Provided by: liblapack-doc-man_3.5.0-2ubuntu1_all bug

NAME

       csysv_rook.f -

SYNOPSIS

   Functions/Subroutines
       subroutine csysv_rook (UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO)
            CSYSV_ROOK computes the solution to system of linear equations A * X = B for SY
           matrices

Function/Subroutine Documentation

   subroutine csysv_rook (characterUPLO, integerN, integerNRHS, complex, dimension( lda, * )A,
       integerLDA, integer, dimension( * )IPIV, complex, dimension( ldb, * )B, integerLDB,
       complex, dimension( * )WORK, integerLWORK, integerINFO)
        CSYSV_ROOK computes the solution to system of linear equations A * X = B for SY matrices

       Purpose:

            CSYSV_ROOK computes the solution to a complex system of linear
            equations
               A * X = B,
            where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
            matrices.

            The diagonal pivoting method is used to factor A as
               A = U * D * U**T,  if UPLO = 'U', or
               A = L * D * L**T,  if UPLO = 'L',
            where U (or L) is a product of permutation and unit upper (lower)
            triangular matrices, and D is symmetric and block diagonal with
            1-by-1 and 2-by-2 diagonal blocks.

            CSYTRF_ROOK is called to compute the factorization of a complex
            symmetric matrix A using the bounded Bunch-Kaufman ("rook") diagonal
            pivoting method.

            The factored form of A is then used to solve the system
            of equations A * X = B by calling CSYTRS_ROOK.

       Parameters:
           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The number of linear equations, i.e., the order of the
                     matrix A.  N >= 0.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrix B.  NRHS >= 0.

           A

                     A is COMPLEX array, dimension (LDA,N)
                     On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     N-by-N upper triangular part of A contains the upper
                     triangular part of the matrix A, and the strictly lower
                     triangular part of A is not referenced.  If UPLO = 'L', the
                     leading N-by-N lower triangular part of A contains the lower
                     triangular part of the matrix A, and the strictly upper
                     triangular part of A is not referenced.

                     On exit, if INFO = 0, the block diagonal matrix D and the
                     multipliers used to obtain the factor U or L from the
                     factorization A = U*D*U**T or A = L*D*L**T as computed by
                     CSYTRF_ROOK.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     Details of the interchanges and the block structure of D,
                     as determined by CSYTRF_ROOK.

                     If UPLO = 'U':
                          If IPIV(k) > 0, then rows and columns k and IPIV(k)
                          were interchanged and D(k,k) is a 1-by-1 diagonal block.

                          If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
                          columns k and -IPIV(k) were interchanged and rows and
                          columns k-1 and -IPIV(k-1) were inerchaged,
                          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.

                     If UPLO = 'L':
                          If IPIV(k) > 0, then rows and columns k and IPIV(k)
                          were interchanged and D(k,k) is a 1-by-1 diagonal block.

                          If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
                          columns k and -IPIV(k) were interchanged and rows and
                          columns k+1 and -IPIV(k+1) were inerchaged,
                          D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

           B

                     B is COMPLEX array, dimension (LDB,NRHS)
                     On entry, the N-by-NRHS right hand side matrix B.
                     On exit, if INFO = 0, the N-by-NRHS solution matrix X.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

           WORK

                     WORK is COMPLEX array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The length of WORK.  LWORK >= 1, and for best performance
                     LWORK >= max(1,N*NB), where NB is the optimal blocksize for
                     CSYTRF_ROOK.

                     TRS will be done with Level 2 BLAS

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0: successful exit
                     < 0: if INFO = -i, the i-th argument had an illegal value
                     > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
                          has been completed, but the block diagonal matrix D is
                          exactly singular, so the solution could not be computed.

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           April 2012

       Contributors:

              April 2012, Igor Kozachenko,
                             Computer Science Division,
                             University of California, Berkeley

             September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                             School of Mathematics,
                             University of Manchester

       Definition at line 204 of file csysv_rook.f.

Author

       Generated automatically by Doxygen for LAPACK from the source code.