Provided by: grass-doc_7.0.3-1build1_all bug

NAME

       r.drain  - Traces a flow through an elevation model or cost surface on a raster map.

KEYWORDS

       raster, hydrology, cost surface

SYNOPSIS

       r.drain
       r.drain --help
       r.drain     [-cand]     input=name      [direction=name]      output=name     [drain=name]
       [start_coordinates=east,north]   [start_points=name[,name,...]]   [--overwrite]   [--help]
       [--verbose]  [--quiet]  [--ui]

   Flags:
       -c
           Copy input cell values on output

       -a
           Accumulate input values along the path

       -n
           Count cell numbers along the path

       -d
           The input raster map is a cost surface (direction surface must also be specified)

       --overwrite
           Allow output files to overwrite existing files

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       input=name [required]
           Name of input elevation or cost surface raster map

       direction=name
           Name of input movement direction map associated with the cost surface

       output=name [required]
           Name for output raster map

       drain=name
           Name for output drain vector map
           Recommended for cost surface made using knight’s move

       start_coordinates=east,north
           Coordinates of starting point(s) (E,N)

       start_points=name[,name,...]
           Name of starting vector points map(s)

DESCRIPTION

       r.drain traces a flow through a least-cost path in an elevation model or cost surface. For
       cost surfaces, a movement direction map must be specified with the  direction  option  and
       the -d flag to trace a flow path following the given directions. Such a movement direction
       map can be generated with r.walk, r.cost, r.slope.aspect or r.watershed.

       The output raster map will show one or more least-cost paths  between  each  user-provided
       location(s)  and  the minima (low category values) in the raster input map. If the -d flag
       is used the output least-cost paths will be found using  the  direction  raster  map.   By
       default, the output will be an integer CELL map with category 1 along the least cost path,
       and null cells elsewhere.

       With the -c (copy) flag, the input raster map cell values are copied  verbatim  along  the
       path. With the -a (accumulate) flag, the accumulated cell value from the starting point up
       to the current cell is written on output. With either the -c or the -a flags,  the  output
       map is created with the same cell type as the input raster map (integer, float or double).
       With the -n (number) flag, the cells are numbered consecutively from the starting point to
       the final point.  The -c, -a, and -n flags are mutually incompatible.

       For  an  elevation surface, the path is calculated by choosing the steeper "slope" between
       adjacent cells. The slope calculation accurately acounts for the variable scale in lat-lon
       projections.  For  a  cost  surface,  the  path  is  calculated  by following the movement
       direction surface back to the start point given in r.walk or r.cost. The path search stops
       as  soon  as  a  region border or a neighboring NULL cell is encountered, because in these
       cases the direction can not be determined (the path could  continue  outside  the  current
       region).

       The  start_coordinates  parameter  consists  of map E and N grid coordinates of a starting
       point. Each x,y pair is the easting and northing (respectively) of a starting  point  from
       which  a  least-cost  corridor  will  be  developed.   The start_points parameter can take
       multiple vector maps containing additional starting points.  Up to  1024  starting  points
       can be input from a combination of the start_coordinates and start_points parameters.

NOTES

       If  no  direction  input  map is given, r.drain currently finds only the lowest point (the
       cell having the smallest category value) in the input file that  can  be  reached  through
       directly  adjacent  cells  that  are  less  than  or  equal  in  value to the cell reached
       immediately prior to it; therefore, it will not necessarily reach the lowest point in  the
       input  file.  It  currently  finds  pits  in the data, rather than the lowest point in the
       entire input map. The r.fill.dir, r.terraflow, and r.basins.fill modules can  be  used  to
       fill in subbasins prior to processing with r.drain.

       r.drain  will  not  give  sane  results  at the region boundary. On outer rows and columns
       bordering the edge of the region, the flow direction is always directly out of the map. In
       this case, the user could try adjusting the region extents slightly with g.region to allow
       additional outlet paths for r.drain.

EXAMPLES

       Consider the following example:
       Input:                          Output:
         ELEVATION SURFACE               LEAST COST PATH
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 19. 20. 18. 19. 16. 15. 15.    .   .   .   .   .   .   .   .
       . .  ---  . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 20| 19| 17. 16. 17. 16. 16.    .   . 1 . 1 . 1 .   .   .   .
       . .  ---  . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 18. 18. 24. 18. 15. 12. 11.    .   .   .   .   . 1 .   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 22. 16. 16. 18. 10. 10. 10.    .   .   .   .   . 1 .   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 17. 15. 15. 15. 10. 8 . 8 .    .   .   .   .   .   . 1 .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 24. 16. 8 . 7 . 8 . 0 . 12.    .   .   .   .   .   . 1 .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 17. 9 . 8 . 7 . 8 . 6 . 12.    .   .   .   .   .   .   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .

       The user-provided starting location in the above example is the boxed 19 in the  left-hand
       map. The path in the output shows the least-cost corridor for moving from the starting box
       to the lowest (smallest) possible point. This is the path a raindrop would  take  in  this
       landscape.

       With the -c (copy) flag, you get the following result:
       Input:                          Output:
         ELEVATION SURFACE               LEAST COST PATH
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 19. 20. 18. 19. 16. 15. 15.    .   .   .   .   .   .   .   .
       . .  ---  . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 20| 19| 17. 16. 17. 16. 16.    .   . 19. 17. 16.   .   .   .
       . .  ---  . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 18. 18. 24. 18. 15. 12. 11.    .   .   .   .   . 15.   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 22. 16. 16. 18. 10. 10. 10.    .   .   .   .   . 10.   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 17. 15. 15. 15. 10. 8 . 8 .    .   .   .   .   .   . 8 .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 24. 16. 8 . 7 . 8 . 0 .12 .    .   .   .   .   .   . 0 .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 17. 9 . 8 . 7 . 8 . 6 .12 .    .   .   .   .   .   .   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       Note that the last 0 will not be put in the null values map.

       With the -a (accumulate) flag, you get the following result:
       Input:                          Output:
         ELEVATION SURFACE               LEAST COST PATH
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 19. 20. 18. 19. 16. 15. 15.    .   .   .   .   .   .   .   .
       . .  ---  . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 20| 19| 17. 16. 17. 16. 16.    .   . 19. 36. 52.   .   .   .
       . .  ---  . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 18. 18. 24. 18. 15. 12. 11.    .   .   .   .   . 67.   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 22. 16. 16. 18. 10. 10. 10.    .   .   .   .   . 77.   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 17. 15. 15. 15. 10. 8 . 8 .    .   .   .   .   .   . 85.   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 24. 16. 8 . 7 . 8 . 0 .12 .    .   .   .   .   .   . 85.   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 17. 9 . 8 . 7 . 8 . 6 .12 .    .   .   .   .   .   .   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .

       With the -n (number) flag, you get the following result:
       Input:                          Output:
         ELEVATION SURFACE               LEAST COST PATH
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 19. 20. 18. 19. 16. 15. 15.    .   .   .   .   .   .   .   .
       . .  ---  . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 20| 19| 17. 16. 17. 16. 16.    .   . 1 . 2 . 3 .   .   .   .
       . .  ---  . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 18. 18. 24. 18. 15. 12. 11.    .   .   .   .   . 4 .   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 22. 16. 16. 18. 10. 10. 10.    .   .   .   .   . 5 .   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 17. 15. 15. 15. 10. 8 . 8 .    .   .   .   .   .   . 6 .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 24. 16. 8 . 7 . 8 . 0 .12 .    .   .   .   .   .   . 7 .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 17. 9 . 8 . 7 . 8 . 6 .12 .    .   .   .   .   .   .   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       With  the -d (direction) flag, the direction raster is used for the input, rather than the
       elevation surface. The output is then created according to one of the -can flags.
       The directions are recorded as degrees CCW from East:
              112.5     67.5         i.e. a cell with the value 135
       157.5  135   90  45   22.5    means the next cell is to the North-West
              180   x   0
       202.5  225  270  315  337.5
              247.5     292.5

KNOWN ISSUES

       Sometimes, when  the  differences  among  integer  cell  category  values  in  the  r.cost
       cumulative cost surface output are small, this cumulative cost output cannot accurately be
       used as input to  r.drain  (r.drain  will  output  bad  results).   This  problem  can  be
       circumvented by making the differences between cell category values in the cumulative cost
       output bigger. It is recommended that if the output from r.cost is to be used as input  to
       r.drain,  the  user  multiply  the r.cost input cost surface map by the value of the map’s
       cell resolution, before running  r.cost.  This  can  be  done  using  r.mapcalc.  The  map
       resolution  can  be  found using g.region.  This problem doesn’t arise with floating point
       maps.

SEE ALSO

        g.region, r.cost, r.fill.dir, r.basins.fill, r.terraflow, r.mapcalc, r.walk

AUTHORS

       Completely rewritten by Roger S. Miller, 2001
       July 2004 at WebValley 2004, error checking and vector  points  added  by  Matteo  Franchi
       (Liceo Leonardo Da Vinci, Trento) and Roberto Flor (ITC-irst, Trento, Italy)

       Last changed: $Date: 2015-05-11 02:16:13 +0200 (Mon, 11 May 2015) $

       Main index | Raster index | Topics index | Keywords index | Full index

       © 2003-2016 GRASS Development Team, GRASS GIS 7.0.3 Reference Manual