oracular (8) bpftool-gen.8.gz

Provided by: linux-tools-common_6.11.0-18.18_all bug

NAME

       bpftool-gen - tool for BPF code-generation

SYNOPSIS

       bpftool [OPTIONS] gen COMMAND

       OPTIONS := { { -j | --json } [{ -p | --pretty }] | { -d | --debug } | { -L | --use-loader } }

       COMMAND := { object | skeleton | help }

GEN COMMANDS

       bpftool gen object OUTPUT_FILE INPUT_FILE [INPUT_FILE...]
       bpftool gen skeleton FILE [name OBJECT_NAME]
       bpftool gen subskeleton FILE [name OBJECT_NAME]
       bpftool gen min_core_btf INPUT OUTPUT OBJECT [OBJECT...]
       bpftool gen help

DESCRIPTION

       bpftool gen object OUTPUT_FILE INPUT_FILE [INPUT_FILE...]
              Statically  link  (combine) together one or more INPUT_FILE's into a single resulting OUTPUT_FILE.
              All the files involved are BPF ELF object files.

              The rules of BPF static linking are mostly the  same  as  for  user-space  object  files,  but  in
              addition  to  combining data and instruction sections, .BTF and .BTF.ext (if present in any of the
              input files) data are combined together. .BTF data is deduplicated, so all the common types across
              INPUT_FILE's will only be represented once in the resulting BTF information.

              BPF  static  linking allows to partition BPF source code into individually compiled files that are
              then linked into a single resulting BPF object file, which can be used to generated  BPF  skeleton
              (with  gen  skeleton  command)  or passed directly into libbpf (using bpf_object__open() family of
              APIs).

       bpftool gen skeleton FILE
              Generate BPF skeleton C header file for a given FILE.

              BPF skeleton is an alternative interface to existing libbpf APIs for  working  with  BPF  objects.
              Skeleton  code  is  intended  to significantly shorten and simplify code to load and work with BPF
              programs from userspace side. Generated code is  tailored  to  specific  input  BPF  object  FILE,
              reflecting  its  structure  by  listing  out  available  maps,  program,  variables, etc. Skeleton
              eliminates the need to lookup mentioned components by name.  Instead,  if  skeleton  instantiation
              succeeds,  they  are  populated  in skeleton structure as valid libbpf types (e.g., struct bpf_map
              pointer) and can be passed to existing generic libbpf APIs.

              In addition to simple and reliable access to maps and programs, skeleton provides  a  storage  for
              BPF  links (struct bpf_link) for each BPF program within BPF object. When requested, supported BPF
              programs will be automatically attached and resulting BPF links stored for further use by user  in
              pre-allocated  fields in skeleton struct. For BPF programs that can't be automatically attached by
              libbpf, user can attach them manually, but store resulting BPF link in per-program link field. All
              such set up links will be automatically destroyed on BPF skeleton destruction. This eliminates the
              need for users to manage links manually and rely on libbpf support to detach programs and free  up
              resources.

              Another  facility  provided  by  BPF skeleton is an interface to global variables of all supported
              kinds: mutable, read-only, as well as extern ones. This  interface  allows  to  pre-setup  initial
              values  of  variables  before  BPF  object  is  loaded  and  verified by kernel. For non-read-only
              variables, the same interface can be used to fetch values of global variables on  userspace  side,
              even if they are modified by BPF code.

              During  skeleton  generation, contents of source BPF object FILE is embedded within generated code
              and is thus not necessary to keep around.  This ensures skeleton and BPF object file are  matching
              1-to-1  and  always  stay in sync. Generated code is dual-licensed under LGPL-2.1 and BSD-2-Clause
              licenses.

              It is a design goal and guarantee that skeleton interfaces are interoperable with  generic  libbpf
              APIs.  User should always be able to use skeleton API to create and load BPF object, and later use
              libbpf APIs to keep working with specific maps, programs, etc.

              As part of skeleton, few custom functions are generated. Each of  them  is  prefixed  with  object
              name.  Object  name  can either be derived from object file name, i.e., if BPF object file name is
              example.o, BPF object name will be example. Object name can be also specified  explicitly  through
              name  OBJECT_NAME  parameter. The following custom functions are provided (assuming example as the
              object name):

              • example__open and example__open_opts.  These functions are  used  to  instantiate  skeleton.  It
                corresponds    to    libbpf's    bpf_object__open()    API.   _opts   variants   accepts   extra
                bpf_object_open_opts options.

              • example__load.  This function creates maps, loads and verifies BPF programs, initializes  global
                data maps. It corresponds to libppf's bpf_object__load() API.

              • example__open_and_load combines example__open and example__load invocations in one commonly used
                operation.

              • example__attach and example__detach.  This  pair  of  functions  allow  to  attach  and  detach,
                correspondingly,  already  loaded BPF object. Only BPF programs of types supported by libbpf for
                auto-attachment will be auto-attached and their corresponding BPF links instantiated. For  other
                BPF  programs,  user  can  manually  create  a BPF link and assign it to corresponding fields in
                skeleton struct.  example__detach will detach both links created automatically, as well as those
                populated by user manually.

              • example__destroy.   Detach  and  unload BPF programs, free up all the resources used by skeleton
                and BPF object.

              If BPF object has global variables, corresponding structs  with  memory  layout  corresponding  to
              global  data  data  section  layout  will  be created.  Currently supported ones are: .data, .bss,
              .rodata, and .kconfig structs/data sections. These data sections/structs can be  used  to  set  up
              initial  values  of  variables, if set before example__load. Afterwards, if target kernel supports
              memory-mapped BPF arrays, same structs can be used to fetch and update (non-read-only)  data  from
              userspace, with same simplicity as for BPF side.

       bpftool gen subskeleton FILE
              Generate BPF subskeleton C header file for a given FILE.

              Subskeletons are similar to skeletons, except they do not own the corresponding maps, programs, or
              global variables. They require that the object file used to generate them is already loaded into a
              bpf_object by some other means.

              This  functionality  is useful when a library is included into a larger BPF program. A subskeleton
              for the library would have access to all objects and globals defined in it, without having to know
              about the larger program.

              Consequently, there are only two functions defined for subskeletons:

              • example__open(bpf_object*).   Instantiates  a  subskeleton  from  an  already  opened  (but  not
                necessarily loaded) bpf_object.

              • example__destroy().  Frees the storage for the subskeleton but does not unload any BPF  programs
                or maps.

       bpftool gen min_core_btf INPUT OUTPUT OBJECT [OBJECT...]
              Generate  a minimum BTF file as OUTPUT, derived from a given INPUT BTF file, containing all needed
              BTF types so one, or more, given eBPF objects CO-RE relocations may be satisfied.

              When kernels aren't compiled with CONFIG_DEBUG_INFO_BTF, libbpf, when loading an eBPF object,  has
              to rely on external BTF files to be able to calculate CO-RE relocations.

              Usually,  an  external BTF file is built from existing kernel DWARF data using pahole. It contains
              all the types used by its respective kernel image and, because of that, is big.

              The min_core_btf feature builds smaller BTF files, customized to one or multiple eBPF objects,  so
              they  can  be  distributed  together with an eBPF CO-RE based application, turning the application
              portable to different kernel versions.

              Check examples bellow for more information how to use it.

       bpftool gen help
              Print short help message.

OPTIONS

       -h, --help
              Print short help message (similar to bpftool help).

       -V, --version
              Print bpftool's version number (similar to bpftool version), the number of the libbpf  version  in
              use, and optional features that were included when bpftool was compiled. Optional features include
              linking against LLVM or libbfd to provide the disassembler for JIT-ted programs (bpftool prog dump
              jited)  and  usage  of  BPF  skeletons  (some  features  like bpftool prog profile or showing pids
              associated to BPF objects may rely on it).

       -j, --json
              Generate JSON output. For commands that cannot produce JSON, this option has no effect.

       -p, --pretty
              Generate human-readable JSON output. Implies -j.

       -d, --debug
              Print all logs available, even debug-level information. This includes logs from libbpf as well  as
              from the verifier, when attempting to load programs.

       -L, --use-loader
              For  skeletons,  generate  a  "light" skeleton (also known as "loader" skeleton). A light skeleton
              contains a loader eBPF program. It does not use the majority of  the  libbpf  infrastructure,  and
              does not need libelf.

EXAMPLES

       $ cat example1.bpf.c

          #include <stdbool.h>
          #include <linux/ptrace.h>
          #include <linux/bpf.h>
          #include <bpf/bpf_helpers.h>

          const volatile int param1 = 42;
          bool global_flag = true;
          struct { int x; } data = {};

          SEC("raw_tp/sys_enter")
          int handle_sys_enter(struct pt_regs *ctx)
          {
                static long my_static_var;
                if (global_flag)
                        my_static_var++;
                else
                        data.x += param1;
                return 0;
          }

       $ cat example2.bpf.c

          #include <linux/ptrace.h>
          #include <linux/bpf.h>
          #include <bpf/bpf_helpers.h>

          struct {
                __uint(type, BPF_MAP_TYPE_HASH);
                __uint(max_entries, 128);
                __type(key, int);
                __type(value, long);
          } my_map SEC(".maps");

          SEC("raw_tp/sys_exit")
          int handle_sys_exit(struct pt_regs *ctx)
          {
                int zero = 0;
                bpf_map_lookup_elem(&my_map, &zero);
                return 0;
          }

       $ cat example3.bpf.c

          #include <linux/ptrace.h>
          #include <linux/bpf.h>
          #include <bpf/bpf_helpers.h>
          /* This header file is provided by the bpf_testmod module. */
          #include "bpf_testmod.h"

          int test_2_result = 0;

          /* bpf_Testmod.ko calls this function, passing a "4"
           * and testmod_map->data.
           */
          SEC("struct_ops/test_2")
          void BPF_PROG(test_2, int a, int b)
          {
                test_2_result = a + b;
          }

          SEC(".struct_ops")
          struct bpf_testmod_ops testmod_map = {
                .test_2 = (void *)test_2,
                .data = 0x1,
          };

       This  is  example  BPF  application  with  three BPF programs and a mix of BPF maps and global variables.
       Source code is split across three source code files.

       $ clang --target=bpf -g example1.bpf.c -o example1.bpf.o

       $ clang --target=bpf -g example2.bpf.c -o example2.bpf.o

       $ clang --target=bpf -g example3.bpf.c -o example3.bpf.o

       $ bpftool gen object example.bpf.o example1.bpf.o example2.bpf.o example3.bpf.o

       This set of commands compiles example1.bpf.c, example2.bpf.c and  example3.bpf.c  individually  and  then
       statically links respective object files into the final BPF ELF object file example.bpf.o.

       $ bpftool gen skeleton example.bpf.o name example | tee example.skel.h

          /* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */

          /* THIS FILE IS AUTOGENERATED! */
          #ifndef __EXAMPLE_SKEL_H__
          #define __EXAMPLE_SKEL_H__

          #include <stdlib.h>
          #include <bpf/libbpf.h>

          struct example {
                struct bpf_object_skeleton *skeleton;
                struct bpf_object *obj;
                struct {
                        struct bpf_map *rodata;
                        struct bpf_map *data;
                        struct bpf_map *bss;
                        struct bpf_map *my_map;
                        struct bpf_map *testmod_map;
                } maps;
                struct {
                        struct example__testmod_map__bpf_testmod_ops {
                                const struct bpf_program *test_1;
                                const struct bpf_program *test_2;
                                int data;
                        } *testmod_map;
                } struct_ops;
                struct {
                        struct bpf_program *handle_sys_enter;
                        struct bpf_program *handle_sys_exit;
                } progs;
                struct {
                        struct bpf_link *handle_sys_enter;
                        struct bpf_link *handle_sys_exit;
                } links;
                struct example__bss {
                        struct {
                                int x;
                        } data;
                        int test_2_result;
                } *bss;
                struct example__data {
                        _Bool global_flag;
                        long int handle_sys_enter_my_static_var;
                } *data;
                struct example__rodata {
                        int param1;
                } *rodata;
          };

          static void example__destroy(struct example *obj);
          static inline struct example *example__open_opts(
                        const struct bpf_object_open_opts *opts);
          static inline struct example *example__open();
          static inline int example__load(struct example *obj);
          static inline struct example *example__open_and_load();
          static inline int example__attach(struct example *obj);
          static inline void example__detach(struct example *obj);

          #endif /* __EXAMPLE_SKEL_H__ */

       $ cat example.c

          #include "example.skel.h"

          int main()
          {
                struct example *skel;
                int err = 0;

                skel = example__open();
                if (!skel)
                        goto cleanup;

                skel->rodata->param1 = 128;

                /* Change the value through the pointer of shadow type */
                skel->struct_ops.testmod_map->data = 13;

                err = example__load(skel);
                if (err)
                        goto cleanup;

                /* The result of the function test_2() */
                printf("test_2_result: %d\n", skel->bss->test_2_result);

                err = example__attach(skel);
                if (err)
                        goto cleanup;

                /* all libbpf APIs are usable */
                printf("my_map name: %s\n", bpf_map__name(skel->maps.my_map));
                printf("sys_enter prog FD: %d\n",
                       bpf_program__fd(skel->progs.handle_sys_enter));

                /* detach and re-attach sys_exit program */
                bpf_link__destroy(skel->links.handle_sys_exit);
                skel->links.handle_sys_exit =
                        bpf_program__attach(skel->progs.handle_sys_exit);

                printf("my_static_var: %ld\n",
                       skel->bss->handle_sys_enter_my_static_var);

          cleanup:
                example__destroy(skel);
                return err;
          }

       # ./example

          test_2_result: 17
          my_map name: my_map
          sys_enter prog FD: 8
          my_static_var: 7

       This is a stripped-out version of skeleton generated for above example code.

   min_core_btf
       $ bpftool btf dump file 5.4.0-example.btf format raw

          [1] INT 'long unsigned int' size=8 bits_offset=0 nr_bits=64 encoding=(none)
          [2] CONST '(anon)' type_id=1
          [3] VOLATILE '(anon)' type_id=1
          [4] ARRAY '(anon)' type_id=1 index_type_id=21 nr_elems=2
          [5] PTR '(anon)' type_id=8
          [6] CONST '(anon)' type_id=5
          [7] INT 'char' size=1 bits_offset=0 nr_bits=8 encoding=(none)
          [8] CONST '(anon)' type_id=7
          [9] INT 'unsigned int' size=4 bits_offset=0 nr_bits=32 encoding=(none)
          <long output>

       $ bpftool btf dump file one.bpf.o format raw

          [1] PTR '(anon)' type_id=2
          [2] STRUCT 'trace_event_raw_sys_enter' size=64 vlen=4
                'ent' type_id=3 bits_offset=0
                'id' type_id=7 bits_offset=64
                'args' type_id=9 bits_offset=128
                '__data' type_id=12 bits_offset=512
          [3] STRUCT 'trace_entry' size=8 vlen=4
                'type' type_id=4 bits_offset=0
                'flags' type_id=5 bits_offset=16
                'preempt_count' type_id=5 bits_offset=24
          <long output>

       $ bpftool gen min_core_btf 5.4.0-example.btf 5.4.0-smaller.btf one.bpf.o

       $ bpftool btf dump file 5.4.0-smaller.btf format raw

          [1] TYPEDEF 'pid_t' type_id=6
          [2] STRUCT 'trace_event_raw_sys_enter' size=64 vlen=1
                'args' type_id=4 bits_offset=128
          [3] STRUCT 'task_struct' size=9216 vlen=2
                'pid' type_id=1 bits_offset=17920
                'real_parent' type_id=7 bits_offset=18048
          [4] ARRAY '(anon)' type_id=5 index_type_id=8 nr_elems=6
          [5] INT 'long unsigned int' size=8 bits_offset=0 nr_bits=64 encoding=(none)
          [6] TYPEDEF '__kernel_pid_t' type_id=8
          [7] PTR '(anon)' type_id=3
          [8] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED
          <end>

       Now,  the  "5.4.0-smaller.btf"  file  may  be  used  by  libbpf  as an external BTF file when loading the
       "one.bpf.o" object into the "5.4.0-example" kernel. Note that the generated BTF file  won't  allow  other
       eBPF objects to be loaded, just the ones given to min_core_btf.

          LIBBPF_OPTS(bpf_object_open_opts, opts, .btf_custom_path = "5.4.0-smaller.btf");
          struct bpf_object *obj;

          obj = bpf_object__open_file("one.bpf.o", &opts);

          ...

SEE ALSO

       bpf(2),    bpf-helpers(7),    bpftool(8),    bpftool-btf(8),    bpftool-cgroup(8),    bpftool-feature(8),
       bpftool-iter(8),  bpftool-link(8),  bpftool-map(8),  bpftool-net(8),  bpftool-perf(8),   bpftool-prog(8),
       bpftool-struct_ops(8)

                                                                                                  BPFTOOL-GEN(8)