Provided by: grass-doc_7.0.3-1build1_all bug

NAME

       t.rast.aggregate   -  Aggregates  temporally  the maps of a space time raster dataset by a
       user defined granularity.

KEYWORDS

       temporal, aggregation, raster, time

SYNOPSIS

       t.rast.aggregate
       t.rast.aggregate --help
       t.rast.aggregate   [-ns]   input=name   output=name   basename=string   granularity=string
       method=string      [offset=integer]       [nprocs=integer]      [sampling=name[,name,...]]
       [where=sql_query]   [--overwrite]  [--help]  [--verbose]  [--quiet]  [--ui]

   Flags:
       -n
           Register Null maps

       -s
           Use start time - truncated according to granularity  -  as  suffix  (overrides  offset
           option)

       --overwrite
           Allow output files to overwrite existing files

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       input=name [required]
           Name of the input space time raster dataset

       output=name [required]
           Name of the output space time raster dataset

       basename=string [required]
           Basename of the new generated output maps
           Either  a  numerical suffix or the start time (s-flag) separated by an underscore will
           be attached to create a unique identifier

       granularity=string [required]
           Aggregation granularity, format absolute time "x years, x months, x weeks, x  days,  x
           hours, x minutes, x seconds" or an integer value for relative time

       method=string [required]
           Aggregate operation to be performed on the raster maps
           Options:  average,  count,  median,  mode,  minimum,  min_raster, maximum, max_raster,
           stddev, range, sum, variance, diversity,  slope,  offset,  detcoeff,  quart1,  quart3,
           perc90, quantile, skewness, kurtosis
           Default: average

       offset=integer
           Offset  that  is  used  to  create  the output map ids, output map id is generated as:
           basename_ (count + offset)
           Default: 0

       nprocs=integer
           Number of r.series processes to run in parallel
           Default: 1

       sampling=name[,name,...]
           The method to be used for sampling the input dataset
           Options: equal, overlaps, overlapped, starts,  started,  finishes,  finished,  during,
           contains
           Default: contains

       where=sql_query
           WHERE  conditions  of  SQL  statement without ’where’ keyword used in the temporal GIS
           framework
           Example: start_time > ’2001-01-01 12:30:00’

DESCRIPTION

       t.rast.aggregate temporally aggregates space time raster datasets by a  specific  temporal
       granularity.  This  module support absolute and relative time. The temporal granularity of
       absolute time can be seconds, minutes, hours, days, weeks,  months  or  years.  Mixing  of
       granularities eg. "1 year, 3 months 5 days" is not supported. In case of relative time the
       temporal unit of the input space time raster dataset is  used.  The  granularity  must  be
       specified with an integer value.

       This module is sensitive to the current region and mask settings, hence spatial extent and
       spatial resolution. In case the registered raster maps of  the  input  space  time  raster
       dataset have different spatial resolutions, the default nearest neighbor resampling method
       is used for runtime spatial aggregation.

NOTES

       The raster module r.series is used internally. Hence all aggregate methods of r.series are
       supported. See the r.series manual page for details.

       This  module  will  shift  the  start  date  for each aggregation process depending on the
       provided temporal granularity. The following shifts will performed:

           •   granularity years: will start at the first of January, hence  14-08-2012  00:01:30
               will be shifted to 01-01-2012 00:00:00

           •   granularity  months: will start at the first day of a month, hence 14-08-2012 will
               be shifted to 01-08-2012 00:00:00

           •   granularity weeks: will  start  at  the  first  day  of  a  week  (Monday),  hence
               14-08-2012 01:30:30 will be shifted to 13-08-2012 01:00:00

           •   granularity days: will start at the first hour of a day, hence 14-08-2012 00:01:30
               will be shifted to 14-08-2012 00:00:00

           •   granularity hours: will start at the first minute  of  a  hour,  hence  14-08-2012
               01:30:30 will be shifted to 14-08-2012 01:00:00

           •   granularity  minutes: will start at the first second of a minute, hence 14-08-2012
               01:30:30 will be shifted to 14-08-2012 01:30:00

       The specification of the temporal relation  between  the  aggregation  intervals  and  the
       raster map layers is always formulated from the aggregation interval viewpoint. Hence, the
       relation contains has to be specified to aggregate map layer that are  temporally  located
       in an aggregation interval.

       Parallel  processing  is  supported  in  case that more than one interval is available for
       aggregation computation. Internally several r.series modules will be started, depending on
       the  number  of  specified  parallel  processes  (nprocs)  and  the number of intervals to
       aggregate.

       The flag -s allows storing a date  as  map  name  suffix  rather  than  using  consecutive
       numbering. See the examples below for details.

EXAMPLES

   Aggregation of monthly data into yearly data
       In this example the user is going to aggregate monthly data into yearly data, running:
       t.rast.aggregate input=tempmean_monthly output=tempmean_yearly \
                        basename=tempmean_year \
                        granularity="1 years" method=average
       t.support input=tempmean_yearly \
                 title="Yearly precipitation" \
                 description="Aggregated precipitation dataset with yearly resolution"
       t.info tempmean_yearly
        +-------------------- Space Time Raster Dataset -----------------------------+
        |                                                                            |
        +-------------------- Basic information -------------------------------------+
        | Id: ........................ tempmean_yearly@climate_2000_2012
        | Name: ...................... tempmean_yearly
        | Mapset: .................... climate_2000_2012
        | Creator: ................... lucadelu
        | Temporal type: ............. absolute
        | Creation time: ............. 2014-11-27 10:25:21.243319
        | Modification time:.......... 2014-11-27 10:25:21.862136
        | Semantic type:.............. mean
        +-------------------- Absolute time -----------------------------------------+
        | Start time:................. 2009-01-01 00:00:00
        | End time:................... 2013-01-01 00:00:00
        | Granularity:................ 1 year
        | Temporal type of maps:...... interval
        +-------------------- Spatial extent ----------------------------------------+
        | North:...................... 320000.0
        | South:...................... 10000.0
        | East:.. .................... 935000.0
        | West:....................... 120000.0
        | Top:........................ 0.0
        | Bottom:..................... 0.0
        +-------------------- Metadata information ----------------------------------+
        | Raster register table:...... raster_map_register_514082e62e864522a13c8123d1949dea
        | North-South resolution min:. 500.0
        | North-South resolution max:. 500.0
        | East-west resolution min:... 500.0
        | East-west resolution max:... 500.0
        | Minimum value min:.......... 7.370747
        | Minimum value max:.......... 8.81603
        | Maximum value min:.......... 17.111387
        | Maximum value max:.......... 17.915511
        | Aggregation type:........... average
        | Number of registered maps:.. 4
        |
        | Title: Yearly precipitation
        | Monthly precipitation
        | Description: Aggregated precipitation dataset with yearly resolution
        | Dataset with monthly precipitation
        | Command history:
        | # 2014-11-27 10:25:21
        | t.rast.aggregate input="tempmean_monthly"
        |     output="tempmean_yearly" basename="tempmean_year" granularity="1 years"
        |     method="average"
        |
        | # 2014-11-27 10:26:21
        | t.support input=tempmean_yearly \
        |        title="Yearly precipitation" \
        |        description="Aggregated precipitation dataset with yearly resolution"
        +----------------------------------------------------------------------------+

   Different aggregations and map name suffix variants
       Examples of resulting naming schemes for different aggregations when using the -s flag:

   Weekly aggregation
       t.rast.aggregate input=daily_temp output=weekly_avg_temp \
         basename=weekly_avg_temp method=average granularity="1 weeks"
       t.rast.list weekly_avg_temp
       name|mapset|start_time|end_time
       weekly_avg_temp_2003_01|climate|2003-01-03 00:00:00|2003-01-10 00:00:00
       weekly_avg_temp_2003_02|climate|2003-01-10 00:00:00|2003-01-17 00:00:00
       weekly_avg_temp_2003_03|climate|2003-01-17 00:00:00|2003-01-24 00:00:00
       weekly_avg_temp_2003_04|climate|2003-01-24 00:00:00|2003-01-31 00:00:00
       weekly_avg_temp_2003_05|climate|2003-01-31 00:00:00|2003-02-07 00:00:00
       weekly_avg_temp_2003_06|climate|2003-02-07 00:00:00|2003-02-14 00:00:00
       weekly_avg_temp_2003_07|climate|2003-02-14 00:00:00|2003-02-21 00:00:00
       Variant with -s flag:
       t.rast.aggregate -s input=daily_temp output=weekly_avg_temp \
         basename=weekly_avg_temp method=average granularity="1 weeks"
       t.rast.list weekly_avg_temp
       name|mapset|start_time|end_time
       weekly_avg_temp_2003_01_03|climate|2003-01-03 00:00:00|2003-01-10 00:00:00
       weekly_avg_temp_2003_01_10|climate|2003-01-10 00:00:00|2003-01-17 00:00:00
       weekly_avg_temp_2003_01_17|climate|2003-01-17 00:00:00|2003-01-24 00:00:00
       weekly_avg_temp_2003_01_24|climate|2003-01-24 00:00:00|2003-01-31 00:00:00
       weekly_avg_temp_2003_01_31|climate|2003-01-31 00:00:00|2003-02-07 00:00:00
       weekly_avg_temp_2003_02_07|climate|2003-02-07 00:00:00|2003-02-14 00:00:00
       weekly_avg_temp_2003_02_14|climate|2003-02-14 00:00:00|2003-02-21 00:00:00

   Monthly aggregation
       t.rast.aggregate -s input=daily_temp output=monthly_avg_temp \
       basename=monthly_avg_temp method=average granularity="1 months"
       t.rast.list monthly_avg_temp
       name|mapset|start_time|end_time
       monthly_avg_temp_2003_01|climate|2003-01-01 00:00:00|2003-02-01 00:00:00
       monthly_avg_temp_2003_02|climate|2003-02-01 00:00:00|2003-03-01 00:00:00
       monthly_avg_temp_2003_03|climate|2003-03-01 00:00:00|2003-04-01 00:00:00
       monthly_avg_temp_2003_04|climate|2003-04-01 00:00:00|2003-05-01 00:00:00
       monthly_avg_temp_2003_05|climate|2003-05-01 00:00:00|2003-06-01 00:00:00
       monthly_avg_temp_2003_06|climate|2003-06-01 00:00:00|2003-07-01 00:00:00

   Yearly aggregation
       t.rast.aggregate -s input=daily_temp output=yearly_avg_temp \
         basename=yearly_avg_temp method=average granularity="1 years"
       t.rast.list yearly_avg_temp
       name|mapset|start_time|end_time
       yearly_avg_temp_2003|climate|2003-01-01 00:00:00|2004-01-01 00:00:00
       yearly_avg_temp_2004|climate|2004-01-01 00:00:00|2005-01-01 00:00:00

SEE ALSO

        t.rast.aggregate.ds, t.rast.extract, t.info, r.series, g.region, r.mask

       Temporal data processing Wiki

AUTHOR

       Sören Gebbert, Thünen Institute of Climate-Smart Agriculture

       Last changed: $Date: 2016-01-13 00:30:14 +0100 (Wed, 13 Jan 2016) $

       Main index | Temporal index | Topics index | Keywords index | Full index

       © 2003-2016 GRASS Development Team, GRASS GIS 7.0.3 Reference Manual