FTS  tables  and  triggers  that  were  created  using
         table.enable_fts(...). (#88)

       • The  sqlite-utils  disable-fts  command  can  be  used  to  remove  FTS  tables  and  triggers from the
         command-line. (#88)

       • Trying to create table columns with square braces ([ or ]) in the name now raises an error. (#86)

       • Subclasses of dict, list and tuple are now detected as needing a JSON column. (#87)

   2.3.1 (2020-02-10)
       table.create_index() now works for columns that contain spaces. (#85)

   2.3 (2020-02-08)
       table.exists() is now a method, not a property. This was not a documented part of the API before  so  I'm
       considering this a non-breaking change. (#83)

   2.2.1 (2020-02-06)
       Fixed a bug where .upsert(..., hash_id="pk") threw an error (#84).

   2.2 (2020-02-01)
       New  feature:  sqlite_utils.suggest_column_types([records]) returns the suggested column types for a list
       of records. See Suggesting column types. (#81).

       This replaces the undocumented table.detect_column_types() method.

   2.1 (2020-01-30)
       New feature: conversions={...} can be passed  to  the  .insert()  family  of  functions  to  specify  SQL
       conversions  that  should  be applied to values that are being inserted or updated. See Converting column
       values using SQL functions . (#77).

   2.0.1 (2020-01-05)
       The .upsert() and .upsert_all() methods now raise a sqlite_utils.db.PrimaryKeyRequired exception  if  you
       call them without specifying the primary key column using pk= (#73).

   2.0 (2019-12-29)
       This release changes the behaviour of upsert. It's a breaking change, hence 2.0.

       The  upsert  command-line  utility  and the .upsert() and .upsert_all() Python API methods have had their
       behaviour altered. They used to completely replace the affected records: now, they update  the  specified
       values on existing records but leave other columns unaffected.

       See Upserting data using the Python API and Upserting data using the CLI for full details.

       If  you  want  the  old  behaviour  - where records were completely replaced - you can use $ sqlite-utils
       insert  ...  --replace  on  the  command-line  and  .insert(...,   replace=True)   and   .insert_all(...,
       replace=True) in the Python API. See Insert-replacing data using the Python API and Insert-replacing data
       using the CLI for more.

       For full background on this change, see issue #66.

   1.12.1 (2019-11-06)
       • Fixed error thrown when .insert_all() and .upsert_all() were called with empty lists (#52)

   1.12 (2019-11-04)
       Python library utilities for deleting records (#62)

       • db["tablename"].delete(4) to delete by primary key, see Deleting a specific recorddb["tablename"].delete_where("id > ?", [3]) to delete by a where clause, see Deleting multiple records

   1.11 (2019-09-02)
       Option to create triggers to automatically keep FTS tables up-to-date with newly  inserted,  updated  and
       deleted records. Thanks, Amjith Ramanujam! (#57)

       • sqlite-utils enable-fts ... --create-triggers - see Configuring full-text search using the CLIdb["tablename"].enable_fts(...,  create_triggers=True)  -  see  Configuring  full-text search using the
         Python library

       • Support for introspecting triggers for a database or table - see Introspecting tables and views (#59)

   1.10 (2019-08-23)
       Ability to introspect and run queries against views (#54)

       • db.view_names() method and and db.views property

       • Separate View and Table classes, both subclassing new Queryable class

       • view.drop() method

       See Listing views.

   1.9 (2019-08-04)table.m2m(...) method for creating many-to-many relationships: Working with many-to-many  relationships
         (#23)

   1.8 (2019-07-28)table.update(pk, values) method: Updating a specific record (#35)

   1.7.1 (2019-07-28)
       • Fixed  bug  where  inserting  records  with  11  columns  in  a  batch of 100 triggered a "too many SQL
         variables" error (#50)

       • Documentation and tests for table.drop() method: Dropping a table or view

   1.7 (2019-07-24)
       Support for lookup tables.

       • New table.lookup({...}) utility method for building and querying  lookup  tables  -  see  Working  with
         lookup tables (#44)

       • New   extracts=   table  configuration  option,  see  Populating  lookup  tables  automatically  during
         insert/upsert (#46)

       • Use pysqlite3 if it is available, otherwise use sqlite3 from the standard library

       • Table options can now be passed to the new db.table(name, **options) factory function  in  addition  to
         being passed to insert_all(records, **options) and friends - see Table configuration options

       • In-memory databases can now be created using db = Database(memory=True)

   1.6 (2019-07-18)sqlite-utils insert can now accept TSV data via the new --tsv option (#41)

   1.5 (2019-07-14)
       • Support for compound primary keys (#36)

         • Configure these using the CLI tool by passing --pk multiple times

         • In Python, pass a tuple of columns to the pk=(..., ...) argument: Compound primary keys

       • New table.get() method for retrieving a record by its primary key: Retrieving a specific record (#39)

   1.4.1 (2019-07-14)
       • Assorted minor documentation fixes: changes since 1.4

   1.4 (2019-06-30)
       • Added sqlite-utils index-foreign-keys command (docs) and db.index_foreign_keys() method (docs) (#33)

   1.3 (2019-06-28)
       • New  mechanism for adding multiple foreign key constraints at once: db.add_foreign_keys() documentation
         (#31)

   1.2.2 (2019-06-25)
       • Fixed bug where datetime.time was not being handled correctly

   1.2.1 (2019-06-20)
       • Check the column exists before attempting to add a foreign key (#29)

   1.2 (2019-06-12)
       • Improved foreign  key  definitions:  you  no  longer  need  to  specify  the  column,  other_table  AND
         other_column  to  define  a  foreign  key - if you omit the other_table or other_column the script will
         attempt to guess the correct values by introspecting the database. See Adding foreign  key  constraints
         for details. (#25)

       • Ability  to  set  NOT  NULL  constraints  and DEFAULT values when creating tables (#24). Documentation:
         Setting defaults and not null constraints (Python API), Setting defaults and not null constraints (CLI)

       • Support for not_null_default=X / --not-null-default for setting a NOT NULL DEFAULT 'x'  when  adding  a
         new column. Documentation: Adding columns (Python API), Adding columns (CLI)

   1.1 (2019-05-28)
       • Support  for  ignore=True / --ignore for ignoring inserted records if the primary key already exists (‐
         #21) - documentation: Inserting data (Python API), Inserting data (CLI)

       • Ability to add a column that is a foreign key reference using fk=...  /  --fk  (#16)  -  documentation:
         Adding columns (Python API), Adding columns (CLI)

   1.0.1 (2019-05-27)sqlite-utils rows data.db table --json-cols - fixed bug where --json-cols was not obeyed

   1.0 (2019-05-24)Option to automatically add new columns if you attempt to insert or upsert data with extra fields:
                sqlite-utils insert ... --alter - see Adding columns automatically with the sqlite-utils CLI

                db["tablename"].insert(record,  alter=True)  - see Adding columns automatically using the Python
                API

       • New --json-cols option for outputting nested JSON, see Nested JSON values

   0.14 (2019-02-24)
       • Ability to create unique indexes: db["mytable"].create_index(["name"], unique=True)db["mytable"].create_index(["name"], if_not_exists=True)$ sqlite-utils create-index mydb.db mytable col1 [col2...], see Creating indexestable.add_column(name, type) method, see Adding columns$ sqlite-utils add-column mydb.db mytable nameofcolumn, see Adding columns (CLI)

       • db["books"].add_foreign_key("author_id", "authors", "id"), see Adding foreign key constraints$ sqlite-utils add-foreign-key books.db books author_id authors id, see Adding foreign key  constraints
         (CLI)

       • Improved (but backwards-incompatible) foreign_keys= argument to various methods, see Specifying foreign
         keys

   0.13 (2019-02-23)
       • New --table and --fmt options can be used to output query results in a variety of visual table formats,
         see Table-formatted output

       • New hash_id= argument can now be used for Setting an ID based on the hash of the row contents

       • Can now derive correct column types for numpy int, uint and float values

       • table.last_id has been renamed to table.last_rowidtable.last_pk now contains the last inserted primary key, if pk= was specified

       • Prettier indentation in the CREATE TABLE generated schemas

   0.12 (2019-02-22)
       • Added db[table].rows iterator - see Listing rows

       • Replaced sqlite-utils json and sqlite-utils csv with a new default subcommand called sqlite-utils query
         which defaults to JSON and takes formatting options --nl, --csv and --no-headers - see  Returning  JSON
         and Returning CSV or TSV

       • New sqlite-utils rows data.db name-of-table command, see Returning all rows in a tablesqlite-utils  table  command  now  takes options --counts and --columns plus the standard output format
         options, see Listing tables

   0.11 (2019-02-07)
       New commands for enabling FTS against a table and columns:

          sqlite-utils enable-fts db.db mytable col1 col2

       See Configuring full-text search.

   0.10 (2019-02-06)
       Handle datetime.date and datetime.time values.

       New option for efficiently inserting rows from a CSV:

          sqlite-utils insert db.db foo - --csv

   0.9 (2019-01-27)
       Improved support for newline-delimited JSON.

       sqlite-utils insert has two new command-line options:

       • --nl means "expect newline-delimited JSON". This is an extremely efficient  way  of  loading  in  large
         amounts of data, especially if you pipe it into standard input.

       • --batch-size=1000  lets  you  increase the batch size (default is 100). A commit will be issued every X
         records. This also control how many initial records are considered when detecting the desired SQL table
         schema for the data.

       In  the  Python  API,  the  table.insert_all(...)  method can now accept a generator as well as a list of
       objects. This will be efficiently used to populate the table no matter how many records are  produced  by
       the generator.

       The  Database()  constructor  can now accept a pathlib.Path object in addition to a string or an existing
       SQLite connection object.

   0.8 (2019-01-25)
       Two new commands: sqlite-utils csv and sqlite-utils json

       These commands execute a SQL query and return the results as CSV or JSON. See Returning CSV  or  TSV  and
       Returning JSON for more details.

          $ sqlite-utils json --help
          Usage: sqlite-utils json [OPTIONS] PATH SQL

            Execute SQL query and return the results as JSON

          Options:
            --nl      Output newline-delimited JSON
            --arrays  Output rows as arrays instead of objects
            --help    Show this message and exit.

          $ sqlite-utils csv --help
          Usage: sqlite-utils csv [OPTIONS] PATH SQL

            Execute SQL query and return the results as CSV

          Options:
            --no-headers  Exclude headers from CSV output
            --help        Show this message and exit.

   0.7 (2019-01-24)
       This release implements the sqlite-utils command-line tool with a number of useful subcommands.

       • sqlite-utils tables demo.db lists the tables in the database

       • sqlite-utils tables demo.db --fts4 shows just the FTS4 tables

       • sqlite-utils tables demo.db --fts5 shows just the FTS5 tables

       • sqlite-utils vacuum demo.db runs VACUUM against the database

       • sqlite-utils optimize demo.db runs OPTIMIZE against all FTS tables, then VACUUM

       • sqlite-utils optimize demo.db --no-vacuum runs OPTIMIZE but skips VACUUM

       The  two  most useful subcommands are upsert and insert, which allow you to ingest JSON files with one or
       more records in them, creating the corresponding table with the correct columns if it  does  not  already
       exist. See Inserting JSON data for more details.

       • sqlite-utils  insert  demo.db  dogs  dogs.json --pk=id inserts new records from dogs.json into the dogs
         table

       • sqlite-utils upsert demo.db  dogs  dogs.json  --pk=id  upserts  records,  replacing  any  records  with
         duplicate primary keys

       One backwards incompatible change: the db["table"].table_names property is now a method:

       • db["table"].table_names() returns a list of table names

       • db["table"].table_names(fts4=True) returns a list of just the FTS4 tables

       • db["table"].table_names(fts5=True) returns a list of just the FTS5 tables

       A few other changes:

       • Plenty of updated documentation, including full coverage of the new command-line tool

       • Allow column names to be reserved words (use correct SQL escaping)

       • Added automatic column support for bytes and datetime.datetime

   0.6 (2018-08-12).enable_fts()  now  takes  optional  argument fts_version, defaults to FTS5. Use FTS4 if the version of
         SQLite bundled with your Python does not support FTS5

       • New optional column_order= argument to .insert() and friends for providing a partial  or  full  desired
         order of the columns when a database table is created

       • New documentation for .insert_all() and .upsert() and .upsert_all()

   0.5 (2018-08-05)db.tables and db.table_names introspection properties

       • db.indexes property for introspecting indexes

       • table.create_index(columns, index_name) method

       • db.create_view(name, sql) method

       • Table methods can now be chained, plus added table.last_id for accessing the last inserted row ID

   0.4 (2018-07-31)enable_fts(), populate_fts() and search() table methods

   0.3.1 (2018-07-31)
       • Documented related projects

       • Added badges to the documentation

   0.3 (2018-07-31)
       • New Table class representing a table in the SQLite database

   0.2 (2018-07-28)
       • Initial release to PyPI

AUTHOR

       Simon Willison

       2018-2024, Simon Willison

                                                  Mar 07, 2024                                   SQLITE-UTILS(1)