Provided by: postgresql-client-9.5_9.5.25-0ubuntu0.16.04.1_amd64 bug

NAME

       SELECT, TABLE, WITH - retrieve rows from a table or view

SYNOPSIS

       [ WITH [ RECURSIVE ] with_query [, ...] ]
       SELECT [ ALL | DISTINCT [ ON ( expression [, ...] ) ] ]
           [ * | expression [ [ AS ] output_name ] [, ...] ]
           [ FROM from_item [, ...] ]
           [ WHERE condition ]
           [ GROUP BY grouping_element [, ...] ]
           [ HAVING condition ]
           [ WINDOW window_name AS ( window_definition ) [, ...] ]
           [ { UNION | INTERSECT | EXCEPT } [ ALL | DISTINCT ] select ]
           [ ORDER BY expression [ ASC | DESC | USING operator ] [ NULLS { FIRST | LAST } ] [, ...] ]
           [ LIMIT { count | ALL } ]
           [ OFFSET start [ ROW | ROWS ] ]
           [ FETCH { FIRST | NEXT } [ count ] { ROW | ROWS } ONLY ]
           [ FOR { UPDATE | NO KEY UPDATE | SHARE | KEY SHARE } [ OF table_name [, ...] ] [ NOWAIT | SKIP LOCKED ] [...] ]

       where from_item can be one of:

           [ ONLY ] table_name [ * ] [ [ AS ] alias [ ( column_alias [, ...] ) ] ]
                       [ TABLESAMPLE sampling_method ( argument [, ...] ) [ REPEATABLE ( seed ) ] ]
           [ LATERAL ] ( select ) [ AS ] alias [ ( column_alias [, ...] ) ]
           with_query_name [ [ AS ] alias [ ( column_alias [, ...] ) ] ]
           [ LATERAL ] function_name ( [ argument [, ...] ] )
                       [ WITH ORDINALITY ] [ [ AS ] alias [ ( column_alias [, ...] ) ] ]
           [ LATERAL ] function_name ( [ argument [, ...] ] ) [ AS ] alias ( column_definition [, ...] )
           [ LATERAL ] function_name ( [ argument [, ...] ] ) AS ( column_definition [, ...] )
           [ LATERAL ] ROWS FROM( function_name ( [ argument [, ...] ] ) [ AS ( column_definition [, ...] ) ] [, ...] )
                       [ WITH ORDINALITY ] [ [ AS ] alias [ ( column_alias [, ...] ) ] ]
           from_item [ NATURAL ] join_type from_item [ ON join_condition | USING ( join_column [, ...] ) ]

       and grouping_element can be one of:

           ( )
           expression
           ( expression [, ...] )
           ROLLUP ( { expression | ( expression [, ...] ) } [, ...] )
           CUBE ( { expression | ( expression [, ...] ) } [, ...] )
           GROUPING SETS ( grouping_element [, ...] )

       and with_query is:

           with_query_name [ ( column_name [, ...] ) ] AS ( select | values | insert | update | delete )

       TABLE [ ONLY ] table_name [ * ]

DESCRIPTION

       SELECT retrieves rows from zero or more tables. The general processing of SELECT is as follows:

        1. All queries in the WITH list are computed. These effectively serve as temporary tables that can be
           referenced in the FROM list. A WITH query that is referenced more than once in FROM is computed only
           once. (See WITH Clause below.)

        2. All elements in the FROM list are computed. (Each element in the FROM list is a real or virtual
           table.) If more than one element is specified in the FROM list, they are cross-joined together. (See
           FROM Clause below.)

        3. If the WHERE clause is specified, all rows that do not satisfy the condition are eliminated from the
           output. (See WHERE Clause below.)

        4. If the GROUP BY clause is specified, or if there are aggregate function calls, the output is combined
           into groups of rows that match on one or more values, and the results of aggregate functions are
           computed. If the HAVING clause is present, it eliminates groups that do not satisfy the given
           condition. (See GROUP BY Clause and HAVING Clause below.)

        5. The actual output rows are computed using the SELECT output expressions for each selected row or row
           group. (See SELECT List below.)

        6. SELECT DISTINCT eliminates duplicate rows from the result.  SELECT DISTINCT ON eliminates rows that
           match on all the specified expressions.  SELECT ALL (the default) will return all candidate rows,
           including duplicates. (See DISTINCT Clause below.)

        7. Using the operators UNION, INTERSECT, and EXCEPT, the output of more than one SELECT statement can be
           combined to form a single result set. The UNION operator returns all rows that are in one or both of
           the result sets. The INTERSECT operator returns all rows that are strictly in both result sets. The
           EXCEPT operator returns the rows that are in the first result set but not in the second. In all three
           cases, duplicate rows are eliminated unless ALL is specified. The noise word DISTINCT can be added to
           explicitly specify eliminating duplicate rows. Notice that DISTINCT is the default behavior here,
           even though ALL is the default for SELECT itself. (See UNION Clause, INTERSECT Clause, and EXCEPT
           Clause below.)

        8. If the ORDER BY clause is specified, the returned rows are sorted in the specified order. If ORDER BY
           is not given, the rows are returned in whatever order the system finds fastest to produce. (See ORDER
           BY Clause below.)

        9. If the LIMIT (or FETCH FIRST) or OFFSET clause is specified, the SELECT statement only returns a
           subset of the result rows. (See LIMIT Clause below.)

       10. If FOR UPDATE, FOR NO KEY UPDATE, FOR SHARE or FOR KEY SHARE is specified, the SELECT statement locks
           the selected rows against concurrent updates. (See The Locking Clause below.)

       You must have SELECT privilege on each column used in a SELECT command. The use of FOR NO KEY UPDATE, FOR
       UPDATE, FOR SHARE or FOR KEY SHARE requires UPDATE privilege as well (for at least one column of each
       table so selected).

PARAMETERS

   WITH Clause
       The WITH clause allows you to specify one or more subqueries that can be referenced by name in the
       primary query. The subqueries effectively act as temporary tables or views for the duration of the
       primary query. Each subquery can be a SELECT, TABLE, VALUES, INSERT, UPDATE or DELETE statement. When
       writing a data-modifying statement (INSERT, UPDATE or DELETE) in WITH, it is usual to include a RETURNING
       clause. It is the output of RETURNING, not the underlying table that the statement modifies, that forms
       the temporary table that is read by the primary query. If RETURNING is omitted, the statement is still
       executed, but it produces no output so it cannot be referenced as a table by the primary query.

       A name (without schema qualification) must be specified for each WITH query. Optionally, a list of column
       names can be specified; if this is omitted, the column names are inferred from the subquery.

       If RECURSIVE is specified, it allows a SELECT subquery to reference itself by name. Such a subquery must
       have the form

           non_recursive_term UNION [ ALL | DISTINCT ] recursive_term

       where the recursive self-reference must appear on the right-hand side of the UNION. Only one recursive
       self-reference is permitted per query. Recursive data-modifying statements are not supported, but you can
       use the results of a recursive SELECT query in a data-modifying statement. See Section 7.8, “WITH Queries
       (Common Table Expressions)”, in the documentation for an example.

       Another effect of RECURSIVE is that WITH queries need not be ordered: a query can reference another one
       that is later in the list. (However, circular references, or mutual recursion, are not implemented.)
       Without RECURSIVE, WITH queries can only reference sibling WITH queries that are earlier in the WITH
       list.

       A key property of WITH queries is that they are evaluated only once per execution of the primary query,
       even if the primary query refers to them more than once. In particular, data-modifying statements are
       guaranteed to be executed once and only once, regardless of whether the primary query reads all or any of
       their output.

       When there are multiple queries in the WITH clause, RECURSIVE should be written only once, immediately
       after WITH. It applies to all queries in the WITH clause, though it has no effect on queries that do not
       use recursion or forward references.

       The primary query and the WITH queries are all (notionally) executed at the same time. This implies that
       the effects of a data-modifying statement in WITH cannot be seen from other parts of the query, other
       than by reading its RETURNING output. If two such data-modifying statements attempt to modify the same
       row, the results are unspecified.

       See Section 7.8, “WITH Queries (Common Table Expressions)”, in the documentation for additional
       information.

   FROM Clause
       The FROM clause specifies one or more source tables for the SELECT. If multiple sources are specified,
       the result is the Cartesian product (cross join) of all the sources. But usually qualification conditions
       are added (via WHERE) to restrict the returned rows to a small subset of the Cartesian product.

       The FROM clause can contain the following elements:

       table_name
           The name (optionally schema-qualified) of an existing table or view. If ONLY is specified before the
           table name, only that table is scanned. If ONLY is not specified, the table and all its descendant
           tables (if any) are scanned. Optionally, * can be specified after the table name to explicitly
           indicate that descendant tables are included.

       alias
           A substitute name for the FROM item containing the alias. An alias is used for brevity or to
           eliminate ambiguity for self-joins (where the same table is scanned multiple times). When an alias is
           provided, it completely hides the actual name of the table or function; for example given FROM foo AS
           f, the remainder of the SELECT must refer to this FROM item as f not foo. If an alias is written, a
           column alias list can also be written to provide substitute names for one or more columns of the
           table.

       TABLESAMPLE sampling_method ( argument [, ...] ) [ REPEATABLE ( seed ) ]
           A TABLESAMPLE clause after a table_name indicates that the specified sampling_method should be used
           to retrieve a subset of the rows in that table. This sampling precedes the application of any other
           filters such as WHERE clauses. The standard PostgreSQL distribution includes two sampling methods,
           BERNOULLI and SYSTEM, and other sampling methods can be installed in the database via extensions.

           The BERNOULLI and SYSTEM sampling methods each accept a single argument which is the fraction of the
           table to sample, expressed as a percentage between 0 and 100. This argument can be any real-valued
           expression. (Other sampling methods might accept more or different arguments.) These two methods each
           return a randomly-chosen sample of the table that will contain approximately the specified percentage
           of the table's rows. The BERNOULLI method scans the whole table and selects or ignores individual
           rows independently with the specified probability. The SYSTEM method does block-level sampling with
           each block having the specified chance of being selected; all rows in each selected block are
           returned. The SYSTEM method is significantly faster than the BERNOULLI method when small sampling
           percentages are specified, but it may return a less-random sample of the table as a result of
           clustering effects.

           The optional REPEATABLE clause specifies a seed number or expression to use for generating random
           numbers within the sampling method. The seed value can be any non-null floating-point value. Two
           queries that specify the same seed and argument values will select the same sample of the table, if
           the table has not been changed meanwhile. But different seed values will usually produce different
           samples. If REPEATABLE is not given then a new random seed is selected for each query. Note that some
           add-on sampling methods do not accept REPEATABLE, and will always produce new samples on each use.

       select
           A sub-SELECT can appear in the FROM clause. This acts as though its output were created as a
           temporary table for the duration of this single SELECT command. Note that the sub-SELECT must be
           surrounded by parentheses, and an alias must be provided for it. A VALUES(7) command can also be used
           here.

       with_query_name
           A WITH query is referenced by writing its name, just as though the query's name were a table name.
           (In fact, the WITH query hides any real table of the same name for the purposes of the primary query.
           If necessary, you can refer to a real table of the same name by schema-qualifying the table's name.)
           An alias can be provided in the same way as for a table.

       function_name
           Function calls can appear in the FROM clause. (This is especially useful for functions that return
           result sets, but any function can be used.) This acts as though the function's output were created as
           a temporary table for the duration of this single SELECT command. When the optional WITH ORDINALITY
           clause is added to the function call, a new column is appended after all the function's output
           columns with numbering for each row.

           An alias can be provided in the same way as for a table. If an alias is written, a column alias list
           can also be written to provide substitute names for one or more attributes of the function's
           composite return type, including the column added by ORDINALITY if present.

           Multiple function calls can be combined into a single FROM-clause item by surrounding them with ROWS
           FROM( ... ). The output of such an item is the concatenation of the first row from each function,
           then the second row from each function, etc. If some of the functions produce fewer rows than others,
           NULLs are substituted for the missing data, so that the total number of rows returned is always the
           same as for the function that produced the most rows.

           If the function has been defined as returning the record data type, then an alias or the key word AS
           must be present, followed by a column definition list in the form ( column_name data_type [, ... ]).
           The column definition list must match the actual number and types of columns returned by the
           function.

           When using the ROWS FROM( ... ) syntax, if one of the functions requires a column definition list,
           it's preferred to put the column definition list after the function call inside ROWS FROM( ... ). A
           column definition list can be placed after the ROWS FROM( ... ) construct only if there's just a
           single function and no WITH ORDINALITY clause.

           To use ORDINALITY together with a column definition list, you must use the ROWS FROM( ... ) syntax
           and put the column definition list inside ROWS FROM( ... ).

       join_type
           One of

           •   [ INNER ] JOIN

           •   LEFT [ OUTER ] JOIN

           •   RIGHT [ OUTER ] JOIN

           •   FULL [ OUTER ] JOIN

           •   CROSS JOIN

           For the INNER and OUTER join types, a join condition must be specified, namely exactly one of
           NATURAL, ON join_condition, or USING (join_column [, ...]). See below for the meaning. For CROSS
           JOIN, none of these clauses can appear.

           A JOIN clause combines two FROM items, which for convenience we will refer to as “tables”, though in
           reality they can be any type of FROM item. Use parentheses if necessary to determine the order of
           nesting. In the absence of parentheses, JOINs nest left-to-right. In any case JOIN binds more tightly
           than the commas separating FROM-list items.

           CROSS JOIN and INNER JOIN produce a simple Cartesian product, the same result as you get from listing
           the two tables at the top level of FROM, but restricted by the join condition (if any).  CROSS JOIN
           is equivalent to INNER JOIN ON (TRUE), that is, no rows are removed by qualification. These join
           types are just a notational convenience, since they do nothing you couldn't do with plain FROM and
           WHERE.

           LEFT OUTER JOIN returns all rows in the qualified Cartesian product (i.e., all combined rows that
           pass its join condition), plus one copy of each row in the left-hand table for which there was no
           right-hand row that passed the join condition. This left-hand row is extended to the full width of
           the joined table by inserting null values for the right-hand columns. Note that only the JOIN
           clause's own condition is considered while deciding which rows have matches. Outer conditions are
           applied afterwards.

           Conversely, RIGHT OUTER JOIN returns all the joined rows, plus one row for each unmatched right-hand
           row (extended with nulls on the left). This is just a notational convenience, since you could convert
           it to a LEFT OUTER JOIN by switching the left and right tables.

           FULL OUTER JOIN returns all the joined rows, plus one row for each unmatched left-hand row (extended
           with nulls on the right), plus one row for each unmatched right-hand row (extended with nulls on the
           left).

       ON join_condition
           join_condition is an expression resulting in a value of type boolean (similar to a WHERE clause) that
           specifies which rows in a join are considered to match.

       USING ( join_column [, ...] )
           A clause of the form USING ( a, b, ... ) is shorthand for ON left_table.a = right_table.a AND
           left_table.b = right_table.b .... Also, USING implies that only one of each pair of equivalent
           columns will be included in the join output, not both.

       NATURAL
           NATURAL is shorthand for a USING list that mentions all columns in the two tables that have matching
           names. If there are no common column names, NATURAL is equivalent to ON TRUE.

       LATERAL
           The LATERAL key word can precede a sub-SELECT FROM item. This allows the sub-SELECT to refer to
           columns of FROM items that appear before it in the FROM list. (Without LATERAL, each sub-SELECT is
           evaluated independently and so cannot cross-reference any other FROM item.)

           LATERAL can also precede a function-call FROM item, but in this case it is a noise word, because the
           function expression can refer to earlier FROM items in any case.

           A LATERAL item can appear at top level in the FROM list, or within a JOIN tree. In the latter case it
           can also refer to any items that are on the left-hand side of a JOIN that it is on the right-hand
           side of.

           When a FROM item contains LATERAL cross-references, evaluation proceeds as follows: for each row of
           the FROM item providing the cross-referenced column(s), or set of rows of multiple FROM items
           providing the columns, the LATERAL item is evaluated using that row or row set's values of the
           columns. The resulting row(s) are joined as usual with the rows they were computed from. This is
           repeated for each row or set of rows from the column source table(s).

           The column source table(s) must be INNER or LEFT joined to the LATERAL item, else there would not be
           a well-defined set of rows from which to compute each set of rows for the LATERAL item. Thus,
           although a construct such as X RIGHT JOIN LATERAL Y is syntactically valid, it is not actually
           allowed for Y to reference X.

   WHERE Clause
       The optional WHERE clause has the general form

           WHERE condition

       where condition is any expression that evaluates to a result of type boolean. Any row that does not
       satisfy this condition will be eliminated from the output. A row satisfies the condition if it returns
       true when the actual row values are substituted for any variable references.

   GROUP BY Clause
       The optional GROUP BY clause has the general form

           GROUP BY grouping_element [, ...]

       GROUP BY will condense into a single row all selected rows that share the same values for the grouped
       expressions. An expression used inside a grouping_element can be an input column name, or the name or
       ordinal number of an output column (SELECT list item), or an arbitrary expression formed from
       input-column values. In case of ambiguity, a GROUP BY name will be interpreted as an input-column name
       rather than an output column name.

       If any of GROUPING SETS, ROLLUP or CUBE are present as grouping elements, then the GROUP BY clause as a
       whole defines some number of independent grouping sets. The effect of this is equivalent to constructing
       a UNION ALL between subqueries with the individual grouping sets as their GROUP BY clauses. For further
       details on the handling of grouping sets see Section 7.2.4, “GROUPING SETS, CUBE, and ROLLUP”, in the
       documentation.

       Aggregate functions, if any are used, are computed across all rows making up each group, producing a
       separate value for each group. (If there are aggregate functions but no GROUP BY clause, the query is
       treated as having a single group comprising all the selected rows.) The set of rows fed to each aggregate
       function can be further filtered by attaching a FILTER clause to the aggregate function call; see Section
       4.2.7, “Aggregate Expressions”, in the documentation for more information. When a FILTER clause is
       present, only those rows matching it are included in the input to that aggregate function.

       When GROUP BY is present, or any aggregate functions are present, it is not valid for the SELECT list
       expressions to refer to ungrouped columns except within aggregate functions or when the ungrouped column
       is functionally dependent on the grouped columns, since there would otherwise be more than one possible
       value to return for an ungrouped column. A functional dependency exists if the grouped columns (or a
       subset thereof) are the primary key of the table containing the ungrouped column.

       Keep in mind that all aggregate functions are evaluated before evaluating any “scalar” expressions in the
       HAVING clause or SELECT list. This means that, for example, a CASE expression cannot be used to skip
       evaluation of an aggregate function; see Section 4.2.14, “Expression Evaluation Rules”, in the
       documentation.

       Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be specified with GROUP BY.

   HAVING Clause
       The optional HAVING clause has the general form

           HAVING condition

       where condition is the same as specified for the WHERE clause.

       HAVING eliminates group rows that do not satisfy the condition.  HAVING is different from WHERE: WHERE
       filters individual rows before the application of GROUP BY, while HAVING filters group rows created by
       GROUP BY. Each column referenced in condition must unambiguously reference a grouping column, unless the
       reference appears within an aggregate function or the ungrouped column is functionally dependent on the
       grouping columns.

       The presence of HAVING turns a query into a grouped query even if there is no GROUP BY clause. This is
       the same as what happens when the query contains aggregate functions but no GROUP BY clause. All the
       selected rows are considered to form a single group, and the SELECT list and HAVING clause can only
       reference table columns from within aggregate functions. Such a query will emit a single row if the
       HAVING condition is true, zero rows if it is not true.

       Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be specified with HAVING.

   WINDOW Clause
       The optional WINDOW clause has the general form

           WINDOW window_name AS ( window_definition ) [, ...]

       where window_name is a name that can be referenced from OVER clauses or subsequent window definitions,
       and window_definition is

           [ existing_window_name ]
           [ PARTITION BY expression [, ...] ]
           [ ORDER BY expression [ ASC | DESC | USING operator ] [ NULLS { FIRST | LAST } ] [, ...] ]
           [ frame_clause ]

       If an existing_window_name is specified it must refer to an earlier entry in the WINDOW list; the new
       window copies its partitioning clause from that entry, as well as its ordering clause if any. In this
       case the new window cannot specify its own PARTITION BY clause, and it can specify ORDER BY only if the
       copied window does not have one. The new window always uses its own frame clause; the copied window must
       not specify a frame clause.

       The elements of the PARTITION BY list are interpreted in much the same fashion as elements of a GROUP BY
       Clause, except that they are always simple expressions and never the name or number of an output column.
       Another difference is that these expressions can contain aggregate function calls, which are not allowed
       in a regular GROUP BY clause. They are allowed here because windowing occurs after grouping and
       aggregation.

       Similarly, the elements of the ORDER BY list are interpreted in much the same fashion as elements of an
       ORDER BY Clause, except that the expressions are always taken as simple expressions and never the name or
       number of an output column.

       The optional frame_clause defines the window frame for window functions that depend on the frame (not all
       do). The window frame is a set of related rows for each row of the query (called the current row). The
       frame_clause can be one of

           { RANGE | ROWS } frame_start
           { RANGE | ROWS } BETWEEN frame_start AND frame_end

       where frame_start and frame_end can be one of

           UNBOUNDED PRECEDING
           value PRECEDING
           CURRENT ROW
           value FOLLOWING
           UNBOUNDED FOLLOWING

       If frame_end is omitted it defaults to CURRENT ROW. Restrictions are that frame_start cannot be UNBOUNDED
       FOLLOWING, frame_end cannot be UNBOUNDED PRECEDING, and the frame_end choice cannot appear earlier in the
       above list than the frame_start choice — for example RANGE BETWEEN CURRENT ROW AND value PRECEDING is not
       allowed.

       The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as RANGE BETWEEN UNBOUNDED
       PRECEDING AND CURRENT ROW; it sets the frame to be all rows from the partition start up through the
       current row's last peer (a row that ORDER BY considers equivalent to the current row, or all rows if
       there is no ORDER BY). In general, UNBOUNDED PRECEDING means that the frame starts with the first row of
       the partition, and similarly UNBOUNDED FOLLOWING means that the frame ends with the last row of the
       partition (regardless of RANGE or ROWS mode). In ROWS mode, CURRENT ROW means that the frame starts or
       ends with the current row; but in RANGE mode it means that the frame starts or ends with the current
       row's first or last peer in the ORDER BY ordering. The value PRECEDING and value FOLLOWING cases are
       currently only allowed in ROWS mode. They indicate that the frame starts or ends with the row that many
       rows before or after the current row.  value must be an integer expression not containing any variables,
       aggregate functions, or window functions. The value must not be null or negative; but it can be zero,
       which selects the current row itself.

       Beware that the ROWS options can produce unpredictable results if the ORDER BY ordering does not order
       the rows uniquely. The RANGE options are designed to ensure that rows that are peers in the ORDER BY
       ordering are treated alike; all peer rows will be in the same frame.

       The purpose of a WINDOW clause is to specify the behavior of window functions appearing in the query's
       SELECT List or ORDER BY Clause. These functions can reference the WINDOW clause entries by name in their
       OVER clauses. A WINDOW clause entry does not have to be referenced anywhere, however; if it is not used
       in the query it is simply ignored. It is possible to use window functions without any WINDOW clause at
       all, since a window function call can specify its window definition directly in its OVER clause. However,
       the WINDOW clause saves typing when the same window definition is needed for more than one window
       function.

       Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be specified with WINDOW.

       Window functions are described in detail in Section 3.5, “Window Functions”, in the documentation,
       Section 4.2.8, “Window Function Calls”, in the documentation, and Section 7.2.5, “Window Function
       Processing”, in the documentation.

   SELECT List
       The SELECT list (between the key words SELECT and FROM) specifies expressions that form the output rows
       of the SELECT statement. The expressions can (and usually do) refer to columns computed in the FROM
       clause.

       Just as in a table, every output column of a SELECT has a name. In a simple SELECT this name is just used
       to label the column for display, but when the SELECT is a sub-query of a larger query, the name is seen
       by the larger query as the column name of the virtual table produced by the sub-query. To specify the
       name to use for an output column, write AS output_name after the column's expression. (You can omit AS,
       but only if the desired output name does not match any PostgreSQL keyword (see Appendix C, SQL Key
       Words). For protection against possible future keyword additions, it is recommended that you always
       either write AS or double-quote the output name.) If you do not specify a column name, a name is chosen
       automatically by PostgreSQL. If the column's expression is a simple column reference then the chosen name
       is the same as that column's name. In more complex cases a function or type name may be used, or the
       system may fall back on a generated name such as ?column?.

       An output column's name can be used to refer to the column's value in ORDER BY and GROUP BY clauses, but
       not in the WHERE or HAVING clauses; there you must write out the expression instead.

       Instead of an expression, * can be written in the output list as a shorthand for all the columns of the
       selected rows. Also, you can write table_name.*  as a shorthand for the columns coming from just that
       table. In these cases it is not possible to specify new names with AS; the output column names will be
       the same as the table columns' names.

   DISTINCT Clause
       If SELECT DISTINCT is specified, all duplicate rows are removed from the result set (one row is kept from
       each group of duplicates).  SELECT ALL specifies the opposite: all rows are kept; that is the default.

       SELECT DISTINCT ON ( expression [, ...] ) keeps only the first row of each set of rows where the given
       expressions evaluate to equal. The DISTINCT ON expressions are interpreted using the same rules as for
       ORDER BY (see above). Note that the “first row” of each set is unpredictable unless ORDER BY is used to
       ensure that the desired row appears first. For example:

           SELECT DISTINCT ON (location) location, time, report
               FROM weather_reports
               ORDER BY location, time DESC;

       retrieves the most recent weather report for each location. But if we had not used ORDER BY to force
       descending order of time values for each location, we'd have gotten a report from an unpredictable time
       for each location.

       The DISTINCT ON expression(s) must match the leftmost ORDER BY expression(s). The ORDER BY clause will
       normally contain additional expression(s) that determine the desired precedence of rows within each
       DISTINCT ON group.

       Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be specified with DISTINCT.

   UNION Clause
       The UNION clause has this general form:

           select_statement UNION [ ALL | DISTINCT ] select_statement

       select_statement is any SELECT statement without an ORDER BY, LIMIT, FOR NO KEY UPDATE, FOR UPDATE, FOR
       SHARE, or FOR KEY SHARE clause. (ORDER BY and LIMIT can be attached to a subexpression if it is enclosed
       in parentheses. Without parentheses, these clauses will be taken to apply to the result of the UNION, not
       to its right-hand input expression.)

       The UNION operator computes the set union of the rows returned by the involved SELECT statements. A row
       is in the set union of two result sets if it appears in at least one of the result sets. The two SELECT
       statements that represent the direct operands of the UNION must produce the same number of columns, and
       corresponding columns must be of compatible data types.

       The result of UNION does not contain any duplicate rows unless the ALL option is specified.  ALL prevents
       elimination of duplicates. (Therefore, UNION ALL is usually significantly quicker than UNION; use ALL
       when you can.)  DISTINCT can be written to explicitly specify the default behavior of eliminating
       duplicate rows.

       Multiple UNION operators in the same SELECT statement are evaluated left to right, unless otherwise
       indicated by parentheses.

       Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be specified either for a
       UNION result or for any input of a UNION.

   INTERSECT Clause
       The INTERSECT clause has this general form:

           select_statement INTERSECT [ ALL | DISTINCT ] select_statement

       select_statement is any SELECT statement without an ORDER BY, LIMIT, FOR NO KEY UPDATE, FOR UPDATE, FOR
       SHARE, or FOR KEY SHARE clause.

       The INTERSECT operator computes the set intersection of the rows returned by the involved SELECT
       statements. A row is in the intersection of two result sets if it appears in both result sets.

       The result of INTERSECT does not contain any duplicate rows unless the ALL option is specified. With ALL,
       a row that has m duplicates in the left table and n duplicates in the right table will appear min(m,n)
       times in the result set.  DISTINCT can be written to explicitly specify the default behavior of
       eliminating duplicate rows.

       Multiple INTERSECT operators in the same SELECT statement are evaluated left to right, unless parentheses
       dictate otherwise.  INTERSECT binds more tightly than UNION. That is, A UNION B INTERSECT C will be read
       as A UNION (B INTERSECT C).

       Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be specified either for an
       INTERSECT result or for any input of an INTERSECT.

   EXCEPT Clause
       The EXCEPT clause has this general form:

           select_statement EXCEPT [ ALL | DISTINCT ] select_statement

       select_statement is any SELECT statement without an ORDER BY, LIMIT, FOR NO KEY UPDATE, FOR UPDATE, FOR
       SHARE, or FOR KEY SHARE clause.

       The EXCEPT operator computes the set of rows that are in the result of the left SELECT statement but not
       in the result of the right one.

       The result of EXCEPT does not contain any duplicate rows unless the ALL option is specified. With ALL, a
       row that has m duplicates in the left table and n duplicates in the right table will appear max(m-n,0)
       times in the result set.  DISTINCT can be written to explicitly specify the default behavior of
       eliminating duplicate rows.

       Multiple EXCEPT operators in the same SELECT statement are evaluated left to right, unless parentheses
       dictate otherwise.  EXCEPT binds at the same level as UNION.

       Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be specified either for an
       EXCEPT result or for any input of an EXCEPT.

   ORDER BY Clause
       The optional ORDER BY clause has this general form:

           ORDER BY expression [ ASC | DESC | USING operator ] [ NULLS { FIRST | LAST } ] [, ...]

       The ORDER BY clause causes the result rows to be sorted according to the specified expression(s). If two
       rows are equal according to the leftmost expression, they are compared according to the next expression
       and so on. If they are equal according to all specified expressions, they are returned in an
       implementation-dependent order.

       Each expression can be the name or ordinal number of an output column (SELECT list item), or it can be an
       arbitrary expression formed from input-column values.

       The ordinal number refers to the ordinal (left-to-right) position of the output column. This feature
       makes it possible to define an ordering on the basis of a column that does not have a unique name. This
       is never absolutely necessary because it is always possible to assign a name to an output column using
       the AS clause.

       It is also possible to use arbitrary expressions in the ORDER BY clause, including columns that do not
       appear in the SELECT output list. Thus the following statement is valid:

           SELECT name FROM distributors ORDER BY code;

       A limitation of this feature is that an ORDER BY clause applying to the result of a UNION, INTERSECT, or
       EXCEPT clause can only specify an output column name or number, not an expression.

       If an ORDER BY expression is a simple name that matches both an output column name and an input column
       name, ORDER BY will interpret it as the output column name. This is the opposite of the choice that GROUP
       BY will make in the same situation. This inconsistency is made to be compatible with the SQL standard.

       Optionally one can add the key word ASC (ascending) or DESC (descending) after any expression in the
       ORDER BY clause. If not specified, ASC is assumed by default. Alternatively, a specific ordering operator
       name can be specified in the USING clause. An ordering operator must be a less-than or greater-than
       member of some B-tree operator family.  ASC is usually equivalent to USING < and DESC is usually
       equivalent to USING >. (But the creator of a user-defined data type can define exactly what the default
       sort ordering is, and it might correspond to operators with other names.)

       If NULLS LAST is specified, null values sort after all non-null values; if NULLS FIRST is specified, null
       values sort before all non-null values. If neither is specified, the default behavior is NULLS LAST when
       ASC is specified or implied, and NULLS FIRST when DESC is specified (thus, the default is to act as
       though nulls are larger than non-nulls). When USING is specified, the default nulls ordering depends on
       whether the operator is a less-than or greater-than operator.

       Note that ordering options apply only to the expression they follow; for example ORDER BY x, y DESC does
       not mean the same thing as ORDER BY x DESC, y DESC.

       Character-string data is sorted according to the collation that applies to the column being sorted. That
       can be overridden at need by including a COLLATE clause in the expression, for example ORDER BY mycolumn
       COLLATE "en_US". For more information see Section 4.2.10, “Collation Expressions”, in the documentation
       and Section 22.2, “Collation Support”, in the documentation.

   LIMIT Clause
       The LIMIT clause consists of two independent sub-clauses:

           LIMIT { count | ALL }
           OFFSET start

       count specifies the maximum number of rows to return, while start specifies the number of rows to skip
       before starting to return rows. When both are specified, start rows are skipped before starting to count
       the count rows to be returned.

       If the count expression evaluates to NULL, it is treated as LIMIT ALL, i.e., no limit. If start evaluates
       to NULL, it is treated the same as OFFSET 0.

       SQL:2008 introduced a different syntax to achieve the same result, which PostgreSQL also supports. It is:

           OFFSET start { ROW | ROWS }
           FETCH { FIRST | NEXT } [ count ] { ROW | ROWS } ONLY

       In this syntax, the start or count value is required by the standard to be a literal constant, a
       parameter, or a variable name; as a PostgreSQL extension, other expressions are allowed, but will
       generally need to be enclosed in parentheses to avoid ambiguity. If count is omitted in a FETCH clause,
       it defaults to 1.  ROW and ROWS as well as FIRST and NEXT are noise words that don't influence the
       effects of these clauses. According to the standard, the OFFSET clause must come before the FETCH clause
       if both are present; but PostgreSQL is laxer and allows either order.

       When using LIMIT, it is a good idea to use an ORDER BY clause that constrains the result rows into a
       unique order. Otherwise you will get an unpredictable subset of the query's rows — you might be asking
       for the tenth through twentieth rows, but tenth through twentieth in what ordering? You don't know what
       ordering unless you specify ORDER BY.

       The query planner takes LIMIT into account when generating a query plan, so you are very likely to get
       different plans (yielding different row orders) depending on what you use for LIMIT and OFFSET. Thus,
       using different LIMIT/OFFSET values to select different subsets of a query result will give inconsistent
       results unless you enforce a predictable result ordering with ORDER BY. This is not a bug; it is an
       inherent consequence of the fact that SQL does not promise to deliver the results of a query in any
       particular order unless ORDER BY is used to constrain the order.

       It is even possible for repeated executions of the same LIMIT query to return different subsets of the
       rows of a table, if there is not an ORDER BY to enforce selection of a deterministic subset. Again, this
       is not a bug; determinism of the results is simply not guaranteed in such a case.

   The Locking Clause
       FOR UPDATE, FOR NO KEY UPDATE, FOR SHARE and FOR KEY SHARE are locking clauses; they affect how SELECT
       locks rows as they are obtained from the table.

       The locking clause has the general form

           FOR lock_strength [ OF table_name [, ...] ] [ NOWAIT | SKIP LOCKED ]

       where lock_strength can be one of

           UPDATE
           NO KEY UPDATE
           SHARE
           KEY SHARE

       For more information on each row-level lock mode, refer to Section 13.3.2, “Row-level Locks”, in the
       documentation.

       To prevent the operation from waiting for other transactions to commit, use either the NOWAIT or SKIP
       LOCKED option. With NOWAIT, the statement reports an error, rather than waiting, if a selected row cannot
       be locked immediately. With SKIP LOCKED, any selected rows that cannot be immediately locked are skipped.
       Skipping locked rows provides an inconsistent view of the data, so this is not suitable for general
       purpose work, but can be used to avoid lock contention with multiple consumers accessing a queue-like
       table. Note that NOWAIT and SKIP LOCKED apply only to the row-level lock(s) — the required ROW SHARE
       table-level lock is still taken in the ordinary way (see Chapter 13, Concurrency Control, in the
       documentation). You can use LOCK(7) with the NOWAIT option first, if you need to acquire the table-level
       lock without waiting.

       If specific tables are named in a locking clause, then only rows coming from those tables are locked; any
       other tables used in the SELECT are simply read as usual. A locking clause without a table list affects
       all tables used in the statement. If a locking clause is applied to a view or sub-query, it affects all
       tables used in the view or sub-query. However, these clauses do not apply to WITH queries referenced by
       the primary query. If you want row locking to occur within a WITH query, specify a locking clause within
       the WITH query.

       Multiple locking clauses can be written if it is necessary to specify different locking behavior for
       different tables. If the same table is mentioned (or implicitly affected) by more than one locking
       clause, then it is processed as if it was only specified by the strongest one. Similarly, a table is
       processed as NOWAIT if that is specified in any of the clauses affecting it. Otherwise, it is processed
       as SKIP LOCKED if that is specified in any of the clauses affecting it.

       The locking clauses cannot be used in contexts where returned rows cannot be clearly identified with
       individual table rows; for example they cannot be used with aggregation.

       When a locking clause appears at the top level of a SELECT query, the rows that are locked are exactly
       those that are returned by the query; in the case of a join query, the rows locked are those that
       contribute to returned join rows. In addition, rows that satisfied the query conditions as of the query
       snapshot will be locked, although they will not be returned if they were updated after the snapshot and
       no longer satisfy the query conditions. If a LIMIT is used, locking stops once enough rows have been
       returned to satisfy the limit (but note that rows skipped over by OFFSET will get locked). Similarly, if
       a locking clause is used in a cursor's query, only rows actually fetched or stepped past by the cursor
       will be locked.

       When a locking clause appears in a sub-SELECT, the rows locked are those returned to the outer query by
       the sub-query. This might involve fewer rows than inspection of the sub-query alone would suggest, since
       conditions from the outer query might be used to optimize execution of the sub-query. For example,

           SELECT * FROM (SELECT * FROM mytable FOR UPDATE) ss WHERE col1 = 5;

       will lock only rows having col1 = 5, even though that condition is not textually within the sub-query.

       Previous releases failed to preserve a lock which is upgraded by a later savepoint. For example, this
       code:

           BEGIN;
           SELECT * FROM mytable WHERE key = 1 FOR UPDATE;
           SAVEPOINT s;
           UPDATE mytable SET ... WHERE key = 1;
           ROLLBACK TO s;

       would fail to preserve the FOR UPDATE lock after the ROLLBACK TO. This has been fixed in release 9.3.

           Caution
           It is possible for a SELECT command running at the READ COMMITTED transaction isolation level and
           using ORDER BY and a locking clause to return rows out of order. This is because ORDER BY is applied
           first. The command sorts the result, but might then block trying to obtain a lock on one or more of
           the rows. Once the SELECT unblocks, some of the ordering column values might have been modified,
           leading to those rows appearing to be out of order (though they are in order in terms of the original
           column values). This can be worked around at need by placing the FOR UPDATE/SHARE clause in a
           sub-query, for example

               SELECT * FROM (SELECT * FROM mytable FOR UPDATE) ss ORDER BY column1;

           Note that this will result in locking all rows of mytable, whereas FOR UPDATE at the top level would
           lock only the actually returned rows. This can make for a significant performance difference,
           particularly if the ORDER BY is combined with LIMIT or other restrictions. So this technique is
           recommended only if concurrent updates of the ordering columns are expected and a strictly sorted
           result is required.

           At the REPEATABLE READ or SERIALIZABLE transaction isolation level this would cause a serialization
           failure (with a SQLSTATE of '40001'), so there is no possibility of receiving rows out of order under
           these isolation levels.

   TABLE Command
       The command

           TABLE name

       is equivalent to

           SELECT * FROM name

       It can be used as a top-level command or as a space-saving syntax variant in parts of complex queries.
       Only the WITH, UNION, INTERSECT, EXCEPT, ORDER BY, LIMIT, OFFSET, FETCH and FOR locking clauses can be
       used with TABLE; the WHERE clause and any form of aggregation cannot be used.

EXAMPLES

       To join the table films with the table distributors:

           SELECT f.title, f.did, d.name, f.date_prod, f.kind
               FROM distributors d, films f
               WHERE f.did = d.did

                  title       | did |     name     | date_prod  |   kind
           -------------------+-----+--------------+------------+----------
            The Third Man     | 101 | British Lion | 1949-12-23 | Drama
            The African Queen | 101 | British Lion | 1951-08-11 | Romantic
            ...

       To sum the column len of all films and group the results by kind:

           SELECT kind, sum(len) AS total FROM films GROUP BY kind;

              kind   | total
           ----------+-------
            Action   | 07:34
            Comedy   | 02:58
            Drama    | 14:28
            Musical  | 06:42
            Romantic | 04:38

       To sum the column len of all films, group the results by kind and show those group totals that are less
       than 5 hours:

           SELECT kind, sum(len) AS total
               FROM films
               GROUP BY kind
               HAVING sum(len) < interval '5 hours';

              kind   | total
           ----------+-------
            Comedy   | 02:58
            Romantic | 04:38

       The following two examples are identical ways of sorting the individual results according to the contents
       of the second column (name):

           SELECT * FROM distributors ORDER BY name;
           SELECT * FROM distributors ORDER BY 2;

            did |       name
           -----+------------------
            109 | 20th Century Fox
            110 | Bavaria Atelier
            101 | British Lion
            107 | Columbia
            102 | Jean Luc Godard
            113 | Luso films
            104 | Mosfilm
            103 | Paramount
            106 | Toho
            105 | United Artists
            111 | Walt Disney
            112 | Warner Bros.
            108 | Westward

       The next example shows how to obtain the union of the tables distributors and actors, restricting the
       results to those that begin with the letter W in each table. Only distinct rows are wanted, so the key
       word ALL is omitted.

           distributors:               actors:
            did |     name              id |     name
           -----+--------------        ----+----------------
            108 | Westward               1 | Woody Allen
            111 | Walt Disney            2 | Warren Beatty
            112 | Warner Bros.           3 | Walter Matthau
            ...                         ...

           SELECT distributors.name
               FROM distributors
               WHERE distributors.name LIKE 'W%'
           UNION
           SELECT actors.name
               FROM actors
               WHERE actors.name LIKE 'W%';

                 name
           ----------------
            Walt Disney
            Walter Matthau
            Warner Bros.
            Warren Beatty
            Westward
            Woody Allen

       This example shows how to use a function in the FROM clause, both with and without a column definition
       list:

           CREATE FUNCTION distributors(int) RETURNS SETOF distributors AS $$
               SELECT * FROM distributors WHERE did = $1;
           $$ LANGUAGE SQL;

           SELECT * FROM distributors(111);
            did |    name
           -----+-------------
            111 | Walt Disney

           CREATE FUNCTION distributors_2(int) RETURNS SETOF record AS $$
               SELECT * FROM distributors WHERE did = $1;
           $$ LANGUAGE SQL;

           SELECT * FROM distributors_2(111) AS (f1 int, f2 text);
            f1  |     f2
           -----+-------------
            111 | Walt Disney

       Here is an example of a function with an ordinality column added:

           SELECT * FROM unnest(ARRAY['a','b','c','d','e','f']) WITH ORDINALITY;
            unnest | ordinality
           --------+----------
            a      |        1
            b      |        2
            c      |        3
            d      |        4
            e      |        5
            f      |        6
           (6 rows)

       This example shows how to use a simple WITH clause:

           WITH t AS (
               SELECT random() as x FROM generate_series(1, 3)
             )
           SELECT * FROM t
           UNION ALL
           SELECT * FROM t

                    x
           --------------------
             0.534150459803641
             0.520092216785997
            0.0735620250925422
             0.534150459803641
             0.520092216785997
            0.0735620250925422

       Notice that the WITH query was evaluated only once, so that we got two sets of the same three random
       values.

       This example uses WITH RECURSIVE to find all subordinates (direct or indirect) of the employee Mary, and
       their level of indirectness, from a table that shows only direct subordinates:

           WITH RECURSIVE employee_recursive(distance, employee_name, manager_name) AS (
               SELECT 1, employee_name, manager_name
               FROM employee
               WHERE manager_name = 'Mary'
             UNION ALL
               SELECT er.distance + 1, e.employee_name, e.manager_name
               FROM employee_recursive er, employee e
               WHERE er.employee_name = e.manager_name
             )
           SELECT distance, employee_name FROM employee_recursive;

       Notice the typical form of recursive queries: an initial condition, followed by UNION, followed by the
       recursive part of the query. Be sure that the recursive part of the query will eventually return no
       tuples, or else the query will loop indefinitely. (See Section 7.8, “WITH Queries (Common Table
       Expressions)”, in the documentation for more examples.)

       This example uses LATERAL to apply a set-returning function get_product_names() for each row of the
       manufacturers table:

           SELECT m.name AS mname, pname
           FROM manufacturers m, LATERAL get_product_names(m.id) pname;

       Manufacturers not currently having any products would not appear in the result, since it is an inner
       join. If we wished to include the names of such manufacturers in the result, we could do:

           SELECT m.name AS mname, pname
           FROM manufacturers m LEFT JOIN LATERAL get_product_names(m.id) pname ON true;

COMPATIBILITY

       Of course, the SELECT statement is compatible with the SQL standard. But there are some extensions and
       some missing features.

   Omitted FROM Clauses
       PostgreSQL allows one to omit the FROM clause. It has a straightforward use to compute the results of
       simple expressions:

           SELECT 2+2;

            ?column?
           ----------
                   4

       Some other SQL databases cannot do this except by introducing a dummy one-row table from which to do the
       SELECT.

       Note that if a FROM clause is not specified, the query cannot reference any database tables. For example,
       the following query is invalid:

           SELECT distributors.* WHERE distributors.name = 'Westward';

       PostgreSQL releases prior to 8.1 would accept queries of this form, and add an implicit entry to the
       query's FROM clause for each table referenced by the query. This is no longer allowed.

   Empty SELECT Lists
       The list of output expressions after SELECT can be empty, producing a zero-column result table. This is
       not valid syntax according to the SQL standard.  PostgreSQL allows it to be consistent with allowing
       zero-column tables. However, an empty list is not allowed when DISTINCT is used.

   Omitting the AS Key Word
       In the SQL standard, the optional key word AS can be omitted before an output column name whenever the
       new column name is a valid column name (that is, not the same as any reserved keyword).  PostgreSQL is
       slightly more restrictive: AS is required if the new column name matches any keyword at all, reserved or
       not. Recommended practice is to use AS or double-quote output column names, to prevent any possible
       conflict against future keyword additions.

       In FROM items, both the standard and PostgreSQL allow AS to be omitted before an alias that is an
       unreserved keyword. But this is impractical for output column names, because of syntactic ambiguities.

   ONLY and Inheritance
       The SQL standard requires parentheses around the table name when writing ONLY, for example SELECT * FROM
       ONLY (tab1), ONLY (tab2) WHERE ....  PostgreSQL considers these parentheses to be optional.

       PostgreSQL allows a trailing * to be written to explicitly specify the non-ONLY behavior of including
       child tables. The standard does not allow this.

       (These points apply equally to all SQL commands supporting the ONLY option.)

   TABLESAMPLE Clause Restrictions
       The TABLESAMPLE clause is currently accepted only on regular tables and materialized views. According to
       the SQL standard it should be possible to apply it to any FROM item.

   Function Calls in FROM
       PostgreSQL allows a function call to be written directly as a member of the FROM list. In the SQL
       standard it would be necessary to wrap such a function call in a sub-SELECT; that is, the syntax FROM
       func(...) alias is approximately equivalent to FROM LATERAL (SELECT func(...)) alias. Note that LATERAL
       is considered to be implicit; this is because the standard requires LATERAL semantics for an UNNEST()
       item in FROM.  PostgreSQL treats UNNEST() the same as other set-returning functions.

   Namespace Available to GROUP BY and ORDER BY
       In the SQL-92 standard, an ORDER BY clause can only use output column names or numbers, while a GROUP BY
       clause can only use expressions based on input column names.  PostgreSQL extends each of these clauses to
       allow the other choice as well (but it uses the standard's interpretation if there is ambiguity).
       PostgreSQL also allows both clauses to specify arbitrary expressions. Note that names appearing in an
       expression will always be taken as input-column names, not as output-column names.

       SQL:1999 and later use a slightly different definition which is not entirely upward compatible with
       SQL-92. In most cases, however, PostgreSQL will interpret an ORDER BY or GROUP BY expression the same way
       SQL:1999 does.

   Functional Dependencies
       PostgreSQL recognizes functional dependency (allowing columns to be omitted from GROUP BY) only when a
       table's primary key is included in the GROUP BY list. The SQL standard specifies additional conditions
       that should be recognized.

   WINDOW Clause Restrictions
       The SQL standard provides additional options for the window frame_clause.  PostgreSQL currently supports
       only the options listed above.

   LIMIT and OFFSET
       The clauses LIMIT and OFFSET are PostgreSQL-specific syntax, also used by MySQL. The SQL:2008 standard
       has introduced the clauses OFFSET ... FETCH {FIRST|NEXT} ...  for the same functionality, as shown above
       in LIMIT Clause. This syntax is also used by IBM DB2. (Applications written for Oracle frequently use a
       workaround involving the automatically generated rownum column, which is not available in PostgreSQL, to
       implement the effects of these clauses.)

   FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE, FOR KEY SHARE
       Although FOR UPDATE appears in the SQL standard, the standard allows it only as an option of DECLARE
       CURSOR.  PostgreSQL allows it in any SELECT query as well as in sub-SELECTs, but this is an extension.
       The FOR NO KEY UPDATE, FOR SHARE and FOR KEY SHARE variants, as well as the NOWAIT and SKIP LOCKED
       options, do not appear in the standard.

   Data-Modifying Statements in WITH
       PostgreSQL allows INSERT, UPDATE, and DELETE to be used as WITH queries. This is not found in the SQL
       standard.

   Nonstandard Clauses
       DISTINCT ON ( ... ) is an extension of the SQL standard.

       ROWS FROM( ... ) is an extension of the SQL standard.