Provided by: liblapack-doc-man_3.5.0-2ubuntu1_all bug

NAME

       dla_syamv.f -

SYNOPSIS

   Functions/Subroutines
       subroutine dla_syamv (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
           DLA_SYAMV computes a matrix-vector product using a symmetric indefinite matrix to
           calculate error bounds.

Function/Subroutine Documentation

   subroutine dla_syamv (integerUPLO, integerN, double precisionALPHA, double precision,
       dimension( lda, * )A, integerLDA, double precision, dimension( * )X, integerINCX, double
       precisionBETA, double precision, dimension( * )Y, integerINCY)
       DLA_SYAMV computes a matrix-vector product using a symmetric indefinite matrix to
       calculate error bounds.

       Purpose:

            DLA_SYAMV  performs the matrix-vector operation

                    y := alpha*abs(A)*abs(x) + beta*abs(y),

            where alpha and beta are scalars, x and y are vectors and A is an
            n by n symmetric matrix.

            This function is primarily used in calculating error bounds.
            To protect against underflow during evaluation, components in
            the resulting vector are perturbed away from zero by (N+1)
            times the underflow threshold.  To prevent unnecessarily large
            errors for block-structure embedded in general matrices,
            "symbolically" zero components are not perturbed.  A zero
            entry is considered "symbolic" if all multiplications involved
            in computing that entry have at least one zero multiplicand.

       Parameters:
           UPLO

                     UPLO is INTEGER
                      On entry, UPLO specifies whether the upper or lower
                      triangular part of the array A is to be referenced as
                      follows:

                         UPLO = BLAS_UPPER   Only the upper triangular part of A
                                             is to be referenced.

                         UPLO = BLAS_LOWER   Only the lower triangular part of A
                                             is to be referenced.

                      Unchanged on exit.

           N

                     N is INTEGER
                      On entry, N specifies the number of columns of the matrix A.
                      N must be at least zero.
                      Unchanged on exit.

           ALPHA

                     ALPHA is DOUBLE PRECISION .
                      On entry, ALPHA specifies the scalar alpha.
                      Unchanged on exit.

           A

                     A is DOUBLE PRECISION array of DIMENSION ( LDA, n ).
                      Before entry, the leading m by n part of the array A must
                      contain the matrix of coefficients.
                      Unchanged on exit.

           LDA

                     LDA is INTEGER
                      On entry, LDA specifies the first dimension of A as declared
                      in the calling (sub) program. LDA must be at least
                      max( 1, n ).
                      Unchanged on exit.

           X

                     X is DOUBLE PRECISION array, dimension
                      ( 1 + ( n - 1 )*abs( INCX ) )
                      Before entry, the incremented array X must contain the
                      vector x.
                      Unchanged on exit.

           INCX

                     INCX is INTEGER
                      On entry, INCX specifies the increment for the elements of
                      X. INCX must not be zero.
                      Unchanged on exit.

           BETA

                     BETA is DOUBLE PRECISION .
                      On entry, BETA specifies the scalar beta. When BETA is
                      supplied as zero then Y need not be set on input.
                      Unchanged on exit.

           Y

                     Y is DOUBLE PRECISION array, dimension
                      ( 1 + ( n - 1 )*abs( INCY ) )
                      Before entry with BETA non-zero, the incremented array Y
                      must contain the vector y. On exit, Y is overwritten by the
                      updated vector y.

           INCY

                     INCY is INTEGER
                      On entry, INCY specifies the increment for the elements of
                      Y. INCY must not be zero.
                      Unchanged on exit.

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           September 2012

       Further Details:

             Level 2 Blas routine.

             -- Written on 22-October-1986.
                Jack Dongarra, Argonne National Lab.
                Jeremy Du Croz, Nag Central Office.
                Sven Hammarling, Nag Central Office.
                Richard Hanson, Sandia National Labs.
             -- Modified for the absolute-value product, April 2006
                Jason Riedy, UC Berkeley

       Definition at line 177 of file dla_syamv.f.

Author

       Generated automatically by Doxygen for LAPACK from the source code.