oracular (7) uves_obs_scired.7.gz

Provided by: cpl-plugin-uves-doc_6.1.8+dfsg-2build3_all bug

NAME

       uves_obs_scired - Reduces a science frame

SYNOPSIS

       esorex uves_obs_scired [OPTIONS] FILE.sof

DESCRIPTION

       This recipe reduces a science frame (SCIENCE_BLUE or SCIENCE_RED, or SCI_POINT_BLUE or
       SCI_POINT_RED, or SCI_EXTND_BLUE or SCI_EXTND_RED or SCI_SLICER_BLUE or SCI_SLICER_RED)
       using a combination (depending on recipe parameters and provided input frames) of the
       steps:
        - bias subtraction,
        - dark subtraction,
        - background subtraction,
        - extraction/cosmic ray removal,
        - flat field correction,
        - wavelength rebinning,
        - sky subtraction,
        - order merging,
        - response correction (if response curve is provided).

       Additional input for this recipe are: order table(s) for each chip, ORDER_TABLE_xxxx
       (where xxxx=BLUE, REDL, REDU), line table(s) for each chip, LINE_TABLE_xxxx, a master bias
       frame, MASTER_BIAS_xxxx, a master flat, MASTER_FLAT_xxxx, optionally an instrument
       response table, INSTR_RESPONSE_FINE_xxx, optionally an master response table,
       MASTER_RESPONSE_xxx, and optionally a table describing the atmospheric extinction,
       EXTCOEFF_TABLE.

       For each chip (xxxx = BLUE, REDL, REDU) the recipe produces a combination of the products:
        ´RED_SCIENCE_xxxx´        Reduced science spectrum
        ´MERGED_SCIENCE_xxxx´     Merged spectrum, no sky subtraction
        ´WCALIB_SCIENCE_xxxx´     Extracted, wavelength calibrated frame in
                                  (wavelength, order) space
        ´WCALIB_FF_SCIENCE_xxxx´  Extracted, flat-fielded, wave.cal. frame in
                                  (wavelength, order) space
                                  (Only if flatfielding done)
        ´WCALIB_FLAT_OBJ_xxxx´    Extracted, wavelength calibrated flat field
                                  in (wavelength, order) space
                                  (Only if flatfielding done)
        ´ERRORBAR_SCIENCE_xxxx´   Error bars of ´RED_SCIENCE_xxxx´
        ´VARIANCE_SCIENCE_xxxx´   Variance of extracted, flatfielded object in
                                  (pixel, order) space
        ´ORDER_TRACE_xxxx´        Table describing the spatial profile
        ´FLUXCAL_SCIENCE_xxxx´    Flux-calibrated science spectrum
        ´FLUXCAL_ERROR_xxxx´      Error bars of ´FLUXCAL_SCIENCE_xxxx´
        ´BKG_SCI_xxxx´            The subtracted background image
        ´CRMASK_xxxx´             List of cosmic ray hits
        ´MERGED_SKY_xxxx´         The merged sky spectrum
        ´EXT_2D_SCIENCE_xxxx´     The 2d extracted spectrum
        ´FF2D_SCIENCE_xxxx´       The 2d extracted, flat-fielded spectrum
        ´WCAL2D_SCIENCE_xxxx´     The 2d extracted, flat-fielded, wave.cal. spectrum
        ´MER2D_SCIENCE_xxxx´      The 2d reduced, flux-calibrated (if possible)
                                  science spectrum

OPTIONS

       --clean_traps <bool>
              Clean detector traps. If TRUE detector traps are interpolated.The bad pixels are
              replaced by the average of thenearest good pixels in the same column, or simply
              marked as bad. The positions of bad pixels are hard-coded (as function of UVES
              chip). (bool; default: False). The full name of this option for the EsoRex
              configuration file is uves_obs_scired.clean_traps [default = False].

       --debug <bool>
              Whether or not to save intermediate results to local directory (bool; default:
              False). The full name of this option for the EsoRex configuration file is
              uves.debug [default = False].

       --plotter <str>
              Any plots produced by the recipe are redirected to the command specified by this
              parameter. The plotting command must contain the substring ´gnuplot´ and must be
              able to parse gnuplot syntax on its standard input. Valid examples of such a
              command may include ´gnuplot -persist´ and ´cat > mygnuplot$$.gp´. A finer control
              of the plotting options can be obtained by writing an executable script, e.g.
              my_gnuplot.pl, that executes gnuplot after setting the desired gnuplot options
              (e.g. set terminal pslatex color). To turn off plotting, set this parameter to ´no´
              (str; default: ´no´). The full name of this option for the EsoRex configuration
              file is uves.plotter [default = no].

       --process_chip <str>
              For RED arm data process the redl, redu, or both chip(s) (str; default: ´both´).
              The full name of this option for the EsoRex configuration file is uves.process_chip
              [default = both].

       --reduce.backsub.mmethod <str>
              Background measuring method. If equal to ´median´ the background is sampled using
              the median of a subwindow. If ´minimum´, the subwindow minimum value is used. If
              ´no´, no background subtraction is done.  (str; default: ´median´). The full name
              of this option for the EsoRex configuration file is
              uves_obs_scired.reduce.backsub.mmethod [default = median].

       --reduce.backsub.npoints <int>
              This is the number of columns in interorder space used to sample the background.
              (int; default: 82). The full name of this option for the EsoRex configuration file
              is uves_obs_scired.reduce.backsub.npoints [default = 82].

       --reduce.backsub.radiusy <int>
              The height (in pixels) of the background sampling window is (2*radiusy + 1). This
              parameter is not corrected for binning. (int; default: 2). The full name of this
              option for the EsoRex configuration file is uves_obs_scired.reduce.backsub.radiusy
              [default = 2].

       --reduce.backsub.sdegree <int>
              Degree of interpolating splines. Currently only degree = 1 is supported (int;
              default: 1). The full name of this option for the EsoRex configuration file is
              uves_obs_scired.reduce.backsub.sdegree [default = 1].

       --reduce.backsub.smoothx <float>
              If spline interpolation is used to measure the background, the x-radius of the
              post-smoothing window is (smoothx * image_width).  Here, ´image_width´ is the image
              width after binning. If negative, the default values are used: (25.0/4096) for blue
              flat-field frames, (50.0/4096) for red flat-field frames, (300.0/4096) for blue
              science frames and (300.0/4096) for red science frames. (float; default: -1.0). The
              full name of this option for the EsoRex configuration file is
              uves_obs_scired.reduce.backsub.smoothx [default = -1.0].

       --reduce.backsub.smoothy <float>
              If spline interpolation is used to measure the background, the y-radius of the
              post-smoothing window is (smoothy * image_height).  Here, ´image_height´ is the
              image height after binning. If negative, the default values are used: (100.0/2048)
              for blue flat-field frames, (300.0/2048) for red flat-field frames, (200.0/2048)
              for blue science frames and (500.0/2048) for red science frames. (float; default:
              -1.0). The full name of this option for the EsoRex configuration file is
              uves_obs_scired.reduce.backsub.smoothy [default = -1.0].

       --reduce.extract.best <bool>
              (optimal extraction only) If false (fastest), the spectrum is extracted only once.
              If true (best), the spectrum is extracted twice, the second time using improved
              variance estimates based on the first iteration. Better variance estimates slightly
              improve the obtained signal to noise but at the cost of increased execution time
              (bool; default: True). The full name of this option for the EsoRex configuration
              file is uves_obs_scired.reduce.extract.best [default = True].

       --reduce.extract.chunk <int>
              In optimal extraction mode, the chunk size (in pixels) used for fitting the
              analytical profile (a fit of the analytical profile to single bins would suffer
              from low statistics). (int; default: 32). The full name of this option for the
              EsoRex configuration file is uves_obs_scired.reduce.extract.chunk [default = 32].

       --reduce.extract.kappa <float>
              In optimal extraction mode, this is the threshold for bad (i.e.  hot/cold) pixel
              rejection. If a pixel deviates more than kappa*sigma (where sigma is the
              uncertainty of the pixel flux) from the inferred spatial profile, its weight is set
              to zero. Range: [-1,100]. If this parameter is negative, no rejection is performed.
              (float; default: 10.0). The full name of this option for the EsoRex configuration
              file is uves_obs_scired.reduce.extract.kappa [default = 10.0].

       --reduce.extract.method <str>
              Extraction method. (2d/optimal not supported by uves_cal_wavecal, weighted
              supported only by uves_cal_wavecal, 2d not supported by uves_cal_response) (str;
              default: ´optimal´). The full name of this option for the EsoRex configuration file
              is uves_obs_scired.reduce.extract.method [default = optimal].

       --reduce.extract.oversample <int>
              The oversampling factor used for the virtual resampling algorithm. If negative, the
              value 5 is used for S/N <=200, and the value 10 is used if the estimated S/N is >
              200 (int; default: -1). The full name of this option for the EsoRex configuration
              file is uves_obs_scired.reduce.extract.oversample [default = -1].

       --reduce.extract.profile <str>
              In optimal extraction mode, the kind of profile to use. ´gauss´ gives a Gaussian
              profile, ´moffat´ gives a Moffat profile with beta=4 and a possible linear sky
              contribution. ´virtual´ uses a virtual resampling algorithm (i.e. measures and uses
              the actual object profile).  ´constant´ assumes a constant spatial profile and
              allows optimal extraction of wavelength calibration frames. ´auto´ will
              automatically select the best method based on the estimated S/N of the object. For
              low S/N, ´moffat´ or ´gauss´ are recommended (for robustness). For high S/N,
              ´virtual´ is recommended (for accuracy). In the case of virtual resampling, a
              precise determination of the order positions is required; therefore the
              order-definition is repeated using the (assumed non-low S/N) science frame (str;
              default: ´auto´). The full name of this option for the EsoRex configuration file is
              uves_obs_scired.reduce.extract.profile [default = auto].

       --reduce.extract.skymethod <str>
              In optimal extraction mode, the sky subtraction method to use.  ´median´ estimates
              the sky as the median of pixels along the slit (ignoring pixels close to the
              object), whereas ´optimal´ does a chi square minimization along the slit to obtain
              the best combined object and sky levels. The optimal method gives the most accurate
              sky determination but is also a bit slower than the median method (str; default:
              ´optimal´). The full name of this option for the EsoRex configuration file is
              uves_obs_scired.reduce.extract.skymethod [default = optimal].

       --reduce.ffmethod <str>
              Flat-fielding method. If set to ´pixel´, flat-fielding is done in pixel-pixel space
              (before extraction); if set to ´extract´, flat- fielding is performed in
              pixel-order space (i.e. after extraction). If set to ´no´, no flat-field correction
              is done, in which case reduce.rebin.scale should be set to true to ensure flux
              conservation (both for response and science data) (str; default: ´extract´). The
              full name of this option for the EsoRex configuration file is
              uves_obs_scired.reduce.ffmethod [default = extract].

       --reduce.merge <str>
              Order merging method. If ´optimal´, the flux in the overlapping region is set to
              the (optimally computed, using the uncertainties) average of single order spectra.
              If ´sum´, the flux in the overlapping region is computed as the sum of the single
              order spectra. If ´noappend´ the spectrum is simply rebinned but not merged.If
              flat-fielding is done, method ´optimal´ is recommended, otherwise ´sum´. (str;
              default: ´optimal´). The full name of this option for the EsoRex configuration file
              is uves_obs_scired.reduce.merge [default = optimal].

       --reduce.merge_delt1 <float>
              Order merging left hand (short wavelength) cut. To reduce the amount of order
              overlapping regions we allow to cut short and long wavelength ranges. This may
              reduce the ripple possibly introduced by the order merging. Suggested values are:
              10 (W<=390), 12 (390<W<=437, 520<W<=564), 14 (437<W<=520, 564<W)  (float; default:
              0.0). The full name of this option for the EsoRex configuration file is
              uves_obs_scired.reduce.merge_delt1 [default = 0.0].

       --reduce.merge_delt2 <float>
              Order merging right hand (long wavelength) cut. To reduce the amount of order
              overlapping regions we allow to cut short and long wavelength ranges. This may
              reduce the ripple possibly introduced by the order merging. Suggested values is 4
              (float; default: 0.0). The full name of this option for the EsoRex configuration
              file is uves_obs_scired.reduce.merge_delt2 [default = 0.0].

       --reduce.objoffset <float>
              Offset (in pixels) of extraction slit with respect to center of order.  For optimal
              extraction the full slit is offset. For linear/average extraction, reduce.objoffset
              is ignored if reduce.objslit [default -1.0] is negative. In this case the offset is
              automatically determined by measuring the actual object position. (float; default:
              0.0). The full name of this option for the EsoRex configuration file is
              uves_obs_scired.reduce.objoffset [default = 0.0].

       --reduce.objslit <float>
              Object window size (in pixels), ignored for optimal extraction. The value must be
              smaller than the total slit length. If negative, the default value (half of full
              slit length) is used. The upper and lower sky windows are defined as the part of
              the full slit (if any) outside the object window. The center of the object window
              is determined by the offset parameter. (float; default: -1.0). The full name of
              this option for the EsoRex configuration file is uves_obs_scired.reduce.objslit
              [default = -1.0].

       --reduce.rebin.scale <bool>
              Whether or not to multiply by the factor dx/dlambda (pixels per wavelength) during
              the rebinning to conserve the flux. This option is disabled as default because
              applying the flat field correction already ensures flux conservation. Therefore
              this parameter should be TRUE (for response and science data) only if
              reduce.ffmethd = no. (bool; default: False). The full name of this option for the
              EsoRex configuration file is uves_obs_scired.reduce.rebin.scale [default = False].

       --reduce.rebin.wavestep <float>
              The bin size used for BLUE/REDL data (in w.l.u.) in wavelength space.  If negative,
              a step size of 2/3 * ( average pixel size ) is used.  (float; default: -1.0). The
              full name of this option for the EsoRex configuration file is
              uves_obs_scired.reduce.rebin.wavestep [default = -1.0].

       --reduce.rebin.wavestep_redu <float>
              The bin size used for REDU data (in w.l.u.) in wavelength space. If negative, a
              step size of 2/3 * ( average pixel size ) is used. (float; default: -1.0). The full
              name of this option for the EsoRex configuration file is
              uves_obs_scired.reduce.rebin.wavestep_redu [default = -1.0].

       --reduce.skysub <bool>
              Do sky-subtraction (only applicable to linear and average extractions)? (bool;
              default: True). The full name of this option for the EsoRex configuration file is
              uves_obs_scired.reduce.skysub [default = True].

       --reduce.slitlength <float>
              Extraction slit length (in pixels). If negative, the value inferred from the raw
              frame header is used (float; default: -1.0). The full name of this option for the
              EsoRex configuration file is uves_obs_scired.reduce.slitlength [default = -1.0].

       --reduce.tiltcorr <bool>
              If enabled (recommended), the provided dispersion solutions obtained at different
              slit positions are interpolated linearly at the actually measured position of the
              object/sky. Line tilt correction is currently not supported for 2d extraction, in
              which case the dispersion solution obtained at the middle of the slit is always
              used. (bool; default: True). The full name of this option for the EsoRex
              configuration file is uves_obs_scired.reduce.tiltcorr [default = True].

       Note that it is possible to create a configuration file containing these options, along
       with suitable default values. Please refer to the details provided by the 'esorex --help'
       command.

SEE ALSO

       The full documentation for the uves pipeline can be downloaded as a PDF file using the
       following URL:

              ftp://ftp.eso.org/pub/dfs/pipelines/uves/uves-pipeline-manual-6.1.8.pdf

       An overview over the existing ESO pipelines can be found on the web page
       https://www.eso.org/sci/software/pipelines/.

       Basic documentation about the EsoRex program can be found at the esorex (1) man page.

       It is possible to call the pipelines from python using the python-cpl package.  See
       https://packages.python.org/python-cpl/index.html for further information.

       The other recipes of the uves pipeline are flames_cal_mkmaster(7), flames_cal_orderpos(7),
       flames_cal_predict(7), flames_cal_prep_sff_ofpos(7), flames_cal_wavecal(7),
       flames_obs_redchain(7), flames_obs_scired(7), flames_utl_unpack(7), uves_cal_cd_align(7),
       uves_cal_mbias(7), uves_cal_mdark(7), uves_cal_mflat(7), uves_cal_mflat_combine(7),
       uves_cal_mkmaster(7), uves_cal_orderpos(7), uves_cal_predict(7), uves_cal_response(7),
       uves_cal_tflat(7), uves_cal_wavecal(7), uves_obs_redchain(7), uves_utl_ima_arith(7),
       uves_utl_remove_crh_single(7)

VERSION

       uves_obs_scired 6.1.8

AUTHOR

       Jonas M. Larsen <cpl@eso.org>

BUG REPORTS

       Please report any problems to cpl@eso.org. Alternatively, you may send a report to the ESO
       User Support Department <usd-help@eso.org>.

LICENSE

       This file is part of the FLAMES/UVES Pipeline Copyright (C) 2004, 2005, 2006, 2007
       European Southern Observatory

       This program is free software; you can redistribute it and/or modify it under the terms of
       the GNU General Public License as published by the Free Software Foundation; either
       version 2 of the License, or (at your option) any later version.

       This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
       without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
       See the GNU General Public License for more details.

       You should have received a copy of the GNU General Public License along with this program;
       if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
       MA  02111-1307  USA