Provided by: btrfs-progs_6.16-2_amd64 

NAME
btrfs - topics about the BTRFS filesystem (mount options, supported file attributes and other)
DESCRIPTION
This document describes topics related to BTRFS that are not specific to the tools. Currently covers:
1. mount options
2. filesystem features
3. checksum algorithms
4. compression
5. sysfs interface
6. filesystem exclusive operations
7. filesystem limits
8. bootloader support
9. file attributes
10. zoned mode
11. control device
12. filesystems with multiple block group profiles
13. seeding device
14. RAID56 status and recommended practices
15. glossary
16. storage model, hardware considerations
MOUNT OPTIONS
BTRFS SPECIFIC MOUNT OPTIONS
This section describes mount options specific to BTRFS. For the generic mount options please refer to ‐
mount(8) manual page and also see the section with BTRFS specifics below. The options are sorted
alphabetically (discarding the no prefix).
NOTE:
Most mount options apply to the whole filesystem and only options in the first mounted subvolume will
take effect. This is due to lack of implementation and may change in the future. This means that (for
example) you can't set per-subvolume nodatacow, nodatasum, or compress using mount options. This
should eventually be fixed, but it has proved to be difficult to implement correctly within the Linux
VFS framework.
Mount options are processed in order, only the last occurrence of an option takes effect and may disable
other options due to constraints (see e.g. nodatacow and compress). The output of mount command shows
which options have been applied.
acl, noacl
(default: on)
Enable/disable support for POSIX Access Control Lists (ACLs). See the acl(5) manual page for more
information about ACLs.
The support for ACL is build-time configurable (BTRFS_FS_POSIX_ACL) and mount fails if acl is
requested but the feature is not compiled in.
autodefrag, noautodefrag
(since: 3.0, default: off)
Enable automatic file defragmentation. When enabled, small random writes into files (in a range
of tens of kilobytes, currently it's 64KiB) are detected and queued up for the defragmentation
process. May not be well suited for large database workloads.
The read latency may increase due to reading the adjacent blocks that make up the range for
defragmentation, successive write will merge the blocks in the new location.
WARNING:
Defragmenting with Linux kernel versions < 3.9 or ≥ 3.14-rc2 as well as with Linux stable
kernel versions ≥ 3.10.31, ≥ 3.12.12 or ≥ 3.13.4 will break up the reflinks of COW data (for
example files copied with cp --reflink, snapshots or de-duplicated data). This may cause
considerable increase of space usage depending on the broken up reflinks.
barrier, nobarrier
(default: on)
Ensure that all IO write operations make it through the device cache and are stored permanently
when the filesystem is at its consistency checkpoint. This typically means that a flush command is
sent to the device that will synchronize all pending data and ordinary metadata blocks, then
writes the superblock and issues another flush.
The write flushes incur a slight hit and also prevent the IO block scheduler to reorder requests
in a more effective way. Disabling barriers gets rid of that penalty but will most certainly lead
to a corrupted filesystem in case of a crash or power loss. The ordinary metadata blocks could be
yet unwritten at the time the new superblock is stored permanently, expecting that the block
pointers to metadata were stored permanently before.
On a device with a volatile battery-backed write-back cache, the nobarrier option will not lead to
filesystem corruption as the pending blocks are supposed to make it to the permanent storage.
clear_cache
Force clearing and rebuilding of the free space cache if something has gone wrong.
For free space cache v1, this only clears (and, unless nospace_cache is used, rebuilds) the free
space cache for block groups that are modified while the filesystem is mounted with that option.
To actually clear an entire free space cache v1, see btrfs check --clear-space-cache v1.
For free space cache v2, this clears the entire free space cache. To do so without requiring to
mounting the filesystem, see btrfs check --clear-space-cache v2.
See also: space_cache.
commit=<seconds>
(since: 3.12, default: 30)
Set the interval of periodic transaction commit when data are synchronized to permanent storage.
Higher interval values lead to larger amount of unwritten data to accumulate in memory, which has
obvious consequences when the system crashes. The upper bound is not forced, but a warning is
printed if it's more than 300 seconds (5 minutes). Use with care.
The periodic commit is not the only mechanism to do the transaction commit, this can also happen
by explicit sync or indirectly by other commands that affect the global filesystem state or
internal kernel mechanisms that flush based on various thresholds or policies (e.g. cgroups).
compress, compress=<type[:level]>, compress-force, compress-force=<type[:level]>
(default: off, level support since: 5.1)
Control BTRFS file data compression. Type may be specified as zlib, lzo, zstd or no (for no
compression, used for remounting). If no type is specified, zlib is used. If compress-force is
specified, then compression will always be attempted, but the data may end up uncompressed if the
compression would make them larger.
Both zlib and zstd (since version 5.1) expose the compression level as a tunable knob with higher
levels trading speed and memory (zstd) for higher compression ratios. This can be set by appending
a colon and the desired level. ZLIB accepts the range [1, 9] and ZSTD accepts [1, 15]. If no
level is set, both currently use a default level of 3. The value 0 is an alias for the default
level.
Otherwise some simple heuristics are applied to detect an incompressible file. If the first
blocks written to a file are not compressible, the whole file is permanently marked to skip
compression. As this is too simple, the compress-force is a workaround that will compress most of
the files at the cost of some wasted CPU cycles on failed attempts. Since kernel 4.15, a set of
heuristic algorithms have been improved by using frequency sampling, repeated pattern detection
and Shannon entropy calculation to avoid that.
NOTE:
If compression is enabled, nodatacow and nodatasum are disabled.
datacow, nodatacow
(default: on)
Enable data copy-on-write for newly created files. Nodatacow implies nodatasum, and disables
compression. All files created under nodatacow are also set the NOCOW file attribute (see ‐
chattr(1)).
NOTE:
If nodatacow or nodatasum are enabled, compression is disabled.
Updates in-place improve performance for workloads that do frequent overwrites, at the cost of
potential partial writes, in case the write is interrupted (system crash, device failure).
datasum, nodatasum
(default: on)
Enable data checksumming for newly created files. Datasum implies datacow, i.e. the normal mode
of operation. All files created under nodatasum inherit the "no checksums" property, however
there's no corresponding file attribute (see chattr(1)).
NOTE:
If nodatacow or nodatasum are enabled, compression is disabled.
There is a slight performance gain when checksums are turned off, the corresponding metadata
blocks holding the checksums do not need to updated. The cost of checksumming of the blocks in
memory is much lower than the IO, modern CPUs feature hardware support of the checksumming
algorithm.
degraded
(default: off)
Allow mounts with fewer devices than the RAID profile constraints require. A read-write mount (or
remount) may fail when there are too many devices missing, for example if a stripe member is
completely missing from RAID0.
Since 4.14, the constraint checks have been improved and are verified on the chunk level, not at
the device level. This allows degraded mounts of filesystems with mixed RAID profiles for data and
metadata, even if the device number constraints would not be satisfied for some of the profiles.
Example: metadata -- raid1, data -- single, devices -- /dev/sda, /dev/sdb
Suppose the data are completely stored on sda, then missing sdb will not prevent the mount, even
if 1 missing device would normally prevent (any) single profile to mount. In case some of the data
chunks are stored on sdb, then the constraint of single/data is not satisfied and the filesystem
cannot be mounted.
device=<devicepath>
Specify a path to a device that will be scanned for BTRFS filesystem during mount. This is usually
done automatically by a device manager (like udev) or using the btrfs device scan command (e.g.
run from the initial ramdisk). In cases where this is not possible the device mount option can
help.
NOTE:
Booting e.g. a RAID1 system may fail even if all filesystem's device paths are provided as the
actual device nodes may not be discovered by the system at that point.
discard, discard=sync, discard=async, nodiscard
(default: async when devices support it since 6.2, async support since: 5.6)
Enable discarding of freed file blocks. This is useful for SSD/NVMe devices, thinly provisioned
LUNs, or virtual machine images; however, every storage layer must support discard for it to work.
In the synchronous mode (sync or without option value), lack of asynchronous queued TRIM on the
backing device TRIM can severely degrade performance, because a synchronous TRIM operation will be
attempted instead. Queued TRIM requires SATA devices with chipsets revision newer than 3.1 and
devices.
The asynchronous mode (async) gathers extents in larger chunks before sending them to the devices
for TRIM. The overhead and performance impact should be negligible compared to the previous mode
and it's supposed to be the preferred mode if needed.
If it is not necessary to immediately discard freed blocks, then the fstrim tool can be used to
discard all free blocks in a batch. Scheduling a TRIM during a period of low system activity will
prevent latent interference with the performance of other operations. Also, a device may ignore
the TRIM command if the range is too small, so running a batch discard has a greater probability
of actually discarding the blocks.
enospc_debug, noenospc_debug
(default: off)
Enable verbose output for some ENOSPC conditions. It's safe to use but can be noisy if the system
reaches near-full state.
fatal_errors=<action>
(since: 3.4, default: bug)
Action to take when encountering a fatal error.
bug BUG() on a fatal error, the system will stay in the crashed state and may be still
partially usable, but reboot is required for full operation
panic panic() on a fatal error, depending on other system configuration, this may be followed by
a reboot. Please refer to the documentation of kernel boot parameters, e.g. panic, oops or
crashkernel.
flushoncommit, noflushoncommit
(default: off)
This option forces any data dirtied by a write in a prior transaction to commit as part of the
current commit, effectively a full filesystem sync.
This makes the committed state a fully consistent view of the file system from the application's
perspective (i.e. it includes all completed file system operations). This was previously the
behavior only when a snapshot was created.
When off, the filesystem is consistent but buffered writes may last more than one transaction
commit.
fragment=<type>
(depends on compile-time option CONFIG_BTRFS_DEBUG, since: 4.4, default: off)
A debugging helper to intentionally fragment given type of block groups. The type can be data,
metadata or all. This mount option should not be used outside of debugging environments and is not
recognized if the kernel config option CONFIG_BTRFS_DEBUG is not enabled.
nologreplay
(default: off, even read-only)
The tree-log contains pending updates to the filesystem until the full commit. The log is
replayed on next mount, this can be disabled by this option. See also treelog. Note that
nologreplay is the same as norecovery.
WARNING:
Currently, the tree log is replayed even with a read-only mount! To disable that behaviour,
mount also with nologreplay.
max_inline=<bytes>
(default: min(2048, page size) )
Specify the maximum amount of space, that can be inlined in a metadata b-tree leaf. The value is
specified in bytes, optionally with a K suffix (case insensitive). In practice, this value is
limited by the filesystem block size (named sectorsize at mkfs time), and memory page size of the
system. In case of sectorsize limit, there's some space unavailable due to b-tree leaf headers.
For example, a 4KiB sectorsize, maximum size of inline data is about 3900 bytes.
Inlining can be completely turned off by specifying 0. This will increase data block slack if file
sizes are much smaller than block size but will reduce metadata consumption in return.
NOTE:
The default value has changed to 2048 in kernel 4.6.
metadata_ratio=<value>
(default: 0, internal logic)
Specifies that 1 metadata chunk should be allocated after every value data chunks. Default
behaviour depends on internal logic, some percent of unused metadata space is attempted to be
maintained but is not always possible if there's not enough space left for chunk allocation. The
option could be useful to override the internal logic in favor of the metadata allocation if the
expected workload is supposed to be metadata intense (snapshots, reflinks, xattrs, inlined files).
norecovery
(since: 4.5, default: off)
Do not attempt any data recovery at mount time. This will disable logreplay and avoids other write
operations. Note that this option is the same as nologreplay.
NOTE:
The opposite option recovery used to have different meaning but was changed for consistency
with other filesystems, where norecovery is used for skipping log replay. BTRFS does the same
and in general will try to avoid any write operations.
rescan_uuid_tree
(since: 3.12, default: off)
Force check and rebuild procedure of the UUID tree. This should not normally be needed.
Alternatively the tree can be cleared from userspace by command btrfs rescue clear-uuid-tree and
then it will be automatically rebuilt in kernel (the mount option is not needed in that case).
rescue (since: 5.9)
Modes allowing mount with damaged filesystem structures, all requires the filesystem to be mounted
read-only and doesn't allow remount to read-write. This is supposed to provide unified and more
fine grained tuning of errors that affect filesystem operation.
• usebackuproot (since 5.9)
Try to use backup root slots inside super block. Replaces standalone option usebackuproot
• nologreplay (since 5.9)
Do not replay any dirty logs. Replaces standalone option nologreplay
• ignorebadroots, ibadroots (since: 5.11)
Ignore bad tree roots, greatly improve the chance for data salvage.
• ignoredatacsums, idatacsums (since: 5.11)
Ignore data checksum verification.
• ignoremetacsums, imetacsums (since 6.12)
Ignore metadata checksum verification, useful for interrupted checksum conversion.
• all (since: 5.9)
Enable all supported rescue options.
skip_balance
(since: 3.3, default: off)
Skip automatic resume of an interrupted balance operation. The operation can later be resumed with
btrfs balance resume, or the paused state can be removed with btrfs balance cancel. The default
behaviour is to resume an interrupted balance immediately after the filesystem is mounted.
space_cache, space_cache=<version>, nospace_cache
(nospace_cache since: 3.2, space_cache=v1 and space_cache=v2 since 4.5, default: space_cache=v2)
Options to control the free space cache. The free space cache greatly improves performance when
reading block group free space into memory. However, managing the space cache consumes some
resources, including a small amount of disk space.
There are two implementations of the free space cache. The original one, referred to as v1, used
to be a safe default but has been superseded by v2. The v1 space cache can be disabled at mount
time with nospace_cache without clearing.
On very large filesystems (many terabytes) and certain workloads, the performance of the v1 space
cache may degrade drastically. The v2 implementation, which adds a new b-tree called the free
space tree, addresses this issue. Once enabled, the v2 space cache will always be used and cannot
be disabled unless it is cleared. Use clear_cache,space_cache=v1 or clear_cache,nospace_cache to
do so. If v2 is enabled, and v1 space cache will be cleared (at the first mount) and kernels
without v2 support will only be able to mount the filesystem in read-only mode. On an unmounted
filesystem the caches (both versions) can be cleared by "btrfs check --clear-space-cache".
The btrfs-check(8) and :doc:`mkfs.btrfs commands have full v2 free space cache support since
v4.19.
If a version is not explicitly specified, the default implementation will be chosen, which is v2.
ssd, ssd_spread, nossd, nossd_spread
(default: SSD autodetected)
Options to control SSD allocation schemes. By default, BTRFS will enable or disable SSD
optimizations depending on status of a device with respect to rotational or non-rotational type.
This is determined by the contents of /sys/block/DEV/queue/rotational). If it is 0, the ssd option
is turned on. The option nossd will disable the autodetection.
The optimizations make use of the absence of the seek penalty that's inherent for the rotational
devices. The blocks can be typically written faster and are not offloaded to separate threads.
NOTE:
Since 4.14, the block layout optimizations have been dropped. This used to help with first
generations of SSD devices. Their FTL (flash translation layer) was not effective and the
optimization was supposed to improve the wear by better aligning blocks. This is no longer true
with modern SSD devices and the optimization had no real benefit. Furthermore it caused
increased fragmentation. The layout tuning has been kept intact for the option ssd_spread.
The ssd_spread mount option attempts to allocate into bigger and aligned chunks of unused space,
and may perform better on low-end SSDs. ssd_spread implies ssd, enabling all other SSD heuristics
as well. The option nossd will disable all SSD options while nossd_spread only disables
ssd_spread.
subvol=<path>
Mount subvolume from path rather than the toplevel subvolume. The path is always treated as
relative to the toplevel subvolume. This mount option overrides the default subvolume set for the
given filesystem.
subvolid=<subvolid>
Mount subvolume specified by a subvolid number rather than the toplevel subvolume. You can use
btrfs subvolume list of btrfs subvolume show to see subvolume ID numbers. This mount option
overrides the default subvolume set for the given filesystem.
NOTE:
If both subvolid and subvol are specified, they must point at the same subvolume, otherwise the
mount will fail.
thread_pool=<number>
(default: min(NRCPUS + 2, 8) )
The number of worker threads to start. NRCPUS is number of on-line CPUs detected at the time of
mount. Small number leads to less parallelism in processing data and metadata, higher numbers
could lead to a performance hit due to increased locking contention, process scheduling,
cache-line bouncing or costly data transfers between local CPU memories.
treelog, notreelog
(default: on)
Enable the tree logging used for fsync and O_SYNC writes. The tree log stores changes without the
need of a full filesystem sync. The log operations are flushed at sync and transaction commit. If
the system crashes between two such syncs, the pending tree log operations are replayed during
mount.
WARNING:
Currently, the tree log is replayed even with a read-only mount! To disable that behaviour,
also mount with nologreplay.
The tree log could contain new files/directories, these would not exist on a mounted filesystem if
the log is not replayed.
usebackuproot
(since: 4.6, default: off)
Enable autorecovery attempts if a bad tree root is found at mount time. Currently this scans a
backup list of several previous tree roots and tries to use the first readable. This can be used
with read-only mounts as well.
NOTE:
This option has replaced recovery which has been deprecated.
user_subvol_rm_allowed
(default: off)
Allow subvolumes to be deleted by their respective owner. Otherwise, only the root user can do
that.
NOTE:
Historically, any user could create a snapshot even if he was not owner of the source
subvolume, the subvolume deletion has been restricted for that reason. The subvolume creation
has been restricted but this mount option is still required. This is a usability issue. Since
4.18, the rmdir(2) syscall can delete an empty subvolume just like an ordinary directory.
Whether this is possible can be detected at runtime, see rmdir_subvol feature in FILESYSTEM
FEATURES.
DEPRECATED MOUNT OPTIONS
List of mount options that have been removed, kept for backward compatibility.
recovery
(since: 3.2, default: off, deprecated since: 4.5)
NOTE:
This option has been replaced by usebackuproot and should not be used but will work on 4.5+
kernels.
inode_cache, noinode_cache
(removed in: 5.11, since: 3.0, default: off)
NOTE:
The functionality has been removed in 5.11, any stale data created by previous use of the
inode_cache option can be removed by btrfs rescue clear-ino-cache.
check_int, check_int_data, check_int_print_mask=<value>
(removed in: 6.7, since: 3.0, default: off)
These debugging options control the behavior of the integrity checking module (the
BTRFS_FS_CHECK_INTEGRITY config option required). The main goal is to verify that all blocks from
a given transaction period are properly linked.
check_int enables the integrity checker module, which examines all block write requests to ensure
on-disk consistency, at a large memory and CPU cost.
check_int_data includes extent data in the integrity checks, and implies the check_int option.
check_int_print_mask takes a bit mask of BTRFSIC_PRINT_MASK_* values as defined in
fs/btrfs/check-integrity.c, to control the integrity checker module behavior.
See comments at the top of fs/btrfs/check-integrity.c for more information.
NOTES ON GENERIC MOUNT OPTIONS
Some of the general mount options from mount(8) that affect BTRFS and are worth mentioning.
context
The context refers to the SELinux contexts and policy definitions passed as mount options. This
works properly since version v6.8 (because the mount option parser of BTRFS was ported to new API
that also understood the options).
noatime
under read intensive work-loads, specifying noatime significantly improves performance because no
new access time information needs to be written. Without this option, the default is relatime,
which only reduces the number of inode atime updates in comparison to the traditional strictatime.
The worst case for atime updates under relatime occurs when many files are read whose atime is
older than 24 h and which are freshly snapshotted. In that case the atime is updated and COW
happens - for each file - in bulk. See also https://lwn.net/Articles/499293/ - Atime and btrfs: a
bad combination? (LWN, 2012-05-31).
Note that noatime may break applications that rely on atime uptimes like the venerable Mutt
(unless you use maildir mailboxes).
FILESYSTEM FEATURES
The basic set of filesystem features gets extended over time. The backward compatibility is maintained
and the features are optional, need to be explicitly asked for so accidental use will not create
incompatibilities.
There are several classes and the respective tools to manage the features:
at mkfs time only
This is namely for core structures, like the b-tree nodesize or checksum algorithm, see
mkfs.btrfs(8) for more details.
after mkfs, on an unmounted filesystem
Features that may optimize internal structures or add new structures to support new functionality,
see btrfstune(8). The command btrfs inspect-internal dump-super /dev/sdx will dump a superblock,
you can map the value of incompat_flags to the features listed below
after mkfs, on a mounted filesystem
The features of a filesystem (with a given UUID) are listed in /sys/fs/btrfs/UUID/features/, one
file per feature. The status is stored inside the file. The value 1 is for enabled and active,
while 0 means the feature was enabled at mount time but turned off afterwards.
Whether a particular feature can be turned on a mounted filesystem can be found in the directory
/sys/fs/btrfs/features/, one file per feature. The value 1 means the feature can be enabled.
List of features (see also mkfs.btrfs(8) section FILESYSTEM FEATURES):
big_metadata
(since: 3.4)
the filesystem uses nodesize for metadata blocks, this can be bigger than the page size
block_group_tree
(since: 6.1)
block group item representation using a dedicated b-tree, this can greatly reduce mount time for
large filesystems
compress_lzo
(since: 2.6.38)
the lzo compression has been used on the filesystem, either as a mount option or via btrfs
filesystem defrag.
compress_zstd
(since: 4.14)
the zstd compression has been used on the filesystem, either as a mount option or via btrfs
filesystem defrag.
default_subvol
(since: 2.6.34)
the default subvolume has been set on the filesystem
extended_iref
(since: 3.7)
increased hardlink limit per file in a directory to 65536, older kernels supported a varying
number of hardlinks depending on the sum of all file name sizes that can be stored into one
metadata block
free_space_tree
(since: 4.5)
free space representation using a dedicated b-tree, successor of v1 space cache
metadata_uuid
(since: 5.0)
the main filesystem UUID is the metadata_uuid, which stores the new UUID only in the superblock
while all metadata blocks still have the UUID set at mkfs time, see btrfstune(8) for more
mixed_backref
(since: 2.6.31)
the last major disk format change, improved backreferences, now default
mixed_groups
(since: 2.6.37)
mixed data and metadata block groups, i.e. the data and metadata are not separated and occupy the
same block groups, this mode is suitable for small volumes as there are no constraints how the
remaining space should be used (compared to the split mode, where empty metadata space cannot be
used for data and vice versa)
on the other hand, the final layout is quite unpredictable and possibly highly fragmented, which
means worse performance
no_holes
(since: 3.14)
improved representation of file extents where holes are not explicitly stored as an extent, saves
a few percent of metadata if sparse files are used
raid1c34
(since: 5.5)
extended RAID1 mode with copies on 3 or 4 devices respectively
raid_stripe_tree
(since: 6.7)
a separate tree for tracking file extents on RAID profiles
RAID56 (since: 3.9)
the filesystem contains or contained a RAID56 profile of block groups
rmdir_subvol
(since: 4.18)
indicate that rmdir(2) syscall can delete an empty subvolume just like an ordinary directory. Note
that this feature only depends on the kernel version.
skinny_metadata
(since: 3.10)
reduced-size metadata for extent references, saves a few percent of metadata
send_stream_version
(since: 5.10)
number of the highest supported send stream version
simple_quota
(since: 6.7)
simplified quota accounting
supported_checksums
(since: 5.5)
list of checksum algorithms supported by the kernel module, the respective modules or built-in
implementing the algorithms need to be present to mount the filesystem, see section CHECKSUM
ALGORITHMS.
supported_sectorsizes
(since: 5.13)
list of values that are accepted as sector sizes (mkfs.btrfs --sectorsize) by the running kernel
supported_rescue_options
(since: 5.11)
list of values for the mount option rescue that are supported by the running kernel, see btrfs(5)
zoned (since: 5.12)
zoned mode is allocation/write friendly to host-managed zoned devices, allocation space is
partitioned into fixed-size zones that must be updated sequentially, see section ZONED MODE
SWAPFILE SUPPORT
A swapfile, when active, is a file-backed swap area. It is supported since kernel 5.0. Use swapon(8) to
activate it, until then (respectively again after deactivating it with swapoff(8)) it's just a normal
file (with NODATACOW set), for which the special restrictions for active swapfiles don't apply.
There are some limitations of the implementation in BTRFS and Linux swap subsystem:
• filesystem - must be only single device
• filesystem - must have only single data profile
• subvolume - cannot be snapshotted if it contains any active swapfiles
• swapfile - must be preallocated (i.e. no holes)
• swapfile - must be NODATACOW (i.e. also NODATASUM, no compression)
The limitations come namely from the COW-based design and mapping layer of blocks that allows the
advanced features like relocation and multi-device filesystems. However, the swap subsystem expects
simpler mapping and no background changes of the file block location once they've been assigned to swap.
The constraints mentioned above (single device and single profile) are related to the swapfile itself,
i.e. the extents and their placement. It is possible to create swapfile on multi-device filesystem as
long as the extents are on one device but this cannot be affected by user and depends on free space
fragmentation and available unused space for new chunks.
With active swapfiles, the following whole-filesystem operations will skip swapfile extents or may fail:
• balance - block groups with extents of any active swapfiles are skipped and reported, the rest will be
processed normally
• resize grow - unaffected
• resize shrink - works as long as the extents of any active swapfiles are outside of the shrunk range
• device add - if the new devices do not interfere with any already active swapfiles this operation will
work, though no new swapfile can be activated afterwards
• device delete - if the device has been added as above, it can be also deleted
• device replace - ditto
When there are no active swapfiles and a whole-filesystem exclusive operation is running (e.g. balance,
device delete, shrink), the swapfiles cannot be temporarily activated. The operation must finish first.
To create and activate a swapfile run the following commands:
# truncate -s 0 swapfile
# chattr +C swapfile
# fallocate -l 2G swapfile
# chmod 0600 swapfile
# mkswap swapfile
# swapon swapfile
Since version 6.1 it's possible to create the swapfile in a single command (except the activation):
# btrfs filesystem mkswapfile --size 2G swapfile
# swapon swapfile
Please note that the UUID returned by the mkswap utility identifies the swap "filesystem" and because
it's stored in a file, it's not generally visible and usable as an identifier unlike if it was on a block
device.
Once activated the file will appear in /proc/swaps:
# cat /proc/swaps
Filename Type Size Used Priority
/path/swapfile file 2097152 0 -2
The swapfile can be created as one-time operation or, once properly created, activated on each boot by
the swapon -a command (usually started by the service manager). Add the following entry to /etc/fstab,
assuming the filesystem that provides the /path has been already mounted at this point. Additional mount
options relevant for the swapfile can be set too (like priority, not the BTRFS mount options).
/path/swapfile none swap defaults 0 0
From now on the subvolume with the active swapfile cannot be snapshotted until the swapfile is
deactivated again by swapoff. Then the swapfile is a regular file and the subvolume can be snapshotted
again, though this would prevent another activation any swapfile that has been snapshotted. New swapfiles
(not snapshotted) can be created and activated.
Otherwise, an inactive swapfile does not affect the containing subvolume. Activation creates a temporary
in-memory status and prevents some file operations, but is not stored permanently.
HIBERNATION
A swapfile can be used for hibernation but it's not straightforward. Before hibernation a resume offset
must be written to file /sys/power/resume_offset or the kernel command line parameter resume_offset must
be set.
The value is the physical offset on the device. Note that this is not the same value that filefrag prints
as physical offset!
Btrfs filesystem uses mapping between logical and physical addresses but here the physical can still map
to one or more device-specific physical block addresses. It's the device-specific physical offset that is
suitable as resume offset.
Since version 6.1 there's a command btrfs inspect-internal map-swapfile that will print the device
physical offset and the adjusted value for /sys/power/resume_offset. Note that the value is divided by
page size, i.e. it's not the offset itself.
# btrfs filesystem mkswapfile swapfile
# btrfs inspect-internal map-swapfile swapfile
Physical start: 811511726080
Resume offset: 198122980
For scripting and convenience the option -r will print just the offset:
# btrfs inspect-internal map-swapfile -r swapfile
198122980
The command map-swapfile also verifies all the requirements, i.e. no holes, single device, etc.
TROUBLESHOOTING
If the swapfile activation fails please verify that you followed all the steps above or check the system
log (e.g. dmesg or journalctl) for more information.
Notably, the swapon utility exits with a message that does not say what failed:
# swapon /path/swapfile
swapon: /path/swapfile: swapon failed: Invalid argument
The specific reason is likely to be printed to the system log by the btrfs module:
# journalctl -t kernel | grep swapfile
kernel: BTRFS warning (device sda): swapfile must have single data profile
CHECKSUM ALGORITHMS
Data and metadata are checksummed by default. The checksum is calculated before writing and verified
after reading the blocks from devices. The whole metadata block has an inline checksum stored in the
b-tree node header. Each data block has a detached checksum stored in the checksum tree.
NOTE:
Since a data checksum is calculated just before submitting to the block device, btrfs has a strong
requirement that the corresponding data block must not be modified until the writeback is finished.
This requirement is met for a buffered write as btrfs has the full control on its page cache, but a
direct write (O_DIRECT) bypasses page cache, and btrfs can not control the direct IO buffer (as it can
be in user space memory). Thus it's possible that a user space program modifies its direct write
buffer before the buffer is fully written back, and this can lead to a data checksum mismatch.
To avoid this, kernel starting with version 6.14 will force a direct write to fall back to buffered,
if the inode requires a data checksum. This will bring a small performance penalty. If you require
true zero-copy direct writes, then set the NODATASUM flag for the inode and make sure the direct IO
buffer is fully aligned to block size.
There are several checksum algorithms supported. The default and backward compatible algorithm is crc32c.
Since kernel 5.5 there are three more with different characteristics and trade-offs regarding speed and
strength. The following list may help you to decide which one to select.
CRC32C (32 bits digest)
Default, best backward compatibility. Very fast, modern CPUs have instruction-level support, not
collision-resistant but still good error detection capabilities.
XXHASH (64 bits digest)
Can be used as CRC32C successor. Very fast, optimized for modern CPUs utilizing instruction
pipelining, good collision resistance and error detection.
SHA256 (256 bits digest)
Cryptographic-strength hash. Relatively slow but with possible CPU instruction acceleration or
specialized hardware cards. FIPS certified and in wide use.
BLAKE2b (256 bits digest)
Cryptographic-strength hash. Relatively fast, with possible CPU acceleration using SIMD
extensions. Not standardized but based on BLAKE which was a SHA3 finalist, in wide use. The
algorithm used is BLAKE2b-256 that's optimized for 64-bit platforms.
The digest size affects overall size of data block checksums stored in the filesystem. The metadata
blocks have a fixed area up to 256 bits (32 bytes), so there's no increase. Each data block has a
separate checksum stored, with additional overhead of the b-tree leaves.
Approximate relative performance of the algorithms, measured against CRC32C using implementations on a
11th gen 3.6GHz intel CPU:
┌─────────┬─────────────┬───────┬────────────────────────┐
│ Digest │ Cycles/4KiB │ Ratio │ Implementation │
├─────────┼─────────────┼───────┼────────────────────────┤
│ CRC32C │ 470 │ 1.00 │ CPU instruction, PCL │
│ │ │ │ combination │
├─────────┼─────────────┼───────┼────────────────────────┤
│ XXHASH │ 870 │ 1.9 │ reference impl. │
├─────────┼─────────────┼───────┼────────────────────────┤
│ SHA256 │ 7600 │ 16 │ libgcrypt │
├─────────┼─────────────┼───────┼────────────────────────┤
│ SHA256 │ 8500 │ 18 │ openssl │
├─────────┼─────────────┼───────┼────────────────────────┤
│ SHA256 │ 8700 │ 18 │ botan │
├─────────┼─────────────┼───────┼────────────────────────┤
│ SHA256 │ 32000 │ 68 │ builtin, CPU │
│ │ │ │ instruction │
├─────────┼─────────────┼───────┼────────────────────────┤
│ SHA256 │ 37000 │ 78 │ libsodium │
├─────────┼─────────────┼───────┼────────────────────────┤
│ SHA256 │ 78000 │ 166 │ builtin, reference │
│ │ │ │ impl. │
├─────────┼─────────────┼───────┼────────────────────────┤
│ BLAKE2b │ 10000 │ 21 │ builtin/AVX2 │
├─────────┼─────────────┼───────┼────────────────────────┤
│ BLAKE2b │ 10900 │ 23 │ libgcrypt │
├─────────┼─────────────┼───────┼────────────────────────┤
│ BLAKE2b │ 13500 │ 29 │ builtin/SSE41 │
├─────────┼─────────────┼───────┼────────────────────────┤
│ BLAKE2b │ 13700 │ 29 │ libsodium │
├─────────┼─────────────┼───────┼────────────────────────┤
│ BLAKE2b │ 14100 │ 30 │ openssl │
├─────────┼─────────────┼───────┼────────────────────────┤
│ BLAKE2b │ 14500 │ 31 │ kcapi │
├─────────┼─────────────┼───────┼────────────────────────┤
│ BLAKE2b │ 14500 │ 34 │ builtin, reference │
│ │ │ │ impl. │
└─────────┴─────────────┴───────┴────────────────────────┘
Many kernels are configured with SHA256 as built-in and not as a module. The accelerated versions are
however provided by the modules and must be loaded explicitly (modprobe sha256) before mounting the
filesystem to make use of them. You can check in /sys/fs/btrfs/FSID/checksum which one is used. If you
see sha256-generic, then you may want to unmount and mount the filesystem again. Changing that on a
mounted filesystem is not possible. Check the file /proc/crypto, when the implementation is built-in,
you'd find:
name : sha256
driver : sha256-generic
module : kernel
priority : 100
...
While accelerated implementation is e.g.:
name : sha256
driver : sha256-avx2
module : sha256_ssse3
priority : 170
...
COMPRESSION
Btrfs supports transparent file compression. There are three algorithms available: ZLIB, LZO and ZSTD
(since v4.14), with various levels. The compression happens on the level of file extents and the
algorithm is selected by file property, mount option or by a defrag command. You can have a single btrfs
mount point that has some files that are uncompressed, some that are compressed with LZO, some with ZLIB,
for instance (though you may not want it that way, it is supported).
Once the compression is set, all newly written data will be compressed, i.e. existing data are
untouched. Data are split into smaller chunks (128KiB) before compression to make random rewrites
possible without a high performance hit. Due to the increased number of extents the metadata consumption
is higher. The chunks are compressed in parallel.
The algorithms can be characterized as follows regarding the speed/ratio trade-offs:
ZLIB
• slower, higher compression ratio
• levels: 1 to 9, mapped directly, default level is 3
• good backward compatibility
LZO
• faster compression and decompression than ZLIB, worse compression ratio, designed to be fast
• no levels
• good backward compatibility
ZSTD
• compression comparable to ZLIB with higher compression/decompression speeds and different ratio
• levels: -15..15, mapped directly, default is 3
• support since 4.14
• levels 1..15 supported since 5.1
• levels -15..-1 supported since 6.15
The differences depend on the actual data set and cannot be expressed by a single number or
recommendation. Higher levels consume more CPU time and may not bring a significant improvement, lower
levels are close to real time.
HOW TO ENABLE COMPRESSION
Typically the compression can be enabled on the whole filesystem, specified for the mount point. Note
that the compression mount options are shared among all mounts of the same filesystem, either bind mounts
or subvolume mounts. Please refer to btrfs(5) section MOUNT OPTIONS.
$ mount -o compress=zstd /dev/sdx /mnt
This will enable the zstd algorithm on the default level (which is 3). The level can be specified
manually too like zstd:3. Higher levels compress better at the cost of time. This in turn may cause
increased write latency, low levels are suitable for real-time compression and on reasonably fast CPU
don't cause noticeable performance drops.
$ btrfs filesystem defrag -czstd file
The command above will start defragmentation of the whole file and apply the compression, regardless of
the mount option. (Note: specifying level is not yet implemented). The compression algorithm is not
persistent and applies only to the defragmentation command, for any other writes other compression
settings apply.
Persistent settings on a per-file basis can be set in two ways:
$ chattr +c file
$ btrfs property set file compression zstd
The first command is using legacy interface of file attributes inherited from ext2 filesystem and is not
flexible, so by default the zlib compression is set. The other command sets a property on the file with
the given algorithm. (Note: setting level that way is not yet implemented.)
COMPRESSION LEVELS
The level support of ZLIB has been added in v4.14, LZO does not support levels (the kernel implementation
provides only one), ZSTD level support has been added in v5.1 and the negative levels in v6.15.
There are 9 levels of ZLIB supported (1 to 9), mapping 1:1 from the mount option to the algorithm defined
level. The default is level 3, which provides the reasonably good compression ratio and is still
reasonably fast. The difference in compression gain of levels 7, 8 and 9 is comparable but the higher
levels take longer.
The ZSTD support includes levels -15..15, a subset of full range of what ZSTD provides. Levels -15..-1
are real-time with worse compression ratio, levels 1..3 are near real-time with good compression, 4..8
are slower with improved compression and 9..15 try even harder though the resulting size may not be
significantly improved. Higher levels also require more memory and as they need more CPU the system
performance is affected.
Level 0 always maps to the default. The compression level does not affect compatibility.
EXCEPTIONS
Any file that has been touched by the fallocate system call will always be excepted from compression even
if force-compress mount option is used.
The reason for this is that a successful fallocate call must guarantee that future writes to the
allocated range will not fail because of lack of space. This is difficult to guarantee in a COW
filesystem. To reduce the chances of it happening, btrfs preallocates space and disables compression for
the file.
As a workaround, one can trigger a compressed rewrite for such a file using the btrfs defrag command. Be
aware that if the file is touched again by the fallocate system call, it will be excepted again from
compression for all the new data written to it.
INCOMPRESSIBLE DATA
Files with already compressed data or with data that won't compress well with the CPU and memory
constraints of the kernel implementations are using a simple decision logic. If the first portion of data
being compressed is not smaller than the original, the compression of the whole file is disabled. Unless
the filesystem is mounted with compress-force in which case btrfs will try compressing every block,
falling back to storing the uncompressed version for each block that ends up larger after compression.
This is not optimal and subject to optimizations and further development.
If a file is identified as incompressible, a flag is set (NOCOMPRESS) and it's sticky. On that file
compression won't be performed unless forced. The flag can be also set by chattr +m (since e2fsprogs
1.46.2) or by properties with value no or none. Empty value will reset it to the default that's currently
applicable on the mounted filesystem.
There are two ways to detect incompressible data:
• actual compression attempt - data are compressed, if the result is not smaller, it's discarded, so this
depends on the algorithm and level
• pre-compression heuristics - a quick statistical evaluation on the data is performed and based on the
result either compression is performed or skipped, the NOCOMPRESS bit is not set just by the heuristic,
only if the compression algorithm does not make an improvement
$ lsattr file
---------------------m file
Using the forcing compression is not recommended, the heuristics are supposed to decide that and
compression algorithms internally detect incompressible data too.
PRE-COMPRESSION HEURISTICS
The heuristics aim to do a few quick statistical tests on the compressed data in order to avoid probably
costly compression that would turn out to be inefficient. Compression algorithms could have internal
detection of incompressible data too but this leads to more overhead as the compression is done in
another thread and has to write the data anyway. The heuristic is read-only and can utilize cached
memory.
The tests performed based on the following: data sampling, long repeated pattern detection, byte
frequency, Shannon entropy.
COMPATIBILITY
Compression is done using the COW mechanism so it's incompatible with nodatacow. Direct IO read works on
compressed files but will fall back to buffered writes and leads to no compression even if force
compression is set. Currently nodatasum and compression don't work together.
The compression algorithms have been added over time so the version compatibility should be also
considered, together with other tools that may access the compressed data like bootloaders.
SYSFS INTERFACE
Btrfs has a sysfs interface to provide extra knobs.
The top level path is /sys/fs/btrfs/, and the main directory layout is the following:
┌──────────────────────────────┬──────────────────────────────┬─────────┐
│ Relative Path │ Description │ Version │
├──────────────────────────────┼──────────────────────────────┼─────────┤
│ features/ │ All supported features │ 3.14 │
├──────────────────────────────┼──────────────────────────────┼─────────┤
│ <UUID>/ │ Mounted fs UUID │ 3.14 │
├──────────────────────────────┼──────────────────────────────┼─────────┤
│ <UUID>/allocation/ │ Space allocation info │ 3.14 │
├──────────────────────────────┼──────────────────────────────┼─────────┤
│ <UUID>/bdi/ │ Backing device info │ 5.9 │
│ │ (writeback) │ │
├──────────────────────────────┼──────────────────────────────┼─────────┤
│ <UUID>/devices/<DEVID>/ │ Symlink to each block device │ 5.6 │
│ │ sysfs │ │
├──────────────────────────────┼──────────────────────────────┼─────────┤
│ <UUID>/devinfo/<DEVID>/ │ Btrfs specific info for each │ 5.6 │
│ │ device │ │
├──────────────────────────────┼──────────────────────────────┼─────────┤
│ <UUID>/discard/ │ Discard stats and tunables │ 6.1 │
├──────────────────────────────┼──────────────────────────────┼─────────┤
│ <UUID>/features/ │ Features of the filesystem │ 3.14 │
├──────────────────────────────┼──────────────────────────────┼─────────┤
│ <UUID>/qgroups/ │ Global qgroup info │ 5.9 │
├──────────────────────────────┼──────────────────────────────┼─────────┤
│ <UUID>/qgroups/<LEVEL>_<ID>/ │ Info for each qgroup │ 5.9 │
└──────────────────────────────┴──────────────────────────────┴─────────┘
For /sys/fs/btrfs/features/ directory, each file means a supported feature of the current kernel. Most
files have value 0. Otherwise it depends on the file, value 1 typically means the feature can be turned
on a mounted filesystem.
For /sys/fs/btrfs/<UUID>/features/ directory, each file means an enabled feature on the mounted
filesystem.
The features share the same name in section FILESYSTEM FEATURES.
UUID
Files in /sys/fs/btrfs/<UUID>/ directory are:
bg_reclaim_threshold
(RW, since: 5.19)
Used space percentage of total device space to start auto block group claim. Mostly for zoned
devices.
checksum
(RO, since: 5.5)
The checksum used for the mounted filesystem. This includes both the checksum type (see section
CHECKSUM ALGORITHMS) and the implemented driver (mostly shows if it's hardware accelerated).
clone_alignment
(RO, since: 3.16)
The bytes alignment for clone and dedupe ioctls.
commit_stats
(RW, since: 6.0)
The performance statistics for btrfs transaction commit since the first mount. Mostly for
debugging purposes.
Writing into this file will reset the maximum commit duration (max_commit_ms) to 0. The file looks
like:
commits 70649
last_commit_ms 2
max_commit_ms 131
total_commit_ms 170840
• commits - number of transaction commits since the first mount
• last_commit_ms - duration in milliseconds of the last commit
• max_commit_ms - maximum time a transaction commit took since first mount or last reset
• total_commit_ms - sum of all transaction commit times
exclusive_operation
(RO, since: 5.10)
Shows the running exclusive operation. Check section FILESYSTEM EXCLUSIVE OPERATIONS for details.
generation
(RO, since: 5.11)
Show the generation of the mounted filesystem.
label (RW, since: 3.14)
Show the current label of the mounted filesystem.
metadata_uuid
(RO, since: 5.0)
Shows the metadata UUID of the mounted filesystem. Check metadata_uuid feature for more details.
nodesize
(RO, since: 3.14)
Show the nodesize of the mounted filesystem.
quota_override
(RW, since: 4.13)
Shows the current quota override status. 0 means no quota override. 1 means quota override,
quota can ignore the existing limit settings.
read_policy
(RW, since: 5.11)
Shows the current balance policy for reads. Currently only pid (balance using the process id
(pid) value) is supported. More balancing policies are available in experimental build, namely
round-robin.
sectorsize
(RO, since: 3.14)
Shows the sectorsize of the mounted filesystem.
temp_fsid
(RO, since 6.7)
Indicate that this filesystem got assigned a temporary FSID at mount time, making possible to
mount devices with the same FSID.
UUID/allocations
Files and directories in /sys/fs/btrfs/<UUID>/allocations directory are:
global_rsv_reserved
(RO, since: 3.14)
The used bytes of the global reservation.
global_rsv_size
(RO, since: 3.14)
The total size of the global reservation.
data/, metadata/ and system/ directories
(RO, since: 5.14)
Space info accounting for the 3 block group types.
UUID/allocations/{data,metadata,system}
Files in /sys/fs/btrfs/<UUID>/allocations/data,metadata,system directory are:
bg_reclaim_threshold
(RW, since: 5.19)
Reclaimable space percentage of block group's size (excluding permanently unusable space) to
reclaim the block group. Can be used on regular or zoned devices.
bytes_*
(RO)
Values of the corresponding data structures for the given block group type and profile that are
used internally and may change rapidly depending on the load.
Complete list: bytes_may_use, bytes_pinned, bytes_readonly, bytes_reserved, bytes_used,
bytes_zone_unusable
chunk_size
(RW, since: 6.0)
Shows the chunk size. Can be changed for data and metadata (independently) and cannot be set for
system block group type. Cannot be set for zoned devices as it depends on the fixed device zone
size. Upper bound is 10% of the filesystem size, the value must be multiple of 256MiB and greater
than 0.
size_classes
(RO, since: 6.3)
Numbers of block groups of a given classes based on heuristics that measure extent length, age and
fragmentation.
none 136
small 374
medium 282
large 93
UUID/bdi
Symlink to the sysfs directory of the backing device info (BDI), which is related to writeback process
and infrastructure.
UUID/devices
Files in /sys/fs/btrfs/<UUID>/devices directory are symlinks named after device nodes (e.g. sda, dm-0)
and pointing to their sysfs directory.
UUID/devinfo
The directory contains subdirectories named after device ids (numeric values). Each subdirectory has
information about the device of the given devid.
UUID/devinfo/DEVID
Files in /sys/fs/btrfs/<UUID>/devinfo/<DEVID> directory are:
error_stats:
(RO, since: 5.14)
Shows device stats of this device, same as btrfs device stats (btrfs-device(8)).
write_errs 0
read_errs 0
flush_errs 0
corruption_errs 0
generation_errs 0
fsid: (RO, since: 5.17)
Shows the fsid which the device belongs to. It can be different than the UUID if it's a seed
device.
in_fs_metadata
(RO, since: 5.6)
Shows whether we have found the device. Should always be 1, as if this turns to 0, the DEVID
directory would get removed automatically.
missing
(RO, since: 5.6)
Shows whether the device is considered missing by the kernel module.
replace_target
(RO, since: 5.6)
Shows whether the device is the replace target. If no device replace is running, this value is 0.
scrub_speed_max
(RW, since: 5.14)
Shows the scrub speed limit for this device. The unit is Bytes/s. 0 means no limit. The value can
be set but is not persistent.
writeable
(RO, since: 5.6)
Show if the device is writeable.
UUID/qgroups
Files in /sys/fs/btrfs/<UUID>/qgroups/ directory are:
enabled
(RO, since: 6.1)
Shows if qgroup is enabled. Also, if qgroup is disabled, the qgroups directory will be removed
automatically.
inconsistent
(RO, since: 6.1)
Shows if the qgroup numbers are inconsistent. If 1, it's recommended to do a qgroup rescan.
drop_subtree_threshold
(RW, since: 6.1)
Shows the subtree drop threshold to automatically mark qgroup inconsistent.
When dropping large subvolumes with qgroup enabled, there would be a huge load for qgroup
accounting. If we have a subtree whose level is larger than or equal to this value, we will not
trigger qgroup account at all, but mark qgroup inconsistent to avoid the huge workload.
Default value is 3, which means that trees of low height will be accounted properly as this is
sufficiently fast. The value was 8 until 6.13 where no subtree drop can trigger qgroup rescan
making it less useful.
Lower value can reduce qgroup workload, at the cost of extra qgroup rescan to re-calculate the
numbers.
UUID/qgroups/LEVEL_ID
Files in each /sys/fs/btrfs/<UUID>/qgroups/<LEVEL>_<ID>/ directory are:
exclusive
(RO, since: 5.9)
Shows the exclusively owned bytes of the qgroup.
limit_flags
(RO, since: 5.9)
Shows the numeric value of the limit flags. If 0, means no limit implied.
max_exclusive
(RO, since: 5.9)
Shows the limits on exclusively owned bytes.
max_referenced
(RO, since: 5.9)
Shows the limits on referenced bytes.
referenced
(RO, since: 5.9)
Shows the referenced bytes of the qgroup.
rsv_data
(RO, since: 5.9)
Shows the reserved bytes for data.
rsv_meta_pertrans
(RO, since: 5.9)
Shows the reserved bytes for per transaction metadata.
rsv_meta_prealloc
(RO, since: 5.9)
Shows the reserved bytes for preallocated metadata.
UUID/discard
Files in /sys/fs/btrfs/<UUID>/discard/ directory are:
discardable_bytes
(RO, since: 6.1)
Shows amount of bytes that can be discarded in the async discard and nodiscard mode.
discardable_extents
(RO, since: 6.1)
Shows number of extents to be discarded in the async discard and nodiscard mode.
discard_bitmap_bytes
(RO, since: 6.1)
Shows amount of discarded bytes from data tracked as bitmaps.
discard_extent_bytes
(RO, since: 6.1)
Shows amount of discarded extents from data tracked as bitmaps.
discard_bytes_saved
(RO, since: 6.1)
Shows the amount of bytes that were reallocated without being discarded.
kbps_limit
(RW, since: 6.1)
Tunable limit of kilobytes per second issued as discard IO in the async discard mode.
iops_limit
(RW, since: 6.1)
Tunable limit of number of discard IO operations to be issued in the async discard mode.
max_discard_size
(RW, since: 6.1)
Tunable limit for size of one IO discard request.
FILESYSTEM EXCLUSIVE OPERATIONS
There are several operations that affect the whole filesystem and cannot be run in parallel. Attempt to
start one while another is running will fail (see exceptions below).
Since kernel 5.10 the currently running operation can be obtained from /sys/fs/UUID/exclusive_operation
with following values and operations:
• balance
• balance paused (since 5.17)
• device add
• device delete
• device replace
• resize
• swapfile activate
• none
Enqueuing is supported for several btrfs subcommands so they can be started at once and then serialized.
There's an exception when a paused balance allows to start a device add operation as they don't really
collide and this can be used to add more space for the balance to finish.
FILESYSTEM LIMITS
maximum file name length
255
This limit is imposed by Linux VFS, the structures of BTRFS could store larger file names.
maximum symlink target length
depends on the nodesize value, for 4KiB it's 3949 bytes, for larger nodesize it's 4095 due to the
system limit PATH_MAX
The symlink target may not be a valid path, i.e. the path name components can exceed the limits
(NAME_MAX), there's no content validation at symlink(3) creation.
maximum number of inodes
264 but depends on the available metadata space as the inodes are created dynamically
Each subvolume is an independent namespace of inodes and thus their numbers, so the limit is per
subvolume, not for the whole filesystem.
inode numbers
minimum number: 256 (for subvolumes), regular files and directories: 257, maximum number: (264 -
256)
The inode numbers that can be assigned to user created files are from the whole 64bit space except
first 256 and last 256 in that range that are reserved for internal b-tree identifiers.
maximum file length
inherent limit of BTRFS is 264 (16 EiB) but the practical limit of Linux VFS is 263 (8 EiB)
maximum number of subvolumes
the subvolume ids can go up to 248 but the number of actual subvolumes depends on the available
metadata space
The space consumed by all subvolume metadata includes bookkeeping of shared extents can be large
(MiB, GiB). The range is not the full 64bit range because of qgroups that use the upper 16 bits
for another purposes.
maximum number of hardlinks of a file in a directory
65536 when the extref feature is turned on during mkfs (default), roughly 100 otherwise and
depends on file name length that fits into one metadata node
minimum filesystem size
the minimal size of each device depends on the mixed-bg feature, without that (the default) it's
about 109MiB, with mixed-bg it's is 16MiB
BOOTLOADER SUPPORT
GRUB2 (https://www.gnu.org/software/grub) has the most advanced support of booting from BTRFS with
respect to features.
U-Boot (https://www.denx.de/wiki/U-Boot/) has decent support for booting but not all BTRFS features are
implemented, check the documentation.
In general, the first 1MiB on each device is unused with the exception of primary superblock that is on
the offset 64KiB and spans 4KiB. The rest can be freely used by bootloaders or for other system
information. Note that booting from a filesystem on zoned device is not supported.
FILE ATTRIBUTES
The btrfs filesystem supports setting file attributes or flags. Note there are old and new interfaces,
with confusing names. The following list should clarify that:
• attributes: chattr(1) or lsattr(1) utilities (the ioctls are FS_IOC_GETFLAGS and FS_IOC_SETFLAGS), due
to the ioctl names the attributes are also called flags
• xflags: to distinguish from the previous, it's extended flags, with tunable bits similar to the
attributes but extensible and new bits will be added in the future (the ioctls are FS_IOC_FSGETXATTR
and FS_IOC_FSSETXATTR but they are not related to extended attributes that are also called xattrs),
there's no standard tool to change the bits, there's support in xfs_io(8) as command xfs_io -c chattr
Attributes have constraints associated and not all combinations can be set, the order of setting them
also matters. Most attributes apply to files and directories but the semantics may differ. For
directories the attribute may only mean to set this attribute to all new files (inheritable in the list
below). Some attributes need root privileges to be set.
Attributes
a (file, dir, root) append only, new writes are always written at the end of the file
A (file, dir) no atime updates
c (file, dir, inherited) compress data, all data written after this attribute is set will be
compressed. Please note that compression is also affected by the mount options or the parent
directory attributes.
When set on a directory, all newly created files will inherit this attribute. This attribute
cannot be set with 'm' at the same time.
C (file, dir, inherited) no copy-on-write, file data modifications are done in-place
When set on a directory, all newly created files will inherit this attribute.
NOTE:
Due to implementation limitations, this flag can be set/unset only on empty files.
d (file) no dump, makes sense with 3rd party tools like dump(8), on BTRFS the attribute can be
set/unset but no other special handling is done
D (dir) synchronous directory updates, for more details search open(2) for O_SYNC and O_DSYNC
i (file, dir, root) immutable, no file data and metadata changes allowed even to the root user as
long as this attribute is set (obviously the exception is unsetting the attribute)
m (file, dir) no compression, permanently turn off compression on the given file. Any compression
mount options will not affect this file. (chattr(1) support added in 1.46.2)
When set on a directory, all newly created files will inherit this attribute. This attribute
cannot be set with c at the same time.
S (file) synchronous updates, for more details search open(2) for O_SYNC and O_DSYNC
V (file, read-only) fs-verity enabled on the file
No other attributes are supported. For the complete list please refer to the chattr(1) manual page.
XFLAGS
There's an overlap of letters assigned to the bits with the attributes, this list refers to what ‐
xfs_io(8) provides:
i immutable, same as the attribute
a append only, same as the attribute
s synchronous updates, same as the attribute S
A no atime updates, same as the attribute
d no dump, same as the attribute
ZONED MODE
Since version 5.12 btrfs supports so called zoned mode. This is a special on-disk format and
allocation/write strategy that's friendly to zoned devices. In short, a device is partitioned into
fixed-size zones and each zone can be updated by append-only manner, or reset. As btrfs has no fixed data
structures, except the super blocks, the zoned mode only requires block placement that follows the device
constraints. You can learn about the whole architecture at https://zonedstorage.io .
The devices are also called SMR/ZBC/ZNS, in host-managed mode. Note that there are devices that appear as
non-zoned but actually are, this is drive-managed and using zoned mode won't help.
The zone size depends on the device, typical sizes are 256MiB or 1GiB. In general it must be a power of
two. Emulated zoned devices like null_blk allow to set various zone sizes.
Requirements, limitations
• all devices must have the same zone size
• maximum zone size is 8GiB
• minimum zone size is 4MiB
• mixing zoned and non-zoned devices is possible, the zone writes are emulated, but this is namely for
testing
• the super block is handled in a special way and is at different locations than on a non-zoned
filesystem:
• primary: 0B (and the next two zones)
• secondary: 512GiB (and the next two zones)
• tertiary: 4TiB (4096GiB, and the next two zones)
Incompatible features
The main constraint of the zoned devices is lack of in-place update of the data. This is inherently
incompatible with some features:
• NODATACOW - overwrite in-place, cannot create such files
• fallocate - preallocating space for in-place first write
• mixed-bg - unordered writes to data and metadata, fixing that means using separate data and metadata
block groups
• booting - the zone at offset 0 contains superblock, resetting the zone would destroy the bootloader
data
Initial support lacks some features but they're planned:
• only single (data, metadata) and DUP (metadata) profile is supported
• fstrim - due to dependency on free space cache v1
Super block
As said above, super block is handled in a special way. In order to be crash safe, at least one zone in a
known location must contain a valid superblock. This is implemented as a ring buffer in two consecutive
zones, starting from known offsets 0B, 512GiB and 4TiB.
The values are different than on non-zoned devices. Each new super block is appended to the end of the
zone, once it's filled, the zone is reset and writes continue to the next one. Looking up the latest
super block needs to read offsets of both zones and determine the last written version.
The amount of space reserved for super block depends on the zone size. The secondary and tertiary copies
are at distant offsets as the capacity of the devices is expected to be large, tens of terabytes. Maximum
zone size supported is 8GiB, which would mean that e.g. offset 0-16GiB would be reserved just for the
super block on a hypothetical device of that zone size. This is wasteful but required to guarantee crash
safety.
Zone reclaim, garbage collection
As the zones are append-only, overwriting data or COW changes in metadata make parts of the zones used
but not connected to the filesystem structures. This makes the space unusable and grows over time. Once
the ratio hits a (configurable) threshold a background reclaim process is started and relocates the
remaining blocks in use to a new zone. The old one is reset and can be used again.
This process may take some time depending on other background work or amount of new data written. It is
possible to hit an intermittent ENOSPC. Some devices also limit number of active zones.
Devices
Real hardware
The WD Ultrastar series 600 advertises HM-SMR, i.e. the host-managed zoned mode. There are two more: DA
(device managed, no zoned information exported to the system), HA (host aware, can be used as regular
disk but zoned writes improve performance). There are not many devices available at the moment, the
information about exact zoned mode is hard to find, check data sheets or community sources gathering
information from real devices.
Note: zoned mode won't work with DM-SMR disks.
• Ultrastar® DC ZN540 NVMe ZNS SSD (product brief)
Emulated: null_blk
The driver null_blk provides memory backed device and is suitable for testing. There are some quirks
setting up the devices. The module must be loaded with nr_devices=0 or the numbering of device nodes will
be offset. The configfs must be mounted at /sys/kernel/config and the administration of the null_blk
devices is done in /sys/kernel/config/nullb. The device nodes are named like /dev/nullb0 and are numbered
sequentially. NOTE: the device name may be different than the named directory in sysfs!
Setup:
modprobe configfs
modprobe null_blk nr_devices=0
Create a device mydev, assuming no other previously created devices, size is 2048MiB, zone size 256MiB.
There are more tunable parameters, this is a minimal example taking defaults:
cd /sys/kernel/config/nullb/
mkdir mydev
cd mydev
echo 2048 > size
echo 1 > zoned
echo 1 > memory_backed
echo 256 > zone_size
echo 1 > power
This will create a device /dev/nullb0 and the value of file index will match the ending number of the
device node.
Remove the device:
rmdir /sys/kernel/config/nullb/mydev
Then continue with mkfs.btrfs /dev/nullb0, the zoned mode is auto-detected.
For convenience, there's a script wrapping the basic null_blk management operations ‐
https://github.com/kdave/nullb.git, the above commands become:
nullb setup
nullb create -s 2g -z 256
mkfs.btrfs /dev/nullb0
...
nullb rm nullb0
Emulated: TCMU runner
TCMU is a framework to emulate SCSI devices in userspace, providing various backends for the storage,
with zoned support as well. A file-backed zoned device can provide more options for larger storage and
zone size. Please follow the instructions at https://zonedstorage.io/projects/tcmu-runner/ .
Compatibility, incompatibility
• the feature sets an incompat bit and requires new kernel to access the filesystem (for both read and
write)
• superblock needs to be handled in a special way, there are still 3 copies but at different offsets (0,
512GiB, 4TiB) and the 2 consecutive zones are a ring buffer of the superblocks, finding the latest one
needs reading it from the write pointer or do a full scan of the zones
• mixing zoned and non zoned devices is possible (zones are emulated) but is recommended only for testing
• mixing zoned devices with different zone sizes is not possible
• zone sizes must be power of two, zone sizes of real devices are e.g. 256MiB or 1GiB, larger size is
expected, maximum zone size supported by btrfs is 8GiB
Status, stability, reporting bugs
The zoned mode has been released in 5.12 and there are still some rough edges and corner cases one can
hit during testing. Please report bugs to https://github.com/naota/linux/issues/ .
References
• https://zonedstorage.io
• https://zonedstorage.io/projects/libzbc/ -- libzbc is library and set of tools to directly manipulate
devices with ZBC/ZAC support
• https://zonedstorage.io/projects/libzbd/ -- libzbd uses the kernel provided zoned block device
interface based on the ioctl() system calls
• https://hddscan.com/blog/2020/hdd-wd-smr.html -- some details about exact device types
• https://lwn.net/Articles/853308/ -- Btrfs on zoned block devices
• https://www.usenix.org/conference/vault20/presentation/bjorling -- Zone Append: A New Way of Writing to
Zoned Storage
CONTROL DEVICE
There's a character special device /dev/btrfs-control with major and minor numbers 10 and 234 (the device
can be found under the misc category).
$ ls -l /dev/btrfs-control
crw------- 1 root root 10, 234 Jan 1 12:00 /dev/btrfs-control
The device accepts some ioctl calls that can perform following actions on the filesystem module:
• scan devices for btrfs filesystem (i.e. to let multi-device filesystems mount automatically) and
register them with the kernel module
• similar to scan, but also wait until the device scanning process is finished for a given filesystem
• get the supported features (can be also found under /sys/fs/btrfs/features)
The device is created when btrfs is initialized, either as a module or a built-in functionality and makes
sense only in connection with that. Running e.g. mkfs without the module loaded will not register the
device and will probably warn about that.
In rare cases when the module is loaded but the device is not present (most likely accidentally deleted),
it's possible to recreate it by
# mknod --mode=600 /dev/btrfs-control c 10 234
or (since 5.11) by a convenience command
# btrfs rescue create-control-device
The control device is not strictly required but the device scanning will not work and a workaround would
need to be used to mount a multi-device filesystem. The mount option device can trigger the device
scanning during mount, see also btrfs device scan.
FILESYSTEM WITH MULTIPLE PROFILES
It is possible that a btrfs filesystem contains multiple block group profiles of the same type. This
could happen when a profile conversion using balance filters is interrupted (see btrfs-balance(8)). Some
btrfs commands perform a test to detect this kind of condition and print a warning like this:
WARNING: Multiple block group profiles detected, see 'man btrfs(5)'.
WARNING: Data: single, raid1
WARNING: Metadata: single, raid1
The corresponding output of btrfs filesystem df might look like:
WARNING: Multiple block group profiles detected, see 'man btrfs(5)'.
WARNING: Data: single, raid1
WARNING: Metadata: single, raid1
Data, RAID1: total=832.00MiB, used=0.00B
Data, single: total=1.63GiB, used=0.00B
System, single: total=4.00MiB, used=16.00KiB
Metadata, single: total=8.00MiB, used=112.00KiB
Metadata, RAID1: total=64.00MiB, used=32.00KiB
GlobalReserve, single: total=16.25MiB, used=0.00B
There's more than one line for type Data and Metadata, while the profiles are single and RAID1.
This state of the filesystem OK but most likely needs the user/administrator to take an action and finish
the interrupted tasks. This cannot be easily done automatically, also the user knows the expected final
profiles.
In the example above, the filesystem started as a single device and single block group profile. Then
another device was added, followed by balance with convert=raid1 but for some reason hasn't finished.
Restarting the balance with convert=raid1 will continue and end up with filesystem with all block group
profiles RAID1.
NOTE:
If you're familiar with balance filters, you can use convert=raid1,profiles=single,soft, which will
take only the unconverted single profiles and convert them to raid1. This may speed up the conversion
as it would not try to rewrite the already convert raid1 profiles.
Having just one profile is desired as this also clearly defines the profile of newly allocated block
groups, otherwise this depends on internal allocation policy. When there are multiple profiles present,
the order of selection is RAID56, RAID10, RAID1, RAID0 as long as the device number constraints are
satisfied.
Commands that print the warning were chosen so they're brought to user attention when the filesystem
state is being changed in that regard. This is: device add, device delete, balance cancel, balance pause.
Commands that report space usage: filesystem df, device usage. The command filesystem usage provides a
line in the overall summary:
Multiple profiles: yes (data, metadata)
SEEDING DEVICE
The COW mechanism and multiple devices under one hood enable an interesting concept, called a seeding
device: extending a read-only filesystem on a device with another device that captures all writes. For
example imagine an immutable golden image of an operating system enhanced with another device that allows
to use the data from the golden image and normal operation. This idea originated on CD-ROMs with base OS
and allowing to use them for live systems, but this became obsolete. There are technologies providing
similar functionality, like unionmount, overlayfs or qcow2 image snapshot.
The seeding device starts as a normal filesystem, once the contents is ready, btrfstune -S 1 is used to
flag it as a seeding device. Mounting such device will not allow any writes, except adding a new device
by btrfs device add. Then the filesystem can be remounted as read-write.
Given that the filesystem on the seeding device is always recognized as read-only, it can be used to seed
multiple filesystems from one device at the same time. The UUID that is normally attached to a device is
automatically changed to a random UUID on each mount.
Once the seeding device is mounted, it needs the writable device. After adding it, unmounting and
mounting with umount /path; mount /dev/writable /path or remounting read-write with remount -o remount,rw
makes the filesystem at /path ready for use.
NOTE:
There is a known bug with using remount to make the mount writeable: remount will leave the filesystem
in a state where it is unable to clean deleted snapshots, so it will leak space until it is unmounted
and mounted properly.
Furthermore, deleting the seeding device from the filesystem can turn it into a normal filesystem,
provided that the writable device can also contain all the data from the seeding device.
The seeding device flag can be cleared again by btrfstune -f -S 0, e.g. allowing to update with newer
data but please note that this will invalidate all existing filesystems that use this particular seeding
device. This works for some use cases, not for others, and the forcing flag to the command is mandatory
to avoid accidental mistakes.
Example how to create and use one seeding device:
# mkfs.btrfs /dev/sda
# mount /dev/sda /mnt/mnt1
... fill mnt1 with data
# umount /mnt/mnt1
# btrfstune -S 1 /dev/sda
# mount /dev/sda /mnt/mnt1
# btrfs device add /dev/sdb /mnt/mnt1
# umount /mnt/mnt1
# mount /dev/sdb /mnt/mnt1
... /mnt/mnt1 is now writable
Now /mnt/mnt1 can be used normally. The device /dev/sda can be mounted again with a another writable
device:
# mount /dev/sda /mnt/mnt2
# btrfs device add /dev/sdc /mnt/mnt2
# umount /mnt/mnt2
# mount /dev/sdc /mnt/mnt2
... /mnt/mnt2 is now writable
The writable device (file:/dev/sdb) can be decoupled from the seeding device and used independently:
# btrfs device delete /dev/sda /mnt/mnt1
As the contents originated in the seeding device, it's possible to turn /dev/sdb to a seeding device
again and repeat the whole process.
A few things to note:
• it's recommended to use only single device for the seeding device, it works for multiple devices but
the single profile must be used in order to make the seeding device deletion work
• block group profiles single and dup support the use cases above
• the label is copied from the seeding device and can be changed by btrfs filesystem label
• each new mount of the seeding device gets a new random UUID
• umount /path; mount /dev/writable /path can be replaced with mount -o remount,rw /path but it won't
reclaim space of deleted subvolumes until the seeding device is mounted read-write again before making
it seeding again
Chained seeding devices
Though it's not recommended and is rather an obscure and untested use case, chaining seeding devices is
possible. In the first example, the writable device /dev/sdb can be turned onto another seeding device
again, depending on the unchanged seeding device /dev/sda. Then using /dev/sdb as the primary seeding
device it can be extended with another writable device, say /dev/sdd, and it continues as before as a
simple tree structure on devices.
# mkfs.btrfs /dev/sda
# mount /dev/sda /mnt/mnt1
... fill mnt1 with data
# umount /mnt/mnt1
# btrfstune -S 1 /dev/sda
# mount /dev/sda /mnt/mnt1
# btrfs device add /dev/sdb /mnt/mnt1
# mount -o remount,rw /mnt/mnt1
... /mnt/mnt1 is now writable
# umount /mnt/mnt1
# btrfstune -S 1 /dev/sdb
# mount /dev/sdb /mnt/mnt1
# btrfs device add /dev/sdc /mnt
# mount -o remount,rw /mnt/mnt1
... /mnt/mnt1 is now writable
# umount /mnt/mnt1
As a result we have:
• sda is a single seeding device, with its initial contents
• sdb is a seeding device but requires sda, the contents are from the time when sdb is made seeding, i.e.
contents of sda with any later changes
• sdc last writable, can be made a seeding one the same way as was sdb, preserving its contents and
depending on sda and sdb
As long as the seeding devices are unmodified and available, they can be used to start another branch.
RAID56 STATUS AND RECOMMENDED PRACTICES
The RAID56 feature provides striping and parity over several devices, same as the traditional RAID5/6.
There are some implementation and design deficiencies that make it unreliable for some corner cases and
the feature should not be used in production, only for evaluation or testing. The power failure safety
for metadata with RAID56 is not 100%.
Metadata
Do not use raid5 nor raid6 for metadata. Use raid1 or raid1c3 respectively.
The substitute profiles provide the same guarantees against loss of 1 or 2 devices, and in some respect
can be an improvement. Recovering from one missing device will only need to access the remaining 1st or
2nd copy, that in general may be stored on some other devices due to the way RAID1 works on btrfs, unlike
on a striped profile (similar to raid0) that would need all devices all the time.
The space allocation pattern and consumption is different (e.g. on N devices): for raid5 as an example, a
1GiB chunk is reserved on each device, while with raid1 there's each 1GiB chunk stored on 2 devices. The
consumption of each 1GiB of used metadata is then N * 1GiB for vs 2 * 1GiB. Using raid1 is also more
convenient for balancing/converting to other profile due to lower requirement on the available chunk
space.
Missing/incomplete support
When RAID56 is on the same filesystem with different raid profiles, the space reporting is inaccurate,
e.g. df, btrfs filesystem df or btrfs filesystem usage. When there's only a one profile per block group
type (e.g. RAID5 for data) the reporting is accurate.
When scrub is started on a RAID56 filesystem, it's started on all devices that degrade the performance.
The workaround is to start it on each device separately. Due to that the device stats may not match the
actual state and some errors might get reported multiple times.
The write hole problem. An unclean shutdown could leave a partially written stripe in a state where the
some stripe ranges and the parity are from the old writes and some are new. The information which is
which is not tracked. Write journal is not implemented. Alternatively a full read-modify-write would make
sure that a full stripe is always written, avoiding the write hole completely, but performance in that
case turned out to be too bad for use.
The striping happens on all available devices (at the time the chunks were allocated), so in case a new
device is added it may not be utilized immediately and would require a rebalance. A fixed configured
stripe width is not implemented.
GLOSSARY
Terms in italics also appear in this glossary.
allocator
Usually allocator means the block allocator, i.e. the logic inside the filesystem which decides
where to place newly allocated blocks in order to maintain several constraints (like data
locality, low fragmentation).
In btrfs, allocator may also refer to chunk allocator, i.e. the logic behind placing chunks on
devices.
balance
An operation that can be done to a btrfs filesystem, for example through btrfs balance /path. A
balance passes all data in the filesystem through the allocator again. It is primarily intended to
rebalance the data in the filesystem across the devices when a device is added or removed. A
balance will regenerate missing copies for the redundant RAID levels, if a device has failed. As
of Linux kernel 3.3, a balance operation can be made selective about which parts of the filesystem
are rewritten using filters.
barrier
An instruction to the underlying hardware to ensure that everything before the barrier is
physically written to permanent storage before anything after it. Used in btrfs's copy on write
approach to ensure filesystem consistency.
block A single physically and logically contiguous piece of storage on a device, of size e.g. 4K. In
some contexts also referred to as sector, though the term block is preferred.
block group
The unit of allocation of space in btrfs. A block group is laid out on the disk by the btrfs
allocator, and will consist of one or more chunks, each stored on a different device. The number
of chunks used in a block group will depend on its RAID level.
B-tree The fundamental storage data structure used in btrfs. Except for the superblocks, all of btrfs
metadata is stored in one of several B-trees on disk. B-trees store key/item pairs. While the same
code is used to implement all of the B-trees, there are a few different categories of B-tree. The
name btrfs refers to its use of B-trees.
btrfsck, fsck, btrfs-check
Tool in btrfs-progs that checks an unmounted filesystem (offline) and reports on any errors in the
filesystem structures it finds. By default the tool runs in read-only mode as fixing errors is
potentially dangerous. See also scrub.
btrfs-progs
User mode tools to manage btrfs-specific features. Maintained at ‐
http://github.com/kdave/btrfs-progs.git . The main frontend to btrfs features is the standalone
tool btrfs, although other tools such as mkfs.btrfs and btrfstune are also part of btrfs-progs.
chunk A part of a block group. Chunks are either 1 GiB in size (for data) or 256 MiB (for metadata),
depending on the overall filesystem size.
chunk tree
A layer that keeps information about mapping between physical and logical block addresses. It's
stored within the system group.
cleaner
Usually referred to in context of deleted subvolumes. It's a background process that removes the
actual data once a subvolume has been deleted. Cleaning can involve lots of IO and CPU activity
depending on the fragmentation and amount of shared data with other subvolumes.
The cleaner kernel thread also processes defragmentation triggered by the autodefrag mount option,
removing of empty blocks groups and some other finalization tasks.
copy-on-write, COW
Also known as COW. The method that btrfs uses for modifying data. Instead of directly overwriting
data in place, btrfs takes a copy of the data, alters it, and then writes the modified data back
to a different (unused) location on the disk. It then updates the metadata to reflect the new
location of the data. In order to update the metadata, the affected metadata blocks are also
treated in the same way. In COW filesystems, files tend to fragment as they are modified.
Copy-on-write is also used in the implementation of snapshots and reflink copies. A copy-on-write
filesystem is, in theory, always consistent, provided the underlying hardware supports barriers.
default subvolume
The subvolume in a btrfs filesystem which is mounted when mounting the filesystem without using
the subvol= mount option.
device A Linux block device, e.g. a whole disk, partition, LVM logical volume, loopback device, or
network block device. A btrfs filesystem can reside on one or more devices.
df A standard Unix tool for reporting the amount of space used and free in a filesystem. The standard
tool does not give accurate results, but the btrfs command from btrfs-progs has an implementation
of df which shows space available in more detail. See the
[[FAQ#Why_does_df_show_incorrect_free_space_for_my_RAID_volume.3F|FAQ]] for a more detailed
explanation of btrfs free space accounting.
DUP A form of "RAID" which stores two copies of each piece of data on the same device. This is similar
to RAID1, and protects against block-level errors on the device, but does not provide any
guarantees if the entire device fails. By default, btrfs uses DUP profile for metadata on single
device filesystem.s
ENOSPC Error code returned by the OS to a user program when the filesystem cannot allocate enough data to
fulfill the user request. In most filesystems, it indicates there is no free space available in
the filesystem. Due to the additional space requirements from btrfs's COW behaviour, btrfs can
sometimes return ENOSPC when there is apparently (in terms of df) a large amount of space free.
This is effectively a bug in btrfs, and (if it is repeatable), using the mount option enospc_debug
may give a report that will help the btrfs developers. See the
[[FAQ#if_your_device_is_large_.28.3E16GiB.29|FAQ entry]] on free space.
extent Contiguous sequence of bytes on disk that holds file data. It's a compact representation that
tracks the start and length of the byte range, so the logic behind allocating blocks (delayed
allocation) strives for maximizing the length before writing the extents to the devices.
extent buffer
An abstraction of a b-tree metadata block storing item keys and item data. The underlying related
structures are physical device block and a CPU memory page.
fallocate
Command line tool in util-linux, and a syscall, that reserves space in the filesystem for a file,
without actually writing any file data to the filesystem. First data write will turn the
preallocated extents into regular ones. See fallocate(1) and fallocate(2) manual pages for more
details.
filefrag
A tool to show the number of extents in a file, and hence the amount of fragmentation in the file.
It is usually part of the e2fsprogs package on most Linux distributions. While initially developed
for the ext2 filesystem, it works on Btrfs as well. It uses the FIEMAP ioctl.
free space cache
Also known as "space cache v1". A separate cache tracking free space as btrfs only tracks the
allocated space. The free space is by definition any hole between allocated ranges. Finding the
free ranges can be I/O intensive so the cache stores a condensed representation of it. It is
updated every transaction commit.
The v1 free space cache has been superseded by free space tree.
free space tree
Successor of free space cache, also known as "space cache v2" and now default. The free space is
tracked in a better way and using COW unlike a custom mechanism of v1.
fsync On Unix and Unix-like operating systems (of which Linux is the latter), the fsync(2) system call
causes all buffered file descriptor related data changes to be flushed to the underlying block
device. When a file is modified on a modern operating system the changes are generally not written
to the disk immediately but rather those changes are buffered in memory for performance reasons,
calling fsync(2) causes any in-memory changes to be written to disk.
generation
An internal counter which updates for each transaction. When a metadata block is written (using
copy on write), current generation is stored in the block, so that blocks which are too new (and
hence possibly inconsistent) can be identified.
key A fixed sized tuple used to identify and sort items in a B-tree. The key is broken up into 3
parts: objectid, type, and offset. The type field indicates how each of the other two fields
should be used, and what to expect to find in the item.
item A variable sized structure stored in B-tree leaves. Items hold different types of data depending
on key type.
log tree
A b-tree that temporarily tracks ongoing metadata updates until a full transaction commit is done.
It's a performance optimization of fsync. The log tracked in the tree are replayed if the
filesystem is not unmounted cleanly.
metadata
Data about data. In btrfs, this includes all of the internal data structures of the filesystem,
including directory structures, filenames, file permissions, checksums, and the location of each
file's extents. All btrfs metadata is stored in B-trees.
mkfs.btrfs
The tool (from btrfs-progs) to create a btrfs filesystem.
offline
A filesystem which is not mounted is offline. Some tools (e.g. btrfsck) will only work on offline
filesystems. Compare online.
online A filesystem which is mounted is online. Most btrfs tools will only work on online filesystems.
Compare offline.
orphan A file that's still in use (opened by a running process) but all directory entries of that file
have been removed.
RAID A class of different methods for writing some additional redundant data across multiple devices so
that if one device fails, the missing data can be reconstructed from the remaining ones. See
RAID0, RAID1, RAID5, RAID6, RAID10, DUP and single. Traditional RAID methods operate across
multiple devices of equal size, whereas btrfs' RAID implementation works inside block groups.
RAID0 A form of RAID which provides no guarantees of error recovery, but stripes a single copy of data
across multiple devices for performance purposes. The stripe size is fixed to 64KB for now.
RAID1, RAID1C3, RAID1C4
A form of RAID which stores two/three/four complete copies of each piece of data. Each copy is
stored on a different device. btrfs requires a minimum of two devices to use RAID-1 or three/four
respectively. This is the default block group profile for btrfs's metadata on more than one
device.
RAID5 A form of RAID which stripes a single copy of data across multiple devices, including one device's
worth of additional parity data. Can be used to recover from a single device failure.
RAID6 A form of RAID which stripes a single copy of data across multiple devices, including two device's
worth of additional parity data. Can be used to recover from the failure of two devices.
RAID10 A form of RAID which stores two complete copies of each piece of data, and also stripes each copy
across multiple devices for performance.
reflink
Commonly used as a reference to a shallow copy of file extents that share the extents until the
first change. Reflinked files (e.g. by the cp) are different files but point to the same extents,
any change will be detected and new copy of the data created, keeping the files independent.
Related to that is extent range cloning, that works on a range of a file.
relocation
The process of moving block groups within the filesystem while maintaining full filesystem
integrity and consistency. This functionality is underlying balance and device removing features.
scrub An online filesystem checking tool. Reads all the data and metadata on the filesystem, verifies
checksums and eventually uses redundant copies from RAID or DUP repair any corrupt data/metadata.
seed device
A readonly device can be used as a filesystem seed or template (e.g. a CD-ROM containing an OS
image). Read/write devices can be added to store modifications (using copy on write), changes to
the writable devices are persistent across reboots. The original device remains unchanged and can
be removed at any time (after Btrfs has been instructed to copy over all missing blocks). Multiple
read/write file systems can be built from the same seed.
single A block group profile storing a single copy of each piece of data.
snapshot
A subvolume which is a copy on write copy of another subvolume. The two subvolumes share all of
their common (unmodified) data, which means that snapshots can be used to keep the historical
state of a filesystem very cheaply. After the snapshot is made, the original subvolume and the
snapshot are of equal status: the original does not "own" the snapshot, and either one can be
deleted without affecting the other one.
subvolume
A tree of files and directories inside a btrfs that can be mounted as if it were an independent
filesystem. A subvolume is created by taking a reference on the root of another subvolume. Each
btrfs filesystem has at least one subvolume, the top-level subvolume, which contains everything
else in the filesystem. Additional subvolumes can be created and deleted with the btrfs< tool. All
subvolumes share the same pool of free space in the filesystem. See also default subvolume.
super block
A special metadata block that is a main access point of the filesystem structures. It's size is
fixed and there are fixed locations on the devices used for detecting and opening the filesystem.
Updating the superblock defines one transaction. The super blocks contains filesystem
identification (UUID), checksum type, block pointers to fundamental trees, features and creation
parameters.
system array
A technical term for super block metadata describing how to assemble a filesystem from multiple
device, storing information about chunks and devices that are required to be scanned/registered at
the time the mount happens. Scanning is done by command btrfs device scan, alternatively all the
required devices can be specified by a mount option device=/path.
top-level subvolume
The subvolume at the very top of the filesystem. This is the only subvolume present in a
newly-created btrfs filesystem, and internally has ID 5, otherwise could be referenced as 0 (e.g.
within the set-default subcommand of btrfs).
transaction
A consistent set of changes. To avoid generating very large amounts of disk activity, btrfs caches
changes in RAM for up to 30 seconds (sometimes more often if the filesystem is running short on
space or doing a lot of fsync*s), and then writes (commits) these changes out to disk in one go
(using *copy on write behaviour). This period of caching is called a transaction. Only one
transaction is active on the filesystem at any one time.
transid
An alternative term for generation.
writeback
Writeback in the context of the Linux kernel can be defined as the process of writing "dirty"
memory from the page cache to the disk, when certain conditions are met (timeout, number of dirty
pages over a ratio).
STORAGE MODEL, HARDWARE CONSIDERATIONS
Storage model
A storage model is a model that captures key physical aspects of data structure in a data store. A
filesystem is the logical structure organizing data on top of the storage device.
The filesystem assumes several features or limitations of the storage device and utilizes them or applies
measures to guarantee reliability. BTRFS in particular is based on a COW (copy on write) mode of writing,
i.e. not updating data in place but rather writing a new copy to a different location and then atomically
switching the pointers.
In an ideal world, the device does what it promises. The filesystem assumes that this may not be true so
additional mechanisms are applied to either detect misbehaving hardware or get valid data by other means.
The devices may (and do) apply their own detection and repair mechanisms but we won't assume any.
The following assumptions about storage devices are considered (sorted by importance, numbers are for
further reference):
1. atomicity of reads and writes of blocks/sectors (the smallest unit of data the device presents to the
upper layers)
2. there's a flush command that instructs the device to forcibly order writes before and after the
command; alternatively there's a barrier command that facilitates the ordering but may not flush the
data
3. data sent to write to a given device offset will be written without further changes to the data and to
the offset
4. writes can be reordered by the device, unless explicitly serialized by the flush command
5. reads and writes can be freely reordered and interleaved
The consistency model of BTRFS builds on these assumptions. The logical data updates are grouped, into a
generation, written on the device, serialized by the flush command and then the super block is written
ending the generation. All logical links among metadata comprising a consistent view of the data may not
cross the generation boundary.
When things go wrong
No or partial atomicity of block reads/writes (1)
• Problem: a partial block contents is written (torn write), e.g. due to a power glitch or other
electronics failure during the read/write
• Detection: checksum mismatch on read
• Repair: use another copy or rebuild from multiple blocks using some encoding scheme
The flush command does not flush (2)
This is perhaps the most serious problem and impossible to mitigate by filesystem without limitations and
design restrictions. What could happen in the worst case is that writes from one generation bleed to
another one, while still letting the filesystem consider the generations isolated. Crash at any point
would leave data on the device in an inconsistent state without any hint what exactly got written, what
is missing and leading to stale metadata link information.
Devices usually honor the flush command, but for performance reasons may do internal caching, where the
flushed data are not yet persistently stored. A power failure could lead to a similar scenario as above,
although it's less likely that later writes would be written before the cached ones. This is beyond what
a filesystem can take into account. Devices or controllers are usually equipped with batteries or
capacitors to write the cache contents even after power is cut. (Battery backed write cache)
Data get silently changed on write (3)
Such thing should not happen frequently, but still can happen spuriously due the complex internal
workings of devices or physical effects of the storage media itself.
• Problem: while the data are written atomically, the contents get changed
• Detection: checksum mismatch on read
• Repair: use another copy or rebuild from multiple blocks using some encoding scheme
Data get silently written to another offset (3)
This would be another serious problem as the filesystem has no information when it happens. For that
reason the measures have to be done ahead of time. This problem is also commonly called ghost write.
The metadata blocks have the checksum embedded in the blocks, so a correct atomic write would not corrupt
the checksum. It's likely that after reading such block the data inside would not be consistent with the
rest. To rule that out there's embedded block number in the metadata block. It's the logical block number
because this is what the logical structure expects and verifies.
The following is based on information publicly available, user feedback, community discussions or bug
report analyses. It's not complete and further research is encouraged when in doubt.
Main memory
The data structures and raw data blocks are temporarily stored in computer memory before they get written
to the device. It is critical that memory is reliable because even simple bit flips can have vast
consequences and lead to damaged structures, not only in the filesystem but in the whole operating
system.
Based on experience in the community, memory bit flips are more common than one would think. When it
happens, it's reported by the tree-checker or by a checksum mismatch after reading blocks. There are some
very obvious instances of bit flips that happen, e.g. in an ordered sequence of keys in metadata blocks.
We can easily infer from the other data what values get damaged and how. However, fixing that is not
straightforward and would require cross-referencing data from the entire filesystem to see the scope.
If available, ECC memory should lower the chances of bit flips, but this type of memory is not available
in all cases. A memory test should be performed in case there's a visible bit flip pattern, though this
may not detect a faulty memory module because the actual load of the system could be the factor making
the problems appear. In recent years attacks on how the memory modules operate have been demonstrated
(rowhammer) achieving specific bits to be flipped. While these were targeted, this shows that a series
of reads or writes can affect unrelated parts of memory.
Block group profiles with redundancy (like RAID1) will not protect against memory errors as the blocks
are first stored in memory before they are written to the devices from the same source.
A filesystem mounted read-only will not affect the underlying block device in almost 100% (with highly
unlikely exceptions). The exception is a tree-log that needs to be replayed during mount (and before the
read-only mount takes place), working memory is needed for that and that can be affected by bit flips.
There's a theoretical case where bit flip changes the filesystem status from read-only to read-write.
Further reading:
• https://en.wikipedia.org/wiki/Row_hammer
• memory overclocking, XMP, potential risks
What to do:
• run memtest, note that sometimes memory errors happen only when the system is under heavy load that the
default memtest cannot trigger
• memory errors may appear as filesystem going read-only due to "pre write" check, that verify meta data
before they get written but fail some basic consistency checks
• newly built systems should be tested before being put to production use, ideally start a IO/CPU load
that will be run on such system later; namely systems that will utilize overclocking or special
performance features
Direct memory access (DMA)
Another class of errors is related to DMA (direct memory access) performed by device drivers. While this
could be considered a software error, the data transfers that happen without CPU assistance may
accidentally corrupt other pages. Storage devices utilize DMA for performance reasons, the filesystem
structures and data pages are passed back and forth, making errors possible in case page life time is not
properly tracked.
There are lots of quirks (device-specific workarounds) in Linux kernel drivers (regarding not only DMA)
that are added when found. The quirks may avoid specific errors or disable some features to avoid worse
problems.
What to do:
• use up-to-date kernel (recent releases or maintained long term support versions)
• as this may be caused by faulty drivers, keep the systems up-to-date
Rotational disks (HDD)
Rotational HDDs typically fail at the level of individual sectors or small clusters. Read failures are
caught on the levels below the filesystem and are returned to the user as EIO - Input/output error.
Reading the blocks repeatedly may return the data eventually, but this is better done by specialized
tools and filesystem takes the result of the lower layers. Rewriting the sectors may trigger internal
remapping but this inevitably leads to data loss.
Disk firmware is technically software but from the filesystem perspective is part of the hardware. IO
requests are processed, and caching or various other optimizations are performed, which may lead to bugs
under high load or unexpected physical conditions or unsupported use cases.
Disks are connected by cables with two ends, both of which can cause problems when not attached properly.
Data transfers are protected by checksums and the lower layers try hard to transfer the data correctly or
not at all. The errors from badly-connecting cables may manifest as large amount of failed read or write
requests, or as short error bursts depending on physical conditions.
What to do:
• check smartctl for potential issues
Solid state drives (SSD)
The mechanism of information storage is different from HDDs and this affects the failure mode as well.
The data are stored in cells grouped in large blocks with limited number of resets and other write
constraints. The firmware tries to avoid unnecessary resets and performs optimizations to maximize the
storage media lifetime. The known techniques are deduplication (blocks with same fingerprint/hash are
mapped to same physical block), compression or internal remapping and garbage collection of used memory
cells. Due to the additional processing there are measures to verify the data e.g. by ECC codes.
The observations of failing SSDs show that the whole electronic fails at once or affects a lot of data
(e.g. stored on one chip). Recovering such data may need specialized equipment and reading data
repeatedly does not help as it's possible with HDDs.
There are several technologies of the memory cells with different characteristics and price. The lifetime
is directly affected by the type and frequency of data written. Writing "too much" distinct data (e.g.
encrypted) may render the internal deduplication ineffective and lead to a lot of rewrites and increased
wear of the memory cells.
There are several technologies and manufacturers so it's hard to describe them but there are some that
exhibit similar behaviour:
• expensive SSD will use more durable memory cells and is optimized for reliability and high load
• cheap SSD is projected for a lower load ("desktop user") and is optimized for cost, it may employ the
optimizations and/or extended error reporting partially or not at all
It's not possible to reliably determine the expected lifetime of an SSD due to lack of information about
how it works or due to lack of reliable stats provided by the device.
Metadata writes tend to be the biggest component of lifetime writes to a SSD, so there is some value in
reducing them. Depending on the device class (high end/low end) the features like DUP block group
profiles may affect the reliability in both ways:
• high end are typically more reliable and using single for data and metadata could be suitable to reduce
device wear
• low end could lack ability to identify errors so an additional redundancy at the filesystem level
(checksums, DUP) could help
Only users who consume 50 to 100% of the SSD's actual lifetime writes need to be concerned by the write
amplification of btrfs DUP metadata. Most users will be far below 50% of the actual lifetime, or will
write the drive to death and discover how many writes 100% of the actual lifetime was. SSD firmware often
adds its own write multipliers that can be arbitrary and unpredictable and dependent on application
behavior, and these will typically have far greater effect on SSD lifespan than DUP metadata. It's more
or less impossible to predict when a SSD will run out of lifetime writes to within a factor of two, so
it's hard to justify wear reduction as a benefit.
Further reading:
• https://www.snia.org/educational-library/ssd-and-deduplication-end-spinning-disk-2012
• https://www.snia.org/educational-library/realities-solid-state-storage-2013-2013
• https://www.snia.org/educational-library/ssd-performance-primer-2013
• https://www.snia.org/educational-library/how-controllers-maximize-ssd-life-2013
What to do:
• run smartctl or self-tests to look for potential issues
• keep the firmware up-to-date
NVM express, non-volatile memory (NVMe)
NVMe is a type of persistent memory usually connected over a system bus (PCIe) or similar interface and
the speeds are an order of magnitude faster than SSD. It is also a non-rotating type of storage, and is
not typically connected by a cable. It's not a SCSI type device either but rather a complete
specification for logical device interface.
In a way the errors could be compared to a combination of SSD class and regular memory. Errors may
exhibit as random bit flips or IO failures. There are tools to access the internal log (nvme log and
nvme-cli) for a more detailed analysis.
There are separate error detection and correction steps performed e.g. on the bus level and in most cases
never making in to the filesystem level. Once this happens it could mean there's some systematic error
like overheating or bad physical connection of the device. You may want to run self-tests (using
smartctl).
• https://en.wikipedia.org/wiki/NVM_Express
• https://www.smartmontools.org/wiki/NVMe_Support
Drive firmware
Firmware is technically still software but embedded into the hardware. As all software has bugs, so does
firmware. Storage devices can update the firmware and fix known bugs. In some cases the it's possible to
avoid certain bugs by quirks (device-specific workarounds) in Linux kernel.
A faulty firmware can cause wide range of corruptions from small and localized to large affecting lots of
data. Self-repair capabilities may not be sufficient.
What to do:
• check for firmware updates in case there are known problems, note that updating firmware can be risky
on itself
• use up-to-date kernel (recent releases or maintained long term support versions)
SD flash cards
There are a lot of devices with low power consumption and thus using storage media based on low power
consumption too, typically flash memory stored on a chip enclosed in a detachable card package. An
improperly inserted card may be damaged by electrical spikes when the device is turned on or off. The
chips storing data in turn may be damaged permanently. All types of flash memory have a limited number of
rewrites, so the data are internally translated by FTL (flash translation layer). This is implemented in
firmware (technically a software) and prone to bugs that manifest as hardware errors.
Adding redundancy like using DUP profiles for both data and metadata can help in some cases but a full
backup might be the best option once problems appear and replacing the card could be required as well.
Hardware as the main source of filesystem corruptions
If you use unreliable hardware and don't know about that, don't blame the filesystem when it tells you.
SEE ALSO
acl(5), btrfs(8), chattr(1), fstrim(8), ioctl(2), btrfs-ioctl(2), mkfs.btrfs(8), mount(8), swapon(8)
6.16 Sep 07, 2025 BTRFS(5)