Provided by: mia-tools_2.2.7-3_amd64
NAME
mia-2dmyoserial-nonrigid - Run a serial registration of a series of 2D images.
SYNOPSIS
mia-2dmyoserial-nonrigid -i <in-file> -o <out-file> [options] <PLUGINS:2dimage/fullcost>
DESCRIPTION
mia-2dmyoserial-nonrigid This program runs the non-rigid motion compensation registration of an perfusion image series. The registration is run in a serial manner, this is, only images in temporal succession are registered, and the obtained transformations are applied accumulated to reach full registration. See e.g. Wollny, G., Ledesma-Carbayo, M.J., Kellman, P., Santos, A. "A New Similarity Measure for Non-Rigid Breathing Motion Compensation of Myocardial Perfusion MRI ". Proc 30th Annual International IEEE EMBS Conference, pp. 3389-3392. Vancouver, Aug. 2008, doi:10.1109/IEMBS.2008.4649933,
OPTIONS
File-IO -i --in-file=(input, required); string input perfusion data set -o --out-file=(output, required); string output perfusion data set -R --registered=reg file name base for registered fiels Registration -O --optimizer=gsl:opt=gd,step=0.1 Optimizer used for minimizationOptimizer used for minimization For supported plugins see PLUGINS:minimizer/singlecost -l --mg-levels=3 multi-resolution levelsmulti-resolution levels -f --transForm=spline:rate=16,penalty=[divcurl:weight=0.01] transformation typetransformation type For supported plugins see PLUGINS:2dimage/transform -r --ref=-1 reference frame (-1 == use image in the middle)reference frame (-1 == use image in the middle) -k --skip=0 skip registration of these images at the beginning of the seriesskip registration of these images at the beginning of the series Help & Info -V --verbose=warning verbosity of output, print messages of given level and higher priorities. Supported priorities starting at lowest level are: info ‐ Low level messages trace ‐ Function call trace fail ‐ Report test failures warning ‐ Warnings error ‐ Report errors debug ‐ Debug output message ‐ Normal messages fatal ‐ Report only fatal errors --copyright print copyright information -h --help print this help -? --usage print a short help --version print the version number and exit Processing --threads=-1 Maxiumum number of threads to use for processing,This number should be lower or equal to the number of logical processor cores in the machine. (-1: automatic estimation).Maxiumum number of threads to use for processing,This number should be lower or equal to the number of logical processor cores in the machine. (-1: automatic estimation).
PLUGINS: 1d/splinebc
mirror Spline interpolation boundary conditions that mirror on the boundary (no parameters) repeat Spline interpolation boundary conditions that repeats the value at the boundary (no parameters) zero Spline interpolation boundary conditions that assumes zero for values outside (no parameters)
PLUGINS: 1d/splinekernel
bspline B-spline kernel creation , supported parameters are: d = 3; int in [0, 5] Spline degree. omoms OMoms-spline kernel creation, supported parameters are: d = 3; int in [3, 3] Spline degree.
PLUGINS: 2dimage/cost
lncc local normalized cross correlation with masking support., supported parameters are: w = 5; uint in [1, 256] half width of the window used for evaluating the localized cross correlation. lsd Least-Squares Distance measure (no parameters) mi Spline parzen based mutual information., supported parameters are: cut = 0; float in [0, 40] Percentage of pixels to cut at high and low intensities to remove outliers. mbins = 64; uint in [1, 256] Number of histogram bins used for the moving image. mkernel = [bspline:d=3]; factory Spline kernel for moving image parzen hinstogram. For supported plug-ins see PLUGINS:1d/splinekernel rbins = 64; uint in [1, 256] Number of histogram bins used for the reference image. rkernel = [bspline:d=0]; factory Spline kernel for reference image parzen hinstogram. For supported plug- ins see PLUGINS:1d/splinekernel ncc normalized cross correlation. (no parameters) ngf This function evaluates the image similarity based on normalized gradient fields. Various evaluation kernels are availabe., supported parameters are: eval = ds; dict plugin subtype. Supported values are: sq ‐ square of difference ds ‐ square of scaled difference dot ‐ scalar product kernel cross ‐ cross product kernel ssd 2D imaga cost: sum of squared differences, supported parameters are: autothresh = 0; float in [0, 1000] Use automatic masking of the moving image by only takeing intensity values into accound that are larger than the given threshold. norm = 0; bool Set whether the metric should be normalized by the number of image pixels. ssd-automask 2D image cost: sum of squared differences, with automasking based on given thresholds, supported parameters are: rthresh = 0; double Threshold intensity value for reference image. sthresh = 0; double Threshold intensity value for source image.
PLUGINS: 2dimage/fullcost
image Generalized image similarity cost function that also handles multi-resolution processing. The actual similarity measure is given es extra parameter., supported parameters are: cost = ssd; factory Cost function kernel. For supported plug-ins see PLUGINS:2dimage/cost debug = 0; bool Save intermediate resuts for debugging. ref =(input, string) Reference image. src =(input, string) Study image. weight = 1; float weight of cost function. labelimage Similarity cost function that maps labels of two images and handles label- preserving multi-resolution processing., supported parameters are: debug = 0; int in [0, 1] write the distance transforms to a 3D image. maxlabel = 256; int in [2, 32000] maximum number of labels to consider. ref =(input, string) Reference image. src =(input, string) Study image. weight = 1; float weight of cost function. maskedimage Generalized masked image similarity cost function that also handles multi- resolution processing. The provided masks should be densly filled regions in multi-resolution procesing because otherwise the mask information may get lost when downscaling the image. The reference mask and the transformed mask of the study image are combined by binary AND. The actual similarity measure is given es extra parameter., supported parameters are: cost = ssd; factory Cost function kernel. For supported plug-ins see PLUGINS:2dimage/maskedcost ref =(input, string) Reference image. ref-mask =(input, string) Reference image mask (binary). src =(input, string) Study image. src-mask =(input, string) Study image mask (binary). weight = 1; float weight of cost function.
PLUGINS: 2dimage/io
bmp BMP 2D-image input/output support Recognized file extensions: .BMP, .bmp Supported element types: binary data, unsigned 8 bit, unsigned 16 bit datapool Virtual IO to and from the internal data pool Recognized file extensions: .@ dicom 2D image io for DICOM Recognized file extensions: .DCM, .dcm Supported element types: signed 16 bit, unsigned 16 bit exr a 2dimage io plugin for OpenEXR images Recognized file extensions: .EXR, .exr Supported element types: unsigned 32 bit, floating point 32 bit jpg a 2dimage io plugin for jpeg gray scale images Recognized file extensions: .JPEG, .JPG, .jpeg, .jpg Supported element types: unsigned 8 bit png a 2dimage io plugin for png images Recognized file extensions: .PNG, .png Supported element types: binary data, unsigned 8 bit, unsigned 16 bit raw RAW 2D-image output support Recognized file extensions: .RAW, .raw Supported element types: binary data, signed 8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned 32 bit, floating point 32 bit, floating point 64 bit tif TIFF 2D-image input/output support Recognized file extensions: .TIF, .TIFF, .tif, .tiff Supported element types: binary data, unsigned 8 bit, unsigned 16 bit, unsigned 32 bit vista a 2dimage io plugin for vista images Recognized file extensions: .V, .VISTA, .v, .vista Supported element types: binary data, signed 8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned 32 bit, floating point 32 bit, floating point 64 bit
PLUGINS: 2dimage/maskedcost
lncc local normalized cross correlation with masking support., supported parameters are: w = 5; uint in [1, 256] half width of the window used for evaluating the localized cross correlation. mi Spline parzen based mutual information with masking., supported parameters are: cut = 0; float in [0, 40] Percentage of pixels to cut at high and low intensities to remove outliers. mbins = 64; uint in [1, 256] Number of histogram bins used for the moving image. mkernel = [bspline:d=3]; factory Spline kernel for moving image parzen hinstogram. For supported plug-ins see PLUGINS:1d/splinekernel rbins = 64; uint in [1, 256] Number of histogram bins used for the reference image. rkernel = [bspline:d=0]; factory Spline kernel for reference image parzen hinstogram. For supported plug- ins see PLUGINS:1d/splinekernel ncc normalized cross correlation with masking support. (no parameters) ssd Sum of squared differences with masking. (no parameters)
PLUGINS: 2dimage/transform
affine Affine transformation (six degrees of freedom)., supported parameters are: imgboundary = mirror; factory image interpolation boundary conditions. For supported plug-ins see PLUGINS:1d/splinebc imgkernel = [bspline:d=3]; factory image interpolator kernel. For supported plug-ins see PLUGINS:1d/splinekernel rigid Rigid transformations (i.e. rotation and translation, three degrees of freedom)., supported parameters are: imgboundary = mirror; factory image interpolation boundary conditions. For supported plug-ins see PLUGINS:1d/splinebc imgkernel = [bspline:d=3]; factory image interpolator kernel. For supported plug-ins see PLUGINS:1d/splinekernel rot-center = [[0,0]]; 2dfvector Relative rotation center, i.e. <0.5,0.5> corresponds to the center of the support rectangle. rotation Rotation transformations (i.e. rotation about a given center, one degree of freedom)., supported parameters are: imgboundary = mirror; factory image interpolation boundary conditions. For supported plug-ins see PLUGINS:1d/splinebc imgkernel = [bspline:d=3]; factory image interpolator kernel. For supported plug-ins see PLUGINS:1d/splinekernel rot-center = [[0,0]]; 2dfvector Relative rotation center, i.e. <0.5,0.5> corresponds to the center of the support rectangle. spline Free-form transformation that can be described by a set of B-spline coefficients and an underlying B-spline kernel., supported parameters are: anisorate = [[0,0]]; 2dfvector anisotropic coefficient rate in pixels, nonpositive values will be overwritten by the 'rate' value.. imgboundary = mirror; factory image interpolation boundary conditions. For supported plug-ins see PLUGINS:1d/splinebc imgkernel = [bspline:d=3]; factory image interpolator kernel. For supported plug-ins see PLUGINS:1d/splinekernel kernel = [bspline:d=3]; factory transformation spline kernel.. For supported plug-ins see PLUGINS:1d/splinekernel penalty = ; factory Transformation penalty term. For supported plug-ins see PLUGINS:2dtransform/splinepenalty rate = 10; float in [1, inf) isotropic coefficient rate in pixels. translate Translation only (two degrees of freedom), supported parameters are: imgboundary = mirror; factory image interpolation boundary conditions. For supported plug-ins see PLUGINS:1d/splinebc imgkernel = [bspline:d=3]; factory image interpolator kernel. For supported plug-ins see PLUGINS:1d/splinekernel vf This plug-in implements a transformation that defines a translation for each point of the grid defining the domain of the transformation., supported parameters are: imgboundary = mirror; factory image interpolation boundary conditions. For supported plug-ins see PLUGINS:1d/splinebc imgkernel = [bspline:d=3]; factory image interpolator kernel. For supported plug-ins see PLUGINS:1d/splinekernel
PLUGINS: 2dtransform/splinepenalty
divcurl divcurl penalty on the transformation, supported parameters are: curl = 1; float in [0, inf) penalty weight on curl. div = 1; float in [0, inf) penalty weight on divergence. norm = 0; bool Set to 1 if the penalty should be normalized with respect to the image size. weight = 1; float in (0, inf) weight of penalty energy.
PLUGINS: minimizer/singlecost
gdas Gradient descent with automatic step size correction., supported parameters are: ftolr = 0; double in [0, inf) Stop if the relative change of the criterion is below.. max-step = 2; double in (0, inf) Maximal absolute step size. maxiter = 200; uint in [1, inf) Stopping criterion: the maximum number of iterations. min-step = 0.1; double in (0, inf) Minimal absolute step size. xtola = 0.01; double in [0, inf) Stop if the inf-norm of the change applied to x is below this value.. gdsq Gradient descent with quadratic step estimation, supported parameters are: ftolr = 0; double in [0, inf) Stop if the relative change of the criterion is below.. gtola = 0; double in [0, inf) Stop if the inf-norm of the gradient is below this value.. maxiter = 100; uint in [1, inf) Stopping criterion: the maximum number of iterations. scale = 2; double in (1, inf) Fallback fixed step size scaling. step = 0.1; double in (0, inf) Initial step size. xtola = 0; double in [0, inf) Stop if the inf-norm of x-update is below this value.. gsl optimizer plugin based on the multimin optimizers ofthe GNU Scientific Library (GSL) https://www.gnu.org/software/gsl/, supported parameters are: eps = 0.01; double in (0, inf) gradient based optimizers: stop when |grad| < eps, simplex: stop when simplex size < eps.. iter = 100; uint in [1, inf) maximum number of iterations. opt = gd; dict Specific optimizer to be used.. Supported values are: bfgs ‐ Broyden-Fletcher-Goldfarb-Shann bfgs2 ‐ Broyden-Fletcher-Goldfarb-Shann (most efficient version) cg-fr ‐ Flecher-Reeves conjugate gradient algorithm gd ‐ Gradient descent. simplex ‐ Simplex algorithm of Nelder and Mead cg-pr ‐ Polak-Ribiere conjugate gradient algorithm step = 0.001; double in (0, inf) initial step size. tol = 0.1; double in (0, inf) some tolerance parameter. nlopt Minimizer algorithms using the NLOPT library, for a description of the optimizers please see 'http://ab- initio.mit.edu/wiki/index.php/NLopt_Algorithms', supported parameters are: ftola = 0; double in [0, inf) Stopping criterion: the absolute change of the objective value is below this value. ftolr = 0; double in [0, inf) Stopping criterion: the relative change of the objective value is below this value. higher = inf; double Higher boundary (equal for all parameters). local-opt = none; dict local minimization algorithm that may be required for the main minimization algorithm.. Supported values are: gn-orig-direct-l ‐ Dividing Rectangles (original implementation, locally biased) gn-direct-l-noscal ‐ Dividing Rectangles (unscaled, locally biased) gn-isres ‐ Improved Stochastic Ranking Evolution Strategy ld-tnewton ‐ Truncated Newton gn-direct-l-rand ‐ Dividing Rectangles (locally biased, randomized) ln-newuoa ‐ Derivative-free Unconstrained Optimization by Iteratively Constructed Quadratic Approximation gn-direct-l-rand-noscale ‐ Dividing Rectangles (unscaled, locally biased, randomized) gn-orig-direct ‐ Dividing Rectangles (original implementation) ld-tnewton-precond ‐ Preconditioned Truncated Newton ld-tnewton-restart ‐ Truncated Newton with steepest-descent restarting gn-direct ‐ Dividing Rectangles ln-neldermead ‐ Nelder-Mead simplex algorithm ln-cobyla ‐ Constrained Optimization BY Linear Approximation gn-crs2-lm ‐ Controlled Random Search with Local Mutation ld-var2 ‐ Shifted Limited-Memory Variable-Metric, Rank 2 ld-var1 ‐ Shifted Limited-Memory Variable-Metric, Rank 1 ld-mma ‐ Method of Moving Asymptotes ld-lbfgs-nocedal ‐ None ld-lbfgs ‐ Low-storage BFGS gn-direct-l ‐ Dividing Rectangles (locally biased) none ‐ don't specify algorithm ln-bobyqa ‐ Derivative-free Bound-constrained Optimization ln-sbplx ‐ Subplex variant of Nelder-Mead ln-newuoa-bound ‐ Derivative-free Bound-constrained Optimization by Iteratively Constructed Quadratic Approximation ln-praxis ‐ Gradient-free Local Optimization via the Principal-Axis Method gn-direct-noscal ‐ Dividing Rectangles (unscaled) ld-tnewton-precond-restart ‐ Preconditioned Truncated Newton with steepest-descent restarting lower = -inf; double Lower boundary (equal for all parameters). maxiter = 100; int in [1, inf) Stopping criterion: the maximum number of iterations. opt = ld-lbfgs; dict main minimization algorithm. Supported values are: gn-orig-direct-l ‐ Dividing Rectangles (original implementation, locally biased) g-mlsl-lds ‐ Multi-Level Single-Linkage (low-discrepancy-sequence, require local gradient based optimization and bounds) gn-direct-l-noscal ‐ Dividing Rectangles (unscaled, locally biased) gn-isres ‐ Improved Stochastic Ranking Evolution Strategy ld-tnewton ‐ Truncated Newton gn-direct-l-rand ‐ Dividing Rectangles (locally biased, randomized) ln-newuoa ‐ Derivative-free Unconstrained Optimization by Iteratively Constructed Quadratic Approximation gn-direct-l-rand-noscale ‐ Dividing Rectangles (unscaled, locally biased, randomized) gn-orig-direct ‐ Dividing Rectangles (original implementation) ld-tnewton-precond ‐ Preconditioned Truncated Newton ld-tnewton-restart ‐ Truncated Newton with steepest-descent restarting gn-direct ‐ Dividing Rectangles auglag-eq ‐ Augmented Lagrangian algorithm with equality constraints only ln-neldermead ‐ Nelder-Mead simplex algorithm ln-cobyla ‐ Constrained Optimization BY Linear Approximation gn-crs2-lm ‐ Controlled Random Search with Local Mutation ld-var2 ‐ Shifted Limited-Memory Variable-Metric, Rank 2 ld-var1 ‐ Shifted Limited-Memory Variable-Metric, Rank 1 ld-mma ‐ Method of Moving Asymptotes ld-lbfgs-nocedal ‐ None g-mlsl ‐ Multi-Level Single-Linkage (require local optimization and bounds) ld-lbfgs ‐ Low-storage BFGS gn-direct-l ‐ Dividing Rectangles (locally biased) ln-bobyqa ‐ Derivative-free Bound-constrained Optimization ln-sbplx ‐ Subplex variant of Nelder-Mead ln-newuoa-bound ‐ Derivative-free Bound-constrained Optimization by Iteratively Constructed Quadratic Approximation auglag ‐ Augmented Lagrangian algorithm ln-praxis ‐ Gradient-free Local Optimization via the Principal-Axis Method gn-direct-noscal ‐ Dividing Rectangles (unscaled) ld-tnewton-precond-restart ‐ Preconditioned Truncated Newton with steepest-descent restarting ld-slsqp ‐ Sequential Least-Squares Quadratic Programming step = 0; double in [0, inf) Initial step size for gradient free methods. stop = -inf; double Stopping criterion: function value falls below this value. xtola = 0; double in [0, inf) Stopping criterion: the absolute change of all x-values is below this value. xtolr = 0; double in [0, inf) Stopping criterion: the relative change of all x-values is below this value.
EXAMPLE
Register the perfusion series given in 'segment.set' to reference image 30. Skip two images at the beginning and using mutual information as cost function, and penalize the transformation by divcurl with weight 5. Store the result in 'registered.set'. mia-2dmyoserial-nonrigid -i segment.set -o registered.set -k 2 -r 30 image:cost=mi -f spline:rate=5,penalty=[divcurl:weight=5]
AUTHOR(s)
Gert Wollny
COPYRIGHT
This software is Copyright (c) 1999‐2015 Leipzig, Germany and Madrid, Spain. It comes with ABSOLUTELY NO WARRANTY and you may redistribute it under the terms of the GNU GENERAL PUBLIC LICENSE Version 3 (or later). For more information run the program with the option '--copyright'.