Provided by: liblapack-doc-man_3.6.0-2ubuntu2_all
NAME
clatdf.f -
SYNOPSIS
Functions/Subroutines subroutine clatdf (IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV, JPIV) CLATDF uses the LU factorization of the n-by-n matrix computed by sgetc2 and computes a contribution to the reciprocal Dif-estimate.
Function/Subroutine Documentation
subroutine clatdf (integer IJOB, integer N, complex, dimension( ldz, * ) Z, integer LDZ, complex, dimension( * ) RHS, real RDSUM, real RDSCAL, integer, dimension( * ) IPIV, integer, dimension( * ) JPIV) CLATDF uses the LU factorization of the n-by-n matrix computed by sgetc2 and computes a contribution to the reciprocal Dif-estimate. Purpose: CLATDF computes the contribution to the reciprocal Dif-estimate by solving for x in Z * x = b, where b is chosen such that the norm of x is as large as possible. It is assumed that LU decomposition of Z has been computed by CGETC2. On entry RHS = f holds the contribution from earlier solved sub-systems, and on return RHS = x. The factorization of Z returned by CGETC2 has the form Z = P * L * U * Q, where P and Q are permutation matrices. L is lower triangular with unit diagonal elements and U is upper triangular. Parameters: IJOB IJOB is INTEGER IJOB = 2: First compute an approximative null-vector e of Z using CGECON, e is normalized and solve for Zx = +-e - f with the sign giving the greater value of 2-norm(x). About 5 times as expensive as Default. IJOB .ne. 2: Local look ahead strategy where all entries of the r.h.s. b is chosen as either +1 or -1. Default. N N is INTEGER The number of columns of the matrix Z. Z Z is REAL array, dimension (LDZ, N) On entry, the LU part of the factorization of the n-by-n matrix Z computed by CGETC2: Z = P * L * U * Q LDZ LDZ is INTEGER The leading dimension of the array Z. LDA >= max(1, N). RHS RHS is REAL array, dimension (N). On entry, RHS contains contributions from other subsystems. On exit, RHS contains the solution of the subsystem with entries according to the value of IJOB (see above). RDSUM RDSUM is REAL On entry, the sum of squares of computed contributions to the Dif-estimate under computation by CTGSYL, where the scaling factor RDSCAL (see below) has been factored out. On exit, the corresponding sum of squares updated with the contributions from the current sub-system. If TRANS = 'T' RDSUM is not touched. NOTE: RDSUM only makes sense when CTGSY2 is called by CTGSYL. RDSCAL RDSCAL is REAL On entry, scaling factor used to prevent overflow in RDSUM. On exit, RDSCAL is updated w.r.t. the current contributions in RDSUM. If TRANS = 'T', RDSCAL is not touched. NOTE: RDSCAL only makes sense when CTGSY2 is called by CTGSYL. IPIV IPIV is INTEGER array, dimension (N). The pivot indices; for 1 <= i <= N, row i of the matrix has been interchanged with row IPIV(i). JPIV JPIV is INTEGER array, dimension (N). The pivot indices; for 1 <= j <= N, column j of the matrix has been interchanged with column JPIV(j). Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Further Details: This routine is a further developed implementation of algorithm BSOLVE in [1] using complete pivoting in the LU factorization. Contributors: Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden. References: [1] Bo Kagstrom and Lars Westin, Generalized Schur Methods with Condition Estimators for Solving the Generalized Sylvester Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751. [2] Peter Poromaa, On Efficient and Robust Estimators for the Separation between two Regular Matrix Pairs with Applications in Condition Estimation. Report UMINF-95.05, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, 1995.
Author
Generated automatically by Doxygen for LAPACK from the source code.