Provided by: csvkit_2.0.1-3_all bug

NAME

       csvsql - csvsql Documentation

DESCRIPTION

       Generate SQL statements for a CSV file or execute those statements directly on a database.
       In the latter case supports both creating tables and inserting data:

          usage: csvsql [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
                        [-p ESCAPECHAR] [-z FIELD_SIZE_LIMIT] [-e ENCODING] [-L LOCALE]
                        [-S] [--blanks] [--null-value NULL_VALUES [NULL_VALUES ...]]
                        [--date-format DATE_FORMAT] [--datetime-format DATETIME_FORMAT]
                        [-H] [-K SKIP_LINES] [-v] [-l] [--zero] [-V]
                        [-i {firebird,mssql,mysql,oracle,postgresql,sqlite,sybase}]
                        [--db CONNECTION_STRING] [--query QUERIES] [--insert]
                        [--prefix PREFIX] [--before-insert BEFORE_INSERT]
                        [--after-insert AFTER_INSERT] [--tables TABLE_NAMES]
                        [--no-constraints] [--unique-constraint UNIQUE_CONSTRAINT]
                        [--no-create] [--create-if-not-exists] [--overwrite]
                        [--db-schema DB_SCHEMA] [-y SNIFF_LIMIT] [-I]
                        [--chunk-size CHUNK_SIZE]
                        [FILE [FILE ...]]

          Generate SQL statements for one or more CSV files, or execute those statements
          directly on a database, and execute one or more SQL queries.

          positional arguments:
            FILE                  The CSV file(s) to operate on. If omitted, will accept
                                  input as piped data via STDIN.

          optional arguments:
            -h, --help            show this help message and exit
            -i {firebird,mssql,mysql,oracle,postgresql,sqlite,sybase,crate}, --dialect {firebird,mssql,mysql,oracle,postgresql,sqlite,sybase,crate}
                                  Dialect of SQL to generate. Cannot be used with --db.
            --db CONNECTION_STRING
                                  If present, a SQLAlchemy connection string to use to
                                  directly execute generated SQL on a database.
            --query QUERY         Execute one or more SQL queries delimited by ";" and
                                  output the result of the last query as CSV. QUERY may
                                  be a filename.
            --insert              Insert the data into the table. Requires --db.
            --prefix PREFIX       Add an expression following the INSERT keyword, like
                                  OR IGNORE or OR REPLACE.
            --before-insert BEFORE_INSERT
                                  Execute SQL before the INSERT command. Requires
                                  --insert.
            --after-insert AFTER_INSERT
                                  Execute SQL after the INSERT command. Requires
                                  --insert.
            --tables TABLE_NAMES  A comma-separated list of names of tables to be
                                  created. By default, the tables will be named after
                                  the filenames without extensions or "stdin".
            --no-constraints      Generate a schema without length limits or null
                                  checks. Useful when sampling big tables.
            --unique-constraint UNIQUE_CONSTRAINT
                                  A column-separated list of names of columns to include
                                  in a UNIQUE constraint.
            --no-create           Skip creating the table. Requires --insert.
            --create-if-not-exists
                                  Create the table if it does not exist, otherwise keep
                                  going. Requires --insert.
            --overwrite           Drop the table if it already exists. Requires
                                  --insert. Cannot be used with --no-create.
            --db-schema DB_SCHEMA
                                  Optional name of database schema to create table(s)
                                  in.
            -y SNIFF_LIMIT, --snifflimit SNIFF_LIMIT
                                  Limit CSV dialect sniffing to the specified number of
                                  bytes. Specify "0" to disable sniffing.
            -I, --no-inference    Disable type inference when parsing the input.
            --chunk-size CHUNK_SIZE
                                  Chunk size for batch insert into the table. Requires
                                  --insert.
            --min-col-len MIN_COL_LEN
                                  The minimum length of text columns.
            --col-len-multiplier COL_LEN_MULTIPLIER
                                  Multiply the maximum column length by this multiplier
                                  to accomodate larger values in later runs.

       See also: Arguments common to all tools.

       For information on connection strings and  supported  dialects  refer  to  the  SQLAlchemy
       documentation.

       If  you  prefer  not  to  enter your password in the connection string, store the password
       securely in a PostgreSQL Password File, a MySQL Options File or similar  files  for  other
       systems.

       NOTE:
          Using  the --query option may cause rounding (in Python 2) or introduce Python floating
          point issues (in Python 3).

       NOTE:
          If the CSV file was created from a JSON  file  using  in2csv,  remember  to  quote  SQL
          columns properly. For example:

              echo '{"a":{"b":"c"},"d":"e"}' | in2csv -f ndjson | csvsql --query 'SELECT "a/b" FROM stdin'

       NOTE:
          Alternatives to csvsql are q and textql.

EXAMPLES

   Generate SQL statements
       Generate a statement in the PostgreSQL dialect:

          csvsql -i postgresql examples/realdata/FY09_EDU_Recipients_by_State.csv

   Interact with a SQL database
       Create a table and import data from the CSV directly into PostgreSQL:

          createdb test
          csvsql --db postgresql:///test --tables fy09 --insert examples/realdata/FY09_EDU_Recipients_by_State.csv

       For large tables it may not be practical to process the entire table. One solution to this
       is to analyze a sample of the table. In this case it can be  useful  to  turn  off  length
       limits and null checks with the --no-constraints option:

          head -n 20 examples/realdata/FY09_EDU_Recipients_by_State.csv | csvsql --no-constraints --tables fy09

       Create  tables  for  an entire directory of CSVs and import data from those files directly
       into PostgreSQL:

          createdb test
          csvsql --db postgresql:///test --insert examples/*_converted.csv

       If those CSVs have identical headers, you can import them into the  same  table  by  using
       csvstack first:

          createdb test
          csvstack examples/dummy?.csv | csvsql --db postgresql:///test --insert

   Query and output CSV files using SQL
       You  can  use csvsql to "directly" query one or more CSV files. Please note that this will
       create an in-memory SQLite database, so it won't be very fast:

          csvsql --query  "SELECT m.usda_id, avg(i.sepal_length) AS mean_sepal_length FROM iris AS i JOIN irismeta AS m ON (i.species = m.species) GROUP BY m.species" examples/iris.csv examples/irismeta.csv

       Group rows by one column:

          csvsql --query "SELECT * FROM 'dummy3' GROUP BY a" examples/dummy3.csv

       Concatenate two columns:

          csvsql --query "SELECT a || b FROM 'dummy3'" --no-inference examples/dummy3.csv

       If a column contains null values, you must COALESCE the column:

          csvsql --query "SELECT a || COALESCE(b, '') FROM 'sort_ints_nulls'" --no-inference examples/sort_ints_nulls.csv

       The UPDATE SQL statement produces no output. Remember to SELECT the columns and  rows  you
       want:

          csvsql --query "UPDATE 'dummy3' SET a = 'foo'; SELECT * FROM 'dummy3'" examples/dummy3.csv

AUTHOR

       Christopher Groskopf and contributors

COPYRIGHT

       2016, Christopher Groskopf and James McKinney