oracular (3) PDL::GSL::RNG.3pm.gz

Provided by: pdl_2.089-1build1_amd64 bug

NAME

       PDL::GSL::RNG - PDL interface to RNG and randist routines in GSL

DESCRIPTION

       This is an interface to the rng and randist packages present in the GNU Scientific Library.

SYNOPSIS

          use PDL;
          use PDL::GSL::RNG;

          $rng = PDL::GSL::RNG->new('taus');

          $rng->set_seed(time());

          $x=zeroes(5,5,5)

          $rng->get_uniform($x); # inplace

          $y=$rng->get_uniform(3,4,5); # creates new pdl

NOMENCLATURE

       Throughout this documentation we strive to use the same variables that are present in the original GSL
       documentation (see See Also). Oftentimes those variables are called "a" and "b". Since good Perl coding
       practices discourage the use of Perl variables $a and $b, here we refer to Parameters "a" and "b" as $pa
       and $pb, respectively, and Limits (of domain or integration) as $la and $lb.

FUNCTIONS

   new
       The new method initializes a new instance of the RNG.

       The available RNGs are:

       coveyou
       cmrg
       fishman18
       fishman20
       fishman2x
       gfsr4
       knuthran
       knuthran2
       knuthran2002
       lecuyer21
       minstd
       mrg
       mt19937
       mt19937_1999
       mt19937_1998
       r250
       ran0
       ran1
       ran2
       ran3
       rand
       rand48
       random128_bsd
       random128_glibc2
       random128_libc5
       random256_bsd
       random256_glibc2
       random256_libc5
       random32_bsd
       random32_glibc2
       random32_libc5
       random64_bsd
       random64_glibc2
       random64_libc5
       random8_bsd
       random8_glibc2
       random8_libc5
       random_bsd
       random_glibc2
       random_libc5
       randu
       ranf
       ranlux
       ranlux389
       ranlxd1
       ranlxd2
       ranlxs0
       ranlxs1
       ranlxs2
       ranmar
       slatec
       taus
       taus2
       taus113
       transputer
       tt800
       uni
       uni32
       vax
       waterman14
       zuf
       default

       The last one (default) uses the environment variable GSL_RNG_TYPE.

       Note that only a few of these rngs are recommended for general use. Please check the GSL documentation
       for more information.

       Usage:

          $blessed_ref = PDL::GSL::RNG->new($RNG_name);

       Example:

          $rng = PDL::GSL::RNG->new('taus');

   set_seed
       Sets the RNG seed.

       Usage:

          $rng->set_seed($integer);
          # or
          $rng = PDL::GSL::RNG->new('taus')->set_seed($integer);

       Example:

          $rng->set_seed(666);

   min
       Return the minimum value generable by this RNG.

       Usage:

          $integer = $rng->min();

       Example:

          $min = $rng->min(); $max = $rng->max();

   max
       Return the maximum value generable by the RNG.

       Usage:

          $integer = $rng->max();

       Example:

          $min = $rng->min(); $max = $rng->max();

   name
       Returns the name of the RNG.

       Usage:

          $string = $rng->name();

       Example:

          $name = $rng->name();

   ran_shuffle
       Shuffles values in ndarray

       Usage:

          $rng->ran_shuffle($ndarray);

   ran_shuffle_vec
       Shuffles values in ndarray

       Usage:

          $rng->ran_shuffle_vec(@vec);

   ran_choose
       Chooses values from $inndarray to $outndarray.

       Usage:

          $rng->ran_choose($inndarray,$outndarray);

   ran_choose_vec
       Chooses $n values from @vec.

       Usage:

          @chosen = $rng->ran_choose_vec($n,@vec);

   ran_dir
       Returns $n random vectors in $ndim dimensions.

       Usage:

          $ndarray = $rng->ran_dir($ndim,$n);

       Example:

          $o = $rng->ran_dir($ndim,$n);

   ran_discrete_preproc
       This method returns a handle that must be used when calling "ran_discrete". You specify the probability
       of the integer number that are returned by "ran_discrete".

       Usage:

          $discrete_dist_handle = $rng->ran_discrete_preproc($double_ndarray_prob);

       Example:

          $prob = pdl [0.1,0.3,0.6];
          $ddh = $rng->ran_discrete_preproc($prob);
          $o = $rng->ran_discrete($discrete_dist_handle,100);

   get_uniform
         Signature: ([o]a(); IV rng)

       This function creates an ndarray with given dimensions or accepts an existing ndarray and fills it.
       get_uniform() returns values 0<=x<1,

       Usage:

          $ndarray = $rng->get_uniform($list_of_integers)
          $rng->get_uniform($ndarray);

       Example:

          $x = zeroes 5,6; $max=100;
          $o = $rng->get_uniform(10,10); $rng->get_uniform($x);

       get_uniform does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   get_uniform_pos
         Signature: ([o]a(); IV rng)

       This function creates an ndarray with given dimensions or accepts an existing ndarray and fills it.
       get_uniform_pos() returns values 0<x<1,

       Usage:

          $ndarray = $rng->get_uniform_pos($list_of_integers)
          $rng->get_uniform_pos($ndarray);

       Example:

          $x = zeroes 5,6;
          $o = $rng->get_uniform_pos(10,10); $rng->get_uniform_pos($x);

       get_uniform_pos does not process bad values.  It will set the bad-value flag of all output ndarrays if
       the flag is set for any of the input ndarrays.

   get
         Signature: ([o]a(); IV rng)

       This function creates an ndarray with given dimensions or accepts an existing ndarray and fills it. get()
       returns integer values between a minimum and a maximum specific to every RNG.

       Usage:

          $ndarray = $rng->get($list_of_integers)
          $rng->get($ndarray);

       Example:

          $x = zeroes 5,6;
          $o = $rng->get(10,10); $rng->get($x);

       get does not process bad values.  It will set the bad-value flag of all output ndarrays if the flag is
       set for any of the input ndarrays.

   get_int
         Signature: ([o]a(); int n; IV rng)

       This function creates an ndarray with given dimensions or accepts an existing ndarray and fills it.
       get_int() returns integer values between 0 and $max.

       Usage:

          $ndarray = $rng->get($max, $list_of_integers)
          $rng->get($max, $ndarray);

       Example:

          $x = zeroes 5,6; $max=100;
          $o = $rng->get(10,10); $rng->get($x);

       get_int does not process bad values.  It will set the bad-value flag of all output ndarrays if the flag
       is set for any of the input ndarrays.

   ran_gaussian
         Signature: ([o]output(); double sigma; IV rng)

       Fills output ndarray with random values from Gaussian distribution with mean zero and standard deviation
       $sigma.

       Usage:

        $ndarray = $rng->ran_gaussian($sigma,[list of integers = output ndarray dims]);
        $rng->ran_gaussian($sigma, $output_ndarray);

       Example:

         $o = $rng->ran_gaussian($sigma,10,10);
         $rng->ran_gaussian($sigma,$o);

       ran_gaussian does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_gaussian_var
         Signature: (sigma();[o]output(); IV rng)

       Similar to "ran_gaussian" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_gaussian_var($sigma_ndarray);

       ran_gaussian_var does not process bad values.  It will set the bad-value flag of all output ndarrays if
       the flag is set for any of the input ndarrays.

   ran_ugaussian_tail
         Signature: ([o]output(); double tail; IV rng)

       Fills output ndarray with random variates from the upper tail of a Gaussian distribution with "standard
       deviation = 1" (AKA unit Gaussian distribution).

       Usage:

        $ndarray = $rng->ran_ugaussian_tail($tail,[list of integers = output ndarray dims]);
        $rng->ran_ugaussian_tail($tail, $output_ndarray);

       Example:

         $o = $rng->ran_ugaussian_tail($tail,10,10);
         $rng->ran_ugaussian_tail($tail,$o);

       ran_ugaussian_tail does not process bad values.  It will set the bad-value flag of all output ndarrays if
       the flag is set for any of the input ndarrays.

   ran_ugaussian_tail_var
         Signature: (tail();[o]output(); IV rng)

       Similar to "ran_ugaussian_tail" except that it takes the distribution parameters as an ndarray and
       returns an ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_ugaussian_tail_var($tail_ndarray);

       ran_ugaussian_tail_var does not process bad values.  It will set the bad-value flag of all output
       ndarrays if the flag is set for any of the input ndarrays.

   ran_exponential
         Signature: ([o]output(); double mu; IV rng)

       Fills output ndarray with random variates from the exponential distribution with mean $mu.

       Usage:

        $ndarray = $rng->ran_exponential($mu,[list of integers = output ndarray dims]);
        $rng->ran_exponential($mu, $output_ndarray);

       Example:

         $o = $rng->ran_exponential($mu,10,10);
         $rng->ran_exponential($mu,$o);

       ran_exponential does not process bad values.  It will set the bad-value flag of all output ndarrays if
       the flag is set for any of the input ndarrays.

   ran_exponential_var
         Signature: (mu();[o]output(); IV rng)

       Similar to "ran_exponential" except that it takes the distribution parameters as an ndarray and returns
       an ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_exponential_var($mu_ndarray);

       ran_exponential_var does not process bad values.  It will set the bad-value flag of all output ndarrays
       if the flag is set for any of the input ndarrays.

   ran_laplace
         Signature: ([o]output(); double pa; IV rng)

       Fills output ndarray with random variates from the Laplace distribution with width $pa.

       Usage:

        $ndarray = $rng->ran_laplace($pa,[list of integers = output ndarray dims]);
        $rng->ran_laplace($pa, $output_ndarray);

       Example:

         $o = $rng->ran_laplace($pa,10,10);
         $rng->ran_laplace($pa,$o);

       ran_laplace does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_laplace_var
         Signature: (pa();[o]output(); IV rng)

       Similar to "ran_laplace" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_laplace_var($pa_ndarray);

       ran_laplace_var does not process bad values.  It will set the bad-value flag of all output ndarrays if
       the flag is set for any of the input ndarrays.

   ran_exppow
         Signature: ([o]output(); double pa; double pb; IV rng)

       Fills output ndarray with random variates from the exponential power distribution with scale parameter
       $pa and exponent $pb.

       Usage:

        $ndarray = $rng->ran_exppow($pa, $pb,[list of integers = output ndarray dims]);
        $rng->ran_exppow($pa, $pb, $output_ndarray);

       Example:

         $o = $rng->ran_exppow($pa, $pb,10,10);
         $rng->ran_exppow($pa, $pb,$o);

       ran_exppow does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_exppow_var
         Signature: (pa();pb();[o]output(); IV rng)

       Similar to "ran_exppow" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_exppow_var($pa_ndarray,$pb_ndarray);

       ran_exppow_var does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_cauchy
         Signature: ([o]output(); double pa; IV rng)

       Fills output ndarray with random variates from the Cauchy distribution with scale parameter $pa.

       Usage:

        $ndarray = $rng->ran_cauchy($pa,[list of integers = output ndarray dims]);
        $rng->ran_cauchy($pa, $output_ndarray);

       Example:

         $o = $rng->ran_cauchy($pa,10,10);
         $rng->ran_cauchy($pa,$o);

       ran_cauchy does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_cauchy_var
         Signature: (pa();[o]output(); IV rng)

       Similar to "ran_cauchy" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_cauchy_var($pa_ndarray);

       ran_cauchy_var does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_rayleigh
         Signature: ([o]output(); double sigma; IV rng)

       Fills output ndarray with random variates from the Rayleigh distribution with scale parameter $sigma.

       Usage:

        $ndarray = $rng->ran_rayleigh($sigma,[list of integers = output ndarray dims]);
        $rng->ran_rayleigh($sigma, $output_ndarray);

       Example:

         $o = $rng->ran_rayleigh($sigma,10,10);
         $rng->ran_rayleigh($sigma,$o);

       ran_rayleigh does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_rayleigh_var
         Signature: (sigma();[o]output(); IV rng)

       Similar to "ran_rayleigh" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_rayleigh_var($sigma_ndarray);

       ran_rayleigh_var does not process bad values.  It will set the bad-value flag of all output ndarrays if
       the flag is set for any of the input ndarrays.

   ran_rayleigh_tail
         Signature: ([o]output(); double x; double sigma; IV rng)

       Fills output ndarray with random variates from the tail of the Rayleigh distribution with scale parameter
       $sigma and a lower limit of $la.

       Usage:

        $ndarray = $rng->ran_rayleigh_tail($x, $sigma,[list of integers = output ndarray dims]);
        $rng->ran_rayleigh_tail($x, $sigma, $output_ndarray);

       Example:

         $o = $rng->ran_rayleigh_tail($x, $sigma,10,10);
         $rng->ran_rayleigh_tail($x, $sigma,$o);

       ran_rayleigh_tail does not process bad values.  It will set the bad-value flag of all output ndarrays if
       the flag is set for any of the input ndarrays.

   ran_rayleigh_tail_var
         Signature: (x();sigma();[o]output(); IV rng)

       Similar to "ran_rayleigh_tail" except that it takes the distribution parameters as an ndarray and returns
       an ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_rayleigh_tail_var($x_ndarray,$sigma_ndarray);

       ran_rayleigh_tail_var does not process bad values.  It will set the bad-value flag of all output ndarrays
       if the flag is set for any of the input ndarrays.

   ran_levy
         Signature: ([o]output(); double mu; double x; IV rng)

       Fills output ndarray with random variates from the Levy symmetric stable distribution with scale $c and
       exponent $alpha.

       Usage:

        $ndarray = $rng->ran_levy($mu, $x,[list of integers = output ndarray dims]);
        $rng->ran_levy($mu, $x, $output_ndarray);

       Example:

         $o = $rng->ran_levy($mu, $x,10,10);
         $rng->ran_levy($mu, $x,$o);

       ran_levy does not process bad values.  It will set the bad-value flag of all output ndarrays if the flag
       is set for any of the input ndarrays.

   ran_levy_var
         Signature: (mu();x();[o]output(); IV rng)

       Similar to "ran_levy" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_levy_var($mu_ndarray,$x_ndarray);

       ran_levy_var does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_gamma
         Signature: ([o]output(); double pa; double pb; IV rng)

       Fills output ndarray with random variates from the gamma distribution.

       Usage:

        $ndarray = $rng->ran_gamma($pa, $pb,[list of integers = output ndarray dims]);
        $rng->ran_gamma($pa, $pb, $output_ndarray);

       Example:

         $o = $rng->ran_gamma($pa, $pb,10,10);
         $rng->ran_gamma($pa, $pb,$o);

       ran_gamma does not process bad values.  It will set the bad-value flag of all output ndarrays if the flag
       is set for any of the input ndarrays.

   ran_gamma_var
         Signature: (pa();pb();[o]output(); IV rng)

       Similar to "ran_gamma" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_gamma_var($pa_ndarray,$pb_ndarray);

       ran_gamma_var does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_flat
         Signature: ([o]output(); double la; double lb; IV rng)

       Fills output ndarray with random variates from the flat (uniform) distribution from $la to $lb.

       Usage:

        $ndarray = $rng->ran_flat($la, $lb,[list of integers = output ndarray dims]);
        $rng->ran_flat($la, $lb, $output_ndarray);

       Example:

         $o = $rng->ran_flat($la, $lb,10,10);
         $rng->ran_flat($la, $lb,$o);

       ran_flat does not process bad values.  It will set the bad-value flag of all output ndarrays if the flag
       is set for any of the input ndarrays.

   ran_flat_var
         Signature: (la();lb();[o]output(); IV rng)

       Similar to "ran_flat" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_flat_var($la_ndarray,$lb_ndarray);

       ran_flat_var does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_lognormal
         Signature: ([o]output(); double mu; double sigma; IV rng)

       Fills output ndarray with random variates from the lognormal distribution with parameters $mu (location)
       and $sigma (scale).

       Usage:

        $ndarray = $rng->ran_lognormal($mu, $sigma,[list of integers = output ndarray dims]);
        $rng->ran_lognormal($mu, $sigma, $output_ndarray);

       Example:

         $o = $rng->ran_lognormal($mu, $sigma,10,10);
         $rng->ran_lognormal($mu, $sigma,$o);

       ran_lognormal does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_lognormal_var
         Signature: (mu();sigma();[o]output(); IV rng)

       Similar to "ran_lognormal" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_lognormal_var($mu_ndarray,$sigma_ndarray);

       ran_lognormal_var does not process bad values.  It will set the bad-value flag of all output ndarrays if
       the flag is set for any of the input ndarrays.

   ran_chisq
         Signature: ([o]output(); double nu; IV rng)

       Fills output ndarray with random variates from the chi-squared distribution with $nu degrees of freedom.

       Usage:

        $ndarray = $rng->ran_chisq($nu,[list of integers = output ndarray dims]);
        $rng->ran_chisq($nu, $output_ndarray);

       Example:

         $o = $rng->ran_chisq($nu,10,10);
         $rng->ran_chisq($nu,$o);

       ran_chisq does not process bad values.  It will set the bad-value flag of all output ndarrays if the flag
       is set for any of the input ndarrays.

   ran_chisq_var
         Signature: (nu();[o]output(); IV rng)

       Similar to "ran_chisq" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_chisq_var($nu_ndarray);

       ran_chisq_var does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_fdist
         Signature: ([o]output(); double nu1; double nu2; IV rng)

       Fills output ndarray with random variates from the F-distribution with degrees of freedom $nu1 and $nu2.

       Usage:

        $ndarray = $rng->ran_fdist($nu1, $nu2,[list of integers = output ndarray dims]);
        $rng->ran_fdist($nu1, $nu2, $output_ndarray);

       Example:

         $o = $rng->ran_fdist($nu1, $nu2,10,10);
         $rng->ran_fdist($nu1, $nu2,$o);

       ran_fdist does not process bad values.  It will set the bad-value flag of all output ndarrays if the flag
       is set for any of the input ndarrays.

   ran_fdist_var
         Signature: (nu1();nu2();[o]output(); IV rng)

       Similar to "ran_fdist" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_fdist_var($nu1_ndarray,$nu2_ndarray);

       ran_fdist_var does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_tdist
         Signature: ([o]output(); double nu; IV rng)

       Fills output ndarray with random variates from the t-distribution (AKA Student's t-distribution) with $nu
       degrees of freedom.

       Usage:

        $ndarray = $rng->ran_tdist($nu,[list of integers = output ndarray dims]);
        $rng->ran_tdist($nu, $output_ndarray);

       Example:

         $o = $rng->ran_tdist($nu,10,10);
         $rng->ran_tdist($nu,$o);

       ran_tdist does not process bad values.  It will set the bad-value flag of all output ndarrays if the flag
       is set for any of the input ndarrays.

   ran_tdist_var
         Signature: (nu();[o]output(); IV rng)

       Similar to "ran_tdist" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_tdist_var($nu_ndarray);

       ran_tdist_var does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_beta
         Signature: ([o]output(); double pa; double pb; IV rng)

       Fills output ndarray with random variates from the beta distribution with parameters $pa and $pb.

       Usage:

        $ndarray = $rng->ran_beta($pa, $pb,[list of integers = output ndarray dims]);
        $rng->ran_beta($pa, $pb, $output_ndarray);

       Example:

         $o = $rng->ran_beta($pa, $pb,10,10);
         $rng->ran_beta($pa, $pb,$o);

       ran_beta does not process bad values.  It will set the bad-value flag of all output ndarrays if the flag
       is set for any of the input ndarrays.

   ran_beta_var
         Signature: (pa();pb();[o]output(); IV rng)

       Similar to "ran_beta" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_beta_var($pa_ndarray,$pb_ndarray);

       ran_beta_var does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_logistic
         Signature: ([o]output(); double m; IV rng)

       Fills output ndarray with random random variates from the logistic distribution.

       Usage:

        $ndarray = $rng->ran_logistic($m,[list of integers = output ndarray dims]);
        $rng->ran_logistic($m, $output_ndarray);

       Example:

         $o = $rng->ran_logistic($m,10,10);
         $rng->ran_logistic($m,$o);

       ran_logistic does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_logistic_var
         Signature: (m();[o]output(); IV rng)

       Similar to "ran_logistic" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_logistic_var($m_ndarray);

       ran_logistic_var does not process bad values.  It will set the bad-value flag of all output ndarrays if
       the flag is set for any of the input ndarrays.

   ran_pareto
         Signature: ([o]output(); double pa; double lb; IV rng)

       Fills output ndarray with random variates from the Pareto distribution of order $pa and scale $lb.

       Usage:

        $ndarray = $rng->ran_pareto($pa, $lb,[list of integers = output ndarray dims]);
        $rng->ran_pareto($pa, $lb, $output_ndarray);

       Example:

         $o = $rng->ran_pareto($pa, $lb,10,10);
         $rng->ran_pareto($pa, $lb,$o);

       ran_pareto does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_pareto_var
         Signature: (pa();lb();[o]output(); IV rng)

       Similar to "ran_pareto" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_pareto_var($pa_ndarray,$lb_ndarray);

       ran_pareto_var does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_weibull
         Signature: ([o]output(); double pa; double pb; IV rng)

       Fills output ndarray with random variates from the Weibull distribution with scale $pa and exponent $pb.
       (Some literature uses "lambda" for $pa and "k" for $pb.)

       Usage:

        $ndarray = $rng->ran_weibull($pa, $pb,[list of integers = output ndarray dims]);
        $rng->ran_weibull($pa, $pb, $output_ndarray);

       Example:

         $o = $rng->ran_weibull($pa, $pb,10,10);
         $rng->ran_weibull($pa, $pb,$o);

       ran_weibull does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_weibull_var
         Signature: (pa();pb();[o]output(); IV rng)

       Similar to "ran_weibull" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_weibull_var($pa_ndarray,$pb_ndarray);

       ran_weibull_var does not process bad values.  It will set the bad-value flag of all output ndarrays if
       the flag is set for any of the input ndarrays.

   ran_gumbel1
         Signature: ([o]output(); double pa; double pb; IV rng)

       Fills output ndarray with random variates from the Type-1 Gumbel distribution.

       Usage:

        $ndarray = $rng->ran_gumbel1($pa, $pb,[list of integers = output ndarray dims]);
        $rng->ran_gumbel1($pa, $pb, $output_ndarray);

       Example:

         $o = $rng->ran_gumbel1($pa, $pb,10,10);
         $rng->ran_gumbel1($pa, $pb,$o);

       ran_gumbel1 does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_gumbel1_var
         Signature: (pa();pb();[o]output(); IV rng)

       Similar to "ran_gumbel1" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_gumbel1_var($pa_ndarray,$pb_ndarray);

       ran_gumbel1_var does not process bad values.  It will set the bad-value flag of all output ndarrays if
       the flag is set for any of the input ndarrays.

   ran_gumbel2
         Signature: ([o]output(); double pa; double pb; IV rng)

       Fills output ndarray with random variates from the Type-2 Gumbel distribution.

       Usage:

        $ndarray = $rng->ran_gumbel2($pa, $pb,[list of integers = output ndarray dims]);
        $rng->ran_gumbel2($pa, $pb, $output_ndarray);

       Example:

         $o = $rng->ran_gumbel2($pa, $pb,10,10);
         $rng->ran_gumbel2($pa, $pb,$o);

       ran_gumbel2 does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_gumbel2_var
         Signature: (pa();pb();[o]output(); IV rng)

       Similar to "ran_gumbel2" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_gumbel2_var($pa_ndarray,$pb_ndarray);

       ran_gumbel2_var does not process bad values.  It will set the bad-value flag of all output ndarrays if
       the flag is set for any of the input ndarrays.

   ran_poisson
         Signature: ([o]output(); double mu; IV rng)

       Fills output ndarray with random integer values from the Poisson distribution with mean $mu.

       Usage:

        $ndarray = $rng->ran_poisson($mu,[list of integers = output ndarray dims]);
        $rng->ran_poisson($mu, $output_ndarray);

       Example:

         $o = $rng->ran_poisson($mu,10,10);
         $rng->ran_poisson($mu,$o);

       ran_poisson does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_poisson_var
         Signature: (mu();[o]output(); IV rng)

       Similar to "ran_poisson" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_poisson_var($mu_ndarray);

       ran_poisson_var does not process bad values.  It will set the bad-value flag of all output ndarrays if
       the flag is set for any of the input ndarrays.

   ran_bernoulli
         Signature: ([o]output(); double p; IV rng)

       Fills output ndarray with random values 0 or 1, the result of a Bernoulli trial with probability $p.

       Usage:

        $ndarray = $rng->ran_bernoulli($p,[list of integers = output ndarray dims]);
        $rng->ran_bernoulli($p, $output_ndarray);

       Example:

         $o = $rng->ran_bernoulli($p,10,10);
         $rng->ran_bernoulli($p,$o);

       ran_bernoulli does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_bernoulli_var
         Signature: (p();[o]output(); IV rng)

       Similar to "ran_bernoulli" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_bernoulli_var($p_ndarray);

       ran_bernoulli_var does not process bad values.  It will set the bad-value flag of all output ndarrays if
       the flag is set for any of the input ndarrays.

   ran_binomial
         Signature: ([o]output(); double p; double n; IV rng)

       Fills output ndarray with random integer values from the binomial distribution, the number of successes
       in $n independent trials with probability $p.

       Usage:

        $ndarray = $rng->ran_binomial($p, $n,[list of integers = output ndarray dims]);
        $rng->ran_binomial($p, $n, $output_ndarray);

       Example:

         $o = $rng->ran_binomial($p, $n,10,10);
         $rng->ran_binomial($p, $n,$o);

       ran_binomial does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_binomial_var
         Signature: (p();n();[o]output(); IV rng)

       Similar to "ran_binomial" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_binomial_var($p_ndarray,$n_ndarray);

       ran_binomial_var does not process bad values.  It will set the bad-value flag of all output ndarrays if
       the flag is set for any of the input ndarrays.

   ran_negative_binomial
         Signature: ([o]output(); double p; double n; IV rng)

       Fills output ndarray with random integer values from the negative binomial distribution, the number of
       failures occurring before $n successes in independent trials with probability $p of success. Note that $n
       is not required to be an integer.

       Usage:

        $ndarray = $rng->ran_negative_binomial($p, $n,[list of integers = output ndarray dims]);
        $rng->ran_negative_binomial($p, $n, $output_ndarray);

       Example:

         $o = $rng->ran_negative_binomial($p, $n,10,10);
         $rng->ran_negative_binomial($p, $n,$o);

       ran_negative_binomial does not process bad values.  It will set the bad-value flag of all output ndarrays
       if the flag is set for any of the input ndarrays.

   ran_negative_binomial_var
         Signature: (p();n();[o]output(); IV rng)

       Similar to "ran_negative_binomial" except that it takes the distribution parameters as an ndarray and
       returns an ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_negative_binomial_var($p_ndarray,$n_ndarray);

       ran_negative_binomial_var does not process bad values.  It will set the bad-value flag of all output
       ndarrays if the flag is set for any of the input ndarrays.

   ran_pascal
         Signature: ([o]output(); double p; double n; IV rng)

       Fills output ndarray with random integer values from the Pascal distribution.  The Pascal distribution is
       simply a negative binomial distribution (see "ran_negative_binomial") with an integer value of $n.

       Usage:

        $ndarray = $rng->ran_pascal($p, $n,[list of integers = output ndarray dims]);
        $rng->ran_pascal($p, $n, $output_ndarray);

       Example:

         $o = $rng->ran_pascal($p, $n,10,10);
         $rng->ran_pascal($p, $n,$o);

       ran_pascal does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_pascal_var
         Signature: (p();n();[o]output(); IV rng)

       Similar to "ran_pascal" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_pascal_var($p_ndarray,$n_ndarray);

       ran_pascal_var does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_geometric
         Signature: ([o]output(); double p; IV rng)

       Fills output ndarray with random integer values from the geometric distribution, the number of
       independent trials with probability $p until the first success.

       Usage:

        $ndarray = $rng->ran_geometric($p,[list of integers = output ndarray dims]);
        $rng->ran_geometric($p, $output_ndarray);

       Example:

         $o = $rng->ran_geometric($p,10,10);
         $rng->ran_geometric($p,$o);

       ran_geometric does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_geometric_var
         Signature: (p();[o]output(); IV rng)

       Similar to "ran_geometric" except that it takes the distribution parameters as an ndarray and returns an
       ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_geometric_var($p_ndarray);

       ran_geometric_var does not process bad values.  It will set the bad-value flag of all output ndarrays if
       the flag is set for any of the input ndarrays.

   ran_hypergeometric
         Signature: ([o]output(); double n1; double n2; double t; IV rng)

       Fills output ndarray with random integer values from the hypergeometric distribution.  If a population
       contains $n1 elements of type 1 and $n2 elements of type 2 then the hypergeometric distribution gives the
       probability of obtaining $x elements of type 1 in $t samples from the population without replacement.

       Usage:

        $ndarray = $rng->ran_hypergeometric($n1, $n2, $t,[list of integers = output ndarray dims]);
        $rng->ran_hypergeometric($n1, $n2, $t, $output_ndarray);

       Example:

         $o = $rng->ran_hypergeometric($n1, $n2, $t,10,10);
         $rng->ran_hypergeometric($n1, $n2, $t,$o);

       ran_hypergeometric does not process bad values.  It will set the bad-value flag of all output ndarrays if
       the flag is set for any of the input ndarrays.

   ran_hypergeometric_var
         Signature: (n1();n2();t();[o]output(); IV rng)

       Similar to "ran_hypergeometric" except that it takes the distribution parameters as an ndarray and
       returns an ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_hypergeometric_var($n1_ndarray,$n2_ndarray,$t_ndarray);

       ran_hypergeometric_var does not process bad values.  It will set the bad-value flag of all output
       ndarrays if the flag is set for any of the input ndarrays.

   ran_logarithmic
         Signature: ([o]output(); double p; IV rng)

       Fills output ndarray with random integer values from the logarithmic distribution.

       Usage:

        $ndarray = $rng->ran_logarithmic($p,[list of integers = output ndarray dims]);
        $rng->ran_logarithmic($p, $output_ndarray);

       Example:

         $o = $rng->ran_logarithmic($p,10,10);
         $rng->ran_logarithmic($p,$o);

       ran_logarithmic does not process bad values.  It will set the bad-value flag of all output ndarrays if
       the flag is set for any of the input ndarrays.

   ran_logarithmic_var
         Signature: (p();[o]output(); IV rng)

       Similar to "ran_logarithmic" except that it takes the distribution parameters as an ndarray and returns
       an ndarray of equal dimensions.

       Usage:

          $ndarray = $rng->ran_logarithmic_var($p_ndarray);

       ran_logarithmic_var does not process bad values.  It will set the bad-value flag of all output ndarrays
       if the flag is set for any of the input ndarrays.

   ran_additive_gaussian
         Signature: ([o]x(); double sigma; IV rng)

       Add Gaussian noise of given sigma to an ndarray.

       Usage:

          $rng->ran_additive_gaussian($sigma,$ndarray);

       Example:

          $rng->ran_additive_gaussian(1,$image);

       ran_additive_gaussian does not process bad values.  It will set the bad-value flag of all output ndarrays
       if the flag is set for any of the input ndarrays.

   ran_additive_poisson
         Signature: ([o]x(); double sigma; IV rng)

       Add Poisson noise of given $mu to a $ndarray.

       Usage:

          $rng->ran_additive_poisson($mu,$ndarray);

       Example:

          $rng->ran_additive_poisson(1,$image);

       ran_additive_poisson does not process bad values.  It will set the bad-value flag of all output ndarrays
       if the flag is set for any of the input ndarrays.

   ran_feed_poisson
         Signature: ([o]x(); IV rng)

       This method simulates shot noise, taking the values of ndarray as values for $mu to be fed in the
       poissonian RNG.

       Usage:

          $rng->ran_feed_poisson($ndarray);

       Example:

          $rng->ran_feed_poisson($image);

       ran_feed_poisson does not process bad values.  It will set the bad-value flag of all output ndarrays if
       the flag is set for any of the input ndarrays.

   ran_bivariate_gaussian
         Signature: ([o]x(n); double sigma_x; double sigma_y; double rho; IV rng)

       Generates $n bivariate gaussian random deviates.

       Usage:

          $ndarray = $rng->ran_bivariate_gaussian($sigma_x,$sigma_y,$rho,$n);

       Example:

          $o = $rng->ran_bivariate_gaussian(1,2,0.5,1000);

       ran_bivariate_gaussian does not process bad values.  It will set the bad-value flag of all output
       ndarrays if the flag is set for any of the input ndarrays.

   ran_discrete
         Signature: ([o]x(); IV rng_discrete; IV rng)

       Is used to get the desired samples once a proper handle has been enstablished (see
       ran_discrete_preproc()).

       Usage:

          $ndarray = $rng->ran_discrete($discrete_dist_handle,$num);

       Example:

          $prob = pdl [0.1,0.3,0.6];
          $ddh = $rng->ran_discrete_preproc($prob);
          $o = $rng->ran_discrete($discrete_dist_handle,100);

       ran_discrete does not process bad values.  It will set the bad-value flag of all output ndarrays if the
       flag is set for any of the input ndarrays.

   ran_ver
         Signature: ([o]x(n); double x0; double r;int ns => n; IV rng)

       Returns an ndarray with $n values generated by the Verhulst map from $x0 and parameter $r.

       Usage:

          $rng->ran_ver($x0, $r, $n);

       ran_ver does not process bad values.  It will set the bad-value flag of all output ndarrays if the flag
       is set for any of the input ndarrays.

   ran_caos
         Signature: ([o]x(n); double m; int ns => n; IV rng)

       Returns values from Verhuls map with "$r=4.0" and randomly chosen $x0. The values are scaled by $m.

       Usage:

          $rng->ran_caos($m,$n);

       ran_caos does not process bad values.  It will set the bad-value flag of all output ndarrays if the flag
       is set for any of the input ndarrays.

BUGS

       Feedback is welcome. Log bugs in the PDL bug database (the database is always linked from
       <http://pdl.perl.org/>).

SEE ALSO

       PDL

       The GSL documentation for random number distributions is online at
       <https://www.gnu.org/software/gsl/doc/html/randist.html>

AUTHOR

       This file copyright (C) 1999 Christian Pellegrin <chri@infis.univ.trieste.it> Docs mangled by C. Soeller.
       All rights reserved. There is no warranty. You are allowed to redistribute this software / documentation
       under certain conditions. For details, see the file COPYING in the PDL distribution. If this file is
       separated from the PDL distribution, the copyright notice should be included in the file.

       The GSL RNG and randist modules were written by James Theiler.