Provided by: mlpack-bin_2.0.1-1_amd64 bug

NAME

       mlpack_kmeans - k-means clustering

SYNOPSIS

        mlpack_kmeans [-h] [-v] -c int -i string [-a string] [-e] [-C string] [-P] [-I string] [-l] [-m int] [-o string] [-p double] [-r] [-S int] [-s int] -V

DESCRIPTION

       This  program  performs  K-Means clustering on the given dataset, storing the learned cluster assignments
       either as a column of labels in the file containing the input  dataset  or  in  a  separate  file.  Empty
       clusters  are  not allowed by default; when a cluster becomes empty, the point furthest from the centroid
       of the cluster with maximum variance is taken to fill that cluster.

       Optionally, the Bradley and Fayyad approach ("Refining initial points for k-means clustering", 1998)  can
       be  used  to  select initial points by specifying the --refined_start (-r) option. This approach works by
       taking random samples of the dataset; to specify the number of samples, the --samples parameter is  used,
       and  to  specify  the  percentage of the dataset to be used in each sample, the --percentage parameter is
       used (it should be a value between 0.0 and 1.0).

       There are several options available for the algorithm used for each Lloyd iteration, specified  with  the
       --algorithm  (-a)  option.  The  standard O(kN) approach can be used ('naive'). Other options include the
       Pelleg-Moore  tree-based  algorithm  ('pelleg-moore'),  Elkan's   triangle-inequality   based   algorithm
       ('elkan'),  Hamerly's  modification  to  Elkan's  algorithm  ('hamerly'), the dual-tree k-means algorithm
       ('dualtree'), and the dual-tree k-means algorithm using the cover tree ('dualtree-covertree').

       As of October 2014, the --overclustering option has been removed. If you want this support back,  let  us
       know -- file a bug at https://github.com/mlpack/mlpack/ or get in touch through another means.

REQUIRED OPTIONS

       --clusters (-c) [int]
              Number of clusters to find (0 autodetects from initial centroids).

       --input_file (-i) [string]
              Input dataset to perform clustering on.

OPTIONS

       --algorithm (-a) [string]
              Algorithm to use for the Lloyd iteration ('naive', 'pelleg-moore', 'elkan', 'hamerly', 'dualtree',
              or 'dualtree-covertree'). Default value 'naive'.

       --allow_empty_clusters (-e)
              Allow empty clusters to be created.

       --centroid_file (-C) [string]
              If specified, the centroids of each cluster will be written to the given file. Default value ''.

       --help (-h)
              Default help info.

       --in_place (-P)
              If  specified,  a  column  containing  the  learned cluster assignments will be added to the input
              dataset file. In this case, --outputFile is overridden.

       --info [string]
              Get help on a specific module or option.  Default value ''.

       --initial_centroids (-I) [string]
              Start with the specified initial centroids.  Default value ''.

       --labels_only (-l)
              Only output labels into output file.

       --max_iterations (-m) [int]
              Maximum number of iterations before K-Means terminates. Default value 1000.

       --output_file (-o) [string]
              File to write output labels or labeled data to.  Default value ''.

       --percentage (-p) [double]
              Percentage of dataset to use  for  each  refined  start  sampling  (use  when  --refined_start  is
              specified). Default value 0.02.

       --refined_start (-r)
              Use the refined initial point strategy by Bradley and Fayyad to choose initial points.

       --samplings (-S) [int]
              Number of samplings to perform for refined start

       (use when --refined_start is specified).
              Default value 100.

       --seed (-s) [int]
              Random seed. If 0, 'std::time(NULL)' is used.  Default value 0.

       --verbose (-v)
              Display informational messages and the full list of parameters and timers at the end of execution.

       --version (-V)
              Display the version of mlpack.

ADDITIONAL INFORMATION

       For  further  information,  including  relevant  papers, citations, and theory, consult the documentation
       found at http://www.mlpack.org or included with your DISTRIBUTION OF MLPACK.

                                                                                                mlpack_kmeans(1)