plucky (3) MPI_Igatherv.openmpi.3.gz

Provided by: openmpi-doc_5.0.7-1_all bug

SYNTAX

   C Syntax
          #include <mpi.h>

          int MPI_Gatherv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
              void *recvbuf, const int recvcounts[], const int displs[], MPI_Datatype recvtype,
              int root, MPI_Comm comm)

          int MPI_Igatherv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
              void *recvbuf, const int recvcounts[], const int displs[], MPI_Datatype recvtype,
              int root, MPI_Comm comm, MPI_Request *request)

          int MPI_Gatherv_init(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
              void *recvbuf, const int recvcounts[], const int displs[], MPI_Datatype recvtype,
              int root, MPI_Comm comm, MPI_Info info, MPI_Request *request)

   Fortran Syntax
          USE MPI
          ! or the older form: INCLUDE 'mpif.h'

          MPI_GATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS,
                  DISPLS, RECVTYPE, ROOT, COMM, IERROR)
              <type>  SENDBUF(*), RECVBUF(*)
              INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*)
              INTEGER RECVTYPE, ROOT, COMM, IERROR

          MPI_IGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS,
                  DISPLS, RECVTYPE, ROOT, COMM, REQUEST, IERROR)
              <type>  SENDBUF(*), RECVBUF(*)
              INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*)
              INTEGER RECVTYPE, ROOT, COMM, REQUEST, IERROR

          MPI_GATHERV_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS,
                  DISPLS, RECVTYPE, ROOT, COMM, INFO, REQUEST, IERROR)
              <type>  SENDBUF(*), RECVBUF(*)
              INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*)
              INTEGER RECVTYPE, ROOT, COMM, INFO, REQUEST, IERROR

   Fortran 2008 Syntax
          USE mpi_f08

          MPI_Gatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
                  recvtype, root, comm, ierror)
              TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
              TYPE(*), DIMENSION(..) :: recvbuf
              INTEGER, INTENT(IN) :: sendcount, recvcounts(*), displs(*), root
              TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
              TYPE(MPI_Comm), INTENT(IN) :: comm
              INTEGER, OPTIONAL, INTENT(OUT) :: ierror

          MPI_Igatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
                  recvtype, root, comm, request, ierror)
              TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
              TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
              INTEGER, INTENT(IN) :: sendcount, root
              INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)
              TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
              TYPE(MPI_Comm), INTENT(IN) :: comm
              TYPE(MPI_Request), INTENT(OUT) :: request
              INTEGER, OPTIONAL, INTENT(OUT) :: ierror

          MPI_Gatherv_init(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
                  recvtype, root, comm, info, request, ierror)
              TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
              TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
              INTEGER, INTENT(IN) :: sendcount, root
              INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)
              TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
              TYPE(MPI_Comm), INTENT(IN) :: comm
              TYPE(MPI_Info), INTENT(IN) :: info
              TYPE(MPI_Request), INTENT(OUT) :: request
              INTEGER, OPTIONAL, INTENT(OUT) :: ierror

INPUT PARAMETERS

sendbuf : Starting address of send buffer (choice).

       • sendcount : Number of elements in send buffer (integer).

       • sendtype : Datatype of send buffer elements (handle).

       •

         recvcounts (Integer array (of length group size) containing the)
                number of elements that are received from each process (significant only at root).

       •

         displs (Integer array (of length group size). Entry i specifies the)
                displacement relative to recvbuf at which to place the incoming data from process i (significant
                only at root).

       •

         recvtype (Datatype of recv buffer elements (significant only at)
                root) (handle).

       • root : Rank of receiving process (integer).

       • comm : Communicator (handle).

       • info : Info (handle, persistent only).

OUTPUT PARAMETERS

recvbuf (Address of receive buffer (choice, significant only at)
                root).

       • request : Request (handle, non-blocking only).

       • ierror : Fortran only: Error status (integer).

DESCRIPTION

       MPI_Gatherv  extends  the  functionality  of  MPI_Gather  by  allowing  a varying count of data from each
       process, since recvcounts is now an array. It also allows more flexibility as to where the data is placed
       on the root, by providing the new argument, displs.

       The outcome is as if each process, including the root process, sends a message to the root,

          MPI_Send(sendbuf, sendcount, sendtype, root, ...);

       and the root executes n receives,

          MPI_Recv(recvbuf + disp[i] * extent(recvtype), recvcounts[i],
                   recvtype, i, ...);

       Messages  are placed in the receive buffer of the root process in rank order, that is, the data sent from
       process j is placed in the jth portion of the receive buffer recvbuf on process root. The jth portion  of
       recvbuf begins at offset displs[j] elements (in terms of recvtype) into recvbuf.

       The receive buffer is ignored for all nonroot processes.

       The  type  signature  implied  by  sendcount,  sendtype  on process i must be equal to the type signature
       implied by recvcounts[i], recvtype at the root. This implies that the amount of data sent must  be  equal
       to  the  amount of data received, pairwise between each process and the root.  Distinct type maps between
       sender and receiver are still allowed, as illustrated in Example 2, below.

       All arguments to the function are significant on process root, while on other processes,  only  arguments
       sendbuf, sendcount, sendtype, root, comm are significant. The arguments root and comm must have identical
       values on all processes.

       The specification of counts, types, and displacements should not cause any location on  the  root  to  be
       written more than once. Such a call is erroneous.

       Example  1: Now have each process send 100 ints to root, but place each set (of 100) stride ints apart at
       receiving end. Use MPI_Gatherv and the displs argument to achieve this effect. Assume stride >= 100.

          MPI_Comm comm;
          int gsize, sendarray[100];
          int root, *rbuf, stride;
          int *displs, i, rcounts;
          ...

          MPI_Comm_size(comm, &gsize);
          rbuf = (int)malloc(gsize * stride * sizeof(int));
          displs = (int)malloc(gsize * sizeof(int));
          rcounts = (int )malloc(gsize * sizeof(int));

          for (i=0; i<gsize; ++i) {
            displs[i] = i * stride;
            rcounts[i] = 100;
          }
          MPI_Gatherv(sendarray, 100, MPI_INT, rbuf, rcounts, displs, MPI_INT,
                      root, comm);

       Note that the program is erroneous if stride < 100.

       Example 2: Same as Example 1 on the receiving side, but send the 100 ints from the 0th column  of  a  100
       150 int array, in C.

          MPI_Comm comm;
          int gsize, sendarray[100][150];
          int root, *rbuf, stride;
          MPI_Datatype stype;
          int displs,i, rcounts;
          ...

          MPI_Comm_size(comm, &gsize);
          rbuf = (int )malloc(gsize * stride * sizeof(int));
          displs = (int)malloc(gsize * sizeof(int));
          rcounts = (int )malloc(gsize * sizeof(int));

          for (i=0; i<gsize; ++i) {
            displs[i] = i * stride;
            rcounts[i] = 100;
          }

          // Create datatype for 1 column of array
          MPI_Type_vector(100, 1, 150, MPI_INT, &stype);
          MPI_Type_commit( &stype );
          MPI_Gatherv(sendarray, 1, stype, rbuf, rcounts, displs, MPI_INT,
                      root, comm);

       Example  3:  Process  i  sends  (100-i)  ints  from  the ith column of a 100 x 150 int array, in C. It is
       received into a buffer with stride, as in the previous two examples.

          MPI_Comm comm;
          int gsize, sendarray[100][150], *sptr;
          int root, *rbuf, stride, myrank;
          MPI_Datatype stype;
          int displs, i, rcounts;
          ...

          MPI_Comm_size(comm, &gsize);
          MPI_Comm_rank( comm, &myrank );
          rbuf = (int)malloc(gsize * stride * sizeof(int));
          displs = (int)malloc(gsize * sizeof(int));
          rcounts = (int )malloc(gsize * sizeof(int));

          for (i=0; i<gsize; ++i) {
            displs[i] = i * stride;
            rcounts[i] = 100-i; // note change from previous example
          }

          // Create datatype for the column we are sending
          MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &stype);
          MPI_Type_commit( &stype );
          // sptr is the address of start of "myrank" column
          sptr = &sendarray[0][myrank];
          MPI_Gatherv(sptr, 1, stype, rbuf, rcounts, displs, MPI_INT,
                      root, comm);

       Note that a different amount of data is received from each process.

       Example 4: Same as Example 3, but done in a different way at the sending end. We create a  datatype  that
       causes the correct striding at the sending end so that we read a column of a C array.

          MPI_Comm comm;
          int gsize, sendarray[100][150], *sptr;
          int root, *rbuf, stride, myrank, disp[2], blocklen[2];
          MPI_Datatype stype, type[2];
          int displs, i, rcounts;
          ...

          MPI_Comm_size(comm, &gsize);
          MPI_Comm_rank(comm, &myrank );
          rbuf = (int )alloc(gsize * stride * sizeof(int));
          displs = (int )malloc(gsize * sizeof(int));
          rcounts = (int)malloc(gsize * sizeof(int));

          for (i=0; i<gsize; ++i) {
            displs[i] = i* stride;
            rcounts[i] = 100-i;
          }
          // Create datatype for one int, with extent of entire row
          disp[0] = 0;
          disp[1] = 150 * sizeof(int);
          type[0] = MPI_INT;
          type[1] = MPI_UB;
          blocklen[0] = 1;
          blocklen[1] = 1;

          MPI_Type_struct( 2, blocklen, disp, type, &stype );
          MPI_Type_commit(&stype );
          sptr = &sendarray[0][myrank];
          MPI_Gatherv(sptr, 100-myrank, stype, rbuf, rcounts, displs, MPI_INT,
                      root, comm);

       Example  5:  Same as Example 3 at sending side, but at receiving side we make the stride between received
       blocks vary from block to block.

          MPI_Comm comm;
          int gsize, sendarray[100][150], *sptr;
          int root, *rbuf, *stride, myrank, bufsize;
          MPI_Datatype stype;
          int *displs, i, *rcounts, offset;
          ...

          MPI_Comm_size( comm, &gsize);
          MPI_Comm_rank( comm, &myrank );
          de = (int )malloc(gsize * sizeof(int));
          ...
          // stride[i] for i = 0 to gsize-1 is set somehow

          // set up displs and rcounts vectors first
          displs = (int)malloc(gsize * sizeof(int));
          rcounts = (int )malloc(gsize * sizeof(int));
          offset = 0;

          for (i=0; i<gsize; ++i) {
            displs[i] = offset;
            offset += stride[i];
            rcounts[i] = 100-i;
          }

          // the required buffer size for rbuf is now easily obtained
          bufsize = displs[gsize-1]+rcounts[gsize-1];
          rbuf = (int )malloc(bufsize * sizeof(int));
          // Create datatype for the column we are sending
          MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &stype);
          MPI_Type_commit( &stype );
          sptr = &sendarray[0][myrank];
          MPI_Gatherv(sptr, 1, stype, rbuf, rcounts, displs, MPI_INT,
                      root, comm);

       Example 6: Process i sends num ints from the ith column of a 100 x 150 int array, in C. The  complicating
       factor is that the various values of num are not known to root, so a separate gather must first be run to
       find these out. The data is placed contiguously at the receiving end.

          MPI_Comm comm;
          int gsize, sendarray[100][150], *sptr;
          int root, *rbuf, stride, myrank, disp[2], blocklen[2];
          MPI_Datatype stype,types[2];
          int *displs, i, *rcounts, num;
          ...

          MPI_Comm_size( comm, &gsize);
          MPI_Comm_rank( comm, &myrank );

          // First, gather nums to root
          rcounts = (int )malloc(gsize * sizeof(int));
          MPI_Gather( &num, 1, MPI_INT, rcounts, 1, MPI_INT, root, comm);
          // root now has correct rcounts, using these we set
          // displs[] so that data is placed contiguously (or concatenated) at receive end

          displs = (int)malloc(gsize * sizeof(int));
          displs[0] = 0;
          for (i=1; i<gsize; ++i) {
            displs[i] = displs[i-1]+rcounts[i-1];
          }

          // And, create receive buffer
          rbuf = (int *)malloc(gsize * (displs[gsize-1]+rcounts[gsize-1]) * sizeof(int));
          // Create datatype for one int, with extent of entire row
          disp[0] = 0;
          disp[1] = 150 * sizeof(int);
          type[0] = MPI_INT;
          type[1] = MPI_UB;
          blocklen[0] = 1;
          blocklen[1] = 1;
          MPI_Type_struct(2, blocklen, disp, type, &stype );
          MPI_Type_commit( &stype );
          sptr = &sendarray[0][myrank];
          MPI_Gatherv(sptr, num, stype, rbuf, rcounts, displs, MPI_INT, root, comm);

USE OF IN-PLACE OPTION

       The in-place option operates in the same way as it does for MPI_Gather.   When  the  communicator  is  an
       intracommunicator,  you  can  perform a gather operation in-place (the output buffer is used as the input
       buffer). Use the variable MPI_IN_PLACE as the value of the root process sendbuf. In this case,  sendcount
       and  sendtype  are ignored, and the contribution of the root process to the gathered vector is assumed to
       already be in the correct place in the receive buffer.

       Note that MPI_IN_PLACE is a special kind of value; it has the same restrictions on its use as MPI_BOTTOM.

       Because the in-place option converts the receive buffer into a send-and-receive buffer, a Fortran binding
       that includes INTENT must mark these as INOUT, not OUT.

WHEN COMMUNICATOR IS AN INTER-COMMUNICATOR

       When the communicator is an inter-communicator, the root process in the first group gathers data from all
       the processes in the second group. The first group defines the root process. That process  uses  MPI_ROOT
       as  the  value of its root argument. The remaining processes use MPI_PROC_NULL as the value of their root
       argument. All processes in the second group use the rank of that root process in the first group  as  the
       value  of  their  root  argument.  The  send  buffer argument of the processes in the first group must be
       consistent with the receive buffer argument of the root process in the second group.

ERRORS

       Almost all MPI routines return an error value; C routines as  the  return  result  of  the  function  and
       Fortran routines in the last argument.

       Before  the  error  value  is  returned,  the current MPI error handler associated with the communication
       object (e.g., communicator, window, file) is called.  If no communication object is associated  with  the
       MPI  call,  then  the call is considered attached to MPI_COMM_SELF and will call the associated MPI error
       handler.  When  MPI_COMM_SELF  is  not  initialized   (i.e.,   before   MPI_Init/MPI_Init_thread,   after
       MPI_Finalize,  or  when using the Sessions Model exclusively) the error raises the initial error handler.
       The initial error handler can be changed by calling MPI_Comm_set_errhandler on MPI_COMM_SELF  when  using
       the  World  model,  or the mpi_initial_errhandler CLI argument to mpiexec or info key to MPI_Comm_spawn/‐
       MPI_Comm_spawn_multiple.  If no other appropriate error handler has been set, then the  MPI_ERRORS_RETURN
       error  handler  is  called for MPI I/O functions and the MPI_ERRORS_ABORT error handler is called for all
       other MPI functions.

       Open MPI includes three predefined error handlers that can be used:

       • MPI_ERRORS_ARE_FATAL Causes the program to abort all connected MPI processes.

       • MPI_ERRORS_ABORT An error handler that can be invoked on a communicator, window, file, or session. When
         called  on  a  communicator,  it  acts  as if MPI_Abort was called on that communicator. If called on a
         window or file, acts as if MPI_Abort was called on a communicator containing the group of processes  in
         the corresponding window or file. If called on a session, aborts only the local process.

       • MPI_ERRORS_RETURN Returns an error code to the application.

       MPI applications can also implement their own error handlers by calling:

       • MPI_Comm_create_errhandler then MPI_Comm_set_errhandlerMPI_File_create_errhandler then MPI_File_set_errhandlerMPI_Session_create_errhandler then MPI_Session_set_errhandler or at MPI_Session_initMPI_Win_create_errhandler then MPI_Win_set_errhandler

       Note that MPI does not guarantee that an MPI program can continue past an error.

       See the MPI man page for a full list of MPI error codes.

       See the Error Handling section of the MPI-3.1 standard for more information.

       SEE ALSO:
          MPI_Gather

       2003-2025, The Open MPI Community

                                                  Feb 17, 2025                                   MPI_IGATHERV(3)