bionic (1) systemctl.1.gz

Provided by: systemd_237-3ubuntu10.57_amd64 bug

NAME

       systemctl - Control the systemd system and service manager

SYNOPSIS

       systemctl [OPTIONS...] COMMAND [NAME...]

DESCRIPTION

       systemctl may be used to introspect and control the state of the "systemd" system and service manager.
       Please refer to systemd(1) for an introduction into the basic concepts and functionality this tool
       manages.

OPTIONS

       The following options are understood:

       -t, --type=
           The argument should be a comma-separated list of unit types such as service and socket.

           If one of the arguments is a unit type, when listing units, limit display to certain unit types.
           Otherwise, units of all types will be shown.

           As a special case, if one of the arguments is help, a list of allowed values will be printed and the
           program will exit.

       --state=
           The argument should be a comma-separated list of unit LOAD, SUB, or ACTIVE states. When listing
           units, show only those in the specified states. Use --state=failed to show only failed units.

           As a special case, if one of the arguments is help, a list of allowed values will be printed and the
           program will exit.

       -p, --property=
           When showing unit/job/manager properties with the show command, limit display to properties specified
           in the argument. The argument should be a comma-separated list of property names, such as "MainPID".
           Unless specified, all known properties are shown. If specified more than once, all properties with
           the specified names are shown. Shell completion is implemented for property names.

           For the manager itself, systemctl show will show all available properties. Those properties are
           documented in systemd-system.conf(5).

           Properties for units vary by unit type, so showing any unit (even a non-existent one) is a way to
           list properties pertaining to this type. Similarly, showing any job will list properties pertaining
           to all jobs. Properties for units are documented in systemd.unit(5), and the pages for individual
           unit types systemd.service(5), systemd.socket(5), etc.

       -a, --all
           When listing units with list-units, also show inactive units and units which are following other
           units. When showing unit/job/manager properties, show all properties regardless whether they are set
           or not.

           To list all units installed in the file system, use the list-unit-files command instead.

           When listing units with list-dependencies, recursively show dependencies of all dependent units (by
           default only dependencies of target units are shown).

       -r, --recursive
           When listing units, also show units of local containers. Units of local containers will be prefixed
           with the container name, separated by a single colon character (":").

       --reverse
           Show reverse dependencies between units with list-dependencies, i.e. follow dependencies of type
           WantedBy=, RequiredBy=, PartOf=, BoundBy=, instead of Wants= and similar.

       --after
           With list-dependencies, show the units that are ordered before the specified unit. In other words,
           recursively list units following the After= dependency.

           Note that any After= dependency is automatically mirrored to create a Before= dependency. Temporal
           dependencies may be specified explicitly, but are also created implicitly for units which are
           WantedBy= targets (see systemd.target(5)), and as a result of other directives (for example
           RequiresMountsFor=). Both explicitly and implicitly introduced dependencies are shown with
           list-dependencies.

           When passed to the list-jobs command, for each printed job show which other jobs are waiting for it.
           May be combined with --before to show both the jobs waiting for each job as well as all jobs each job
           is waiting for.

       --before
           With list-dependencies, show the units that are ordered after the specified unit. In other words,
           recursively list units following the Before= dependency.

           When passed to the list-jobs command, for each printed job show which other jobs it is waiting for.
           May be combined with --after to show both the jobs waiting for each job as well as all jobs each job
           is waiting for.

       -l, --full
           Do not ellipsize unit names, process tree entries, journal output, or truncate unit descriptions in
           the output of status, list-units, list-jobs, and list-timers.

           Also, show installation targets in the output of is-enabled.

       --value
           When printing properties with show, only print the value, and skip the property name and "=".

       --show-types
           When showing sockets, show the type of the socket.

       --job-mode=
           When queuing a new job, this option controls how to deal with already queued jobs. It takes one of
           "fail", "replace", "replace-irreversibly", "isolate", "ignore-dependencies", "ignore-requirements" or
           "flush". Defaults to "replace", except when the isolate command is used which implies the "isolate"
           job mode.

           If "fail" is specified and a requested operation conflicts with a pending job (more specifically:
           causes an already pending start job to be reversed into a stop job or vice versa), cause the
           operation to fail.

           If "replace" (the default) is specified, any conflicting pending job will be replaced, as necessary.

           If "replace-irreversibly" is specified, operate like "replace", but also mark the new jobs as
           irreversible. This prevents future conflicting transactions from replacing these jobs (or even being
           enqueued while the irreversible jobs are still pending). Irreversible jobs can still be cancelled
           using the cancel command. This job mode should be used on any transaction which pulls in
           shutdown.target.

           "isolate" is only valid for start operations and causes all other units to be stopped when the
           specified unit is started. This mode is always used when the isolate command is used.

           "flush" will cause all queued jobs to be canceled when the new job is enqueued.

           If "ignore-dependencies" is specified, then all unit dependencies are ignored for this new job and
           the operation is executed immediately. If passed, no required units of the unit passed will be pulled
           in, and no ordering dependencies will be honored. This is mostly a debugging and rescue tool for the
           administrator and should not be used by applications.

           "ignore-requirements" is similar to "ignore-dependencies", but only causes the requirement
           dependencies to be ignored, the ordering dependencies will still be honored.

       --fail
           Shorthand for --job-mode=fail.

           When used with the kill command, if no units were killed, the operation results in an error.

       -i, --ignore-inhibitors
           When system shutdown or a sleep state is requested, ignore inhibitor locks. Applications can
           establish inhibitor locks to avoid that certain important operations (such as CD burning or suchlike)
           are interrupted by system shutdown or a sleep state. Any user may take these locks and privileged
           users may override these locks. If any locks are taken, shutdown and sleep state requests will
           normally fail (regardless of whether privileged or not) and a list of active locks is printed.
           However, if --ignore-inhibitors is specified, the locks are ignored and not printed, and the
           operation attempted anyway, possibly requiring additional privileges.

       --dry-run
           Just print what would be done. Currently supported by verbs halt, poweroff, reboot, kexec, suspend,
           hibernate, hybrid-sleep, default, rescue, emergency, and exit.

       -q, --quiet
           Suppress printing of the results of various commands and also the hints about truncated log lines.
           This does not suppress output of commands for which the printed output is the only result (like
           show). Errors are always printed.

       --no-block
           Do not synchronously wait for the requested operation to finish. If this is not specified, the job
           will be verified, enqueued and systemctl will wait until the unit's start-up is completed. By passing
           this argument, it is only verified and enqueued. This option may not be combined with --wait.

       --wait
           Synchronously wait for started units to terminate again. This option may not be combined with
           --no-block. Note that this will wait forever if any given unit never terminates (by itself or by
           getting stopped explicitly); particularly services which use "RemainAfterExit=yes".

       --user
           Talk to the service manager of the calling user, rather than the service manager of the system.

       --system
           Talk to the service manager of the system. This is the implied default.

       --failed
           List units in failed state. This is equivalent to --state=failed.

       --no-wall
           Do not send wall message before halt, power-off and reboot.

       --global
           When used with enable and disable, operate on the global user configuration directory, thus enabling
           or disabling a unit file globally for all future logins of all users.

       --no-reload
           When used with enable and disable, do not implicitly reload daemon configuration after executing the
           changes.

       --no-ask-password
           When used with start and related commands, disables asking for passwords. Background services may
           require input of a password or passphrase string, for example to unlock system hard disks or
           cryptographic certificates. Unless this option is specified and the command is invoked from a
           terminal, systemctl will query the user on the terminal for the necessary secrets. Use this option to
           switch this behavior off. In this case, the password must be supplied by some other means (for
           example graphical password agents) or the service might fail. This also disables querying the user
           for authentication for privileged operations.

       --kill-who=
           When used with kill, choose which processes to send a signal to. Must be one of main, control or all
           to select whether to kill only the main process, the control process or all processes of the unit.
           The main process of the unit is the one that defines the life-time of it. A control process of a unit
           is one that is invoked by the manager to induce state changes of it. For example, all processes
           started due to the ExecStartPre=, ExecStop= or ExecReload= settings of service units are control
           processes. Note that there is only one control process per unit at a time, as only one state change
           is executed at a time. For services of type Type=forking, the initial process started by the manager
           for ExecStart= is a control process, while the process ultimately forked off by that one is then
           considered the main process of the unit (if it can be determined). This is different for service
           units of other types, where the process forked off by the manager for ExecStart= is always the main
           process itself. A service unit consists of zero or one main process, zero or one control process plus
           any number of additional processes. Not all unit types manage processes of these types however. For
           example, for mount units, control processes are defined (which are the invocations of /bin/mount and
           /bin/umount), but no main process is defined. If omitted, defaults to all.

       -s, --signal=
           When used with kill, choose which signal to send to selected processes. Must be one of the well-known
           signal specifiers such as SIGTERM, SIGINT or SIGSTOP. If omitted, defaults to SIGTERM.

       -f, --force
           When used with enable, overwrite any existing conflicting symlinks.

           When used with edit, create all of the specified units which do not already exist.

           When used with halt, poweroff, reboot or kexec, execute the selected operation without shutting down
           all units. However, all processes will be killed forcibly and all file systems are unmounted or
           remounted read-only. This is hence a drastic but relatively safe option to request an immediate
           reboot. If --force is specified twice for these operations (with the exception of kexec), they will
           be executed immediately, without terminating any processes or unmounting any file systems. Warning:
           specifying --force twice with any of these operations might result in data loss. Note that when
           --force is specified twice the selected operation is executed by systemctl itself, and the system
           manager is not contacted. This means the command should succeed even when the system manager has
           crashed.

       --message=
           When used with halt, poweroff or reboot, set a short message explaining the reason for the operation.
           The message will be logged together with the default shutdown message.

       --now
           When used with enable, the units will also be started. When used with disable or mask, the units will
           also be stopped. The start or stop operation is only carried out when the respective enable or
           disable operation has been successful.

       --root=
           When used with enable/disable/is-enabled (and related commands), use the specified root path when
           looking for unit files. If this option is present, systemctl will operate on the file system
           directly, instead of communicating with the systemd daemon to carry out changes.

       --runtime
           When used with enable, disable, edit, (and related commands), make changes only temporarily, so that
           they are lost on the next reboot. This will have the effect that changes are not made in
           subdirectories of /etc but in /run, with identical immediate effects, however, since the latter is
           lost on reboot, the changes are lost too.

           Similarly, when used with set-property, make changes only temporarily, so that they are lost on the
           next reboot.

       --preset-mode=
           Takes one of "full" (the default), "enable-only", "disable-only". When used with the preset or
           preset-all commands, controls whether units shall be disabled and enabled according to the preset
           rules, or only enabled, or only disabled.

       -n, --lines=
           When used with status, controls the number of journal lines to show, counting from the most recent
           ones. Takes a positive integer argument. Defaults to 10.

       -o, --output=
           When used with status, controls the formatting of the journal entries that are shown. For the
           available choices, see journalctl(1). Defaults to "short".

       --firmware-setup
           When used with the reboot command, indicate to the system's firmware to boot into setup mode. Note
           that this is currently only supported on some EFI systems and only if the system was booted in EFI
           mode.

       --plain
           When used with list-dependencies, list-units or list-machines, the output is printed as a list
           instead of a tree, and the bullet circles are omitted.

       -H, --host=
           Execute the operation remotely. Specify a hostname, or a username and hostname separated by "@", to
           connect to. The hostname may optionally be suffixed by a container name, separated by ":", which
           connects directly to a specific container on the specified host. This will use SSH to talk to the
           remote machine manager instance. Container names may be enumerated with machinectl -H HOST.

       -M, --machine=
           Execute operation on a local container. Specify a container name to connect to.

       --no-pager
           Do not pipe output into a pager.

       --no-legend
           Do not print the legend, i.e. column headers and the footer with hints.

       -h, --help
           Print a short help text and exit.

       --version
           Print a short version string and exit.

COMMANDS

       The following commands are understood:

   Unit Commands
       list-units [PATTERN...]
           List units that systemd currently has in memory. This includes units that are either referenced
           directly or through a dependency, units that are pinned by applications programmatically, or units
           that were active in the past and have failed. By default only units which are active, have pending
           jobs, or have failed are shown; this can be changed with option --all. If one or more PATTERNs are
           specified, only units matching one of them are shown. The units that are shown are additionally
           filtered by --type= and --state= if those options are specified.

           This is the default command.

       list-sockets [PATTERN...]
           List socket units currently in memory, ordered by listening address. If one or more PATTERNs are
           specified, only socket units matching one of them are shown. Produces output similar to

               LISTEN           UNIT                        ACTIVATES
               /dev/initctl     systemd-initctl.socket      systemd-initctl.service
               ...
               [::]:22          sshd.socket                 sshd.service
               kobject-uevent 1 systemd-udevd-kernel.socket systemd-udevd.service

               5 sockets listed.

           Note: because the addresses might contains spaces, this output is not suitable for programmatic
           consumption.

           Also see --show-types, --all, and --state=.

       list-timers [PATTERN...]
           List timer units currently in memory, ordered by the time they elapse next. If one or more PATTERNs
           are specified, only units matching one of them are shown. Produces output similar to

               NEXT                         LEFT          LAST                         PASSED     UNIT                         ACTIVATES
               n/a                          n/a           Thu 2017-02-23 13:40:29 EST  3 days ago ureadahead-stop.timer        ureadahead-stop.service
               Sun 2017-02-26 18:55:42 EST  1min 14s left Thu 2017-02-23 13:54:44 EST  3 days ago systemd-tmpfiles-clean.timer systemd-tmpfiles-clean.service
               Sun 2017-02-26 20:37:16 EST  1h 42min left Sun 2017-02-26 11:56:36 EST  6h ago     apt-daily.timer              apt-daily.service
               Sun 2017-02-26 20:57:49 EST  2h 3min left  Sun 2017-02-26 11:56:36 EST  6h ago     snapd.refresh.timer          snapd.refresh.service

           NEXT shows the next time the timer will run.

           LEFT shows how long till the next time the timer runs.

           LAST shows the last time the timer ran.

           PASSED shows has long as passed since the timer laset ran.

           UNIT shows the name of the timer

           ACTIVATES shows the name the service the timer activates when it runs.

           Also see --all and --state=.

       start PATTERN...
           Start (activate) one or more units specified on the command line.

           Note that glob patterns operate on the set of primary names of units currently in memory. Units which
           are not active and are not in a failed state usually are not in memory, and will not be matched by
           any pattern. In addition, in case of instantiated units, systemd is often unaware of the instance
           name until the instance has been started. Therefore, using glob patterns with start has limited
           usefulness. Also, secondary alias names of units are not considered.

       stop PATTERN...
           Stop (deactivate) one or more units specified on the command line.

       reload PATTERN...
           Asks all units listed on the command line to reload their configuration. Note that this will reload
           the service-specific configuration, not the unit configuration file of systemd. If you want systemd
           to reload the configuration file of a unit, use the daemon-reload command. In other words: for the
           example case of Apache, this will reload Apache's httpd.conf in the web server, not the
           apache.service systemd unit file.

           This command should not be confused with the daemon-reload command.

       restart PATTERN...
           Stop and then start one or more units specified on the command line. If the units are not running
           yet, they will be started.

           Note that restarting a unit with this command does not necessarily flush out all of the unit's
           resources before it is started again. For example, the per-service file descriptor storage facility
           (see FileDescriptoreStoreMax= in systemd.service(5)) will remain intact as long as the unit has a job
           pending, and is only cleared when the unit is fully stopped and no jobs are pending anymore. If it is
           intended that the file descriptor store is flushed out, too, during a restart operation an explicit
           systemctl stop command followed by systemctl start should be issued.

       try-restart PATTERN...
           Stop and then start one or more units specified on the command line if the units are running. This
           does nothing if units are not running.

       reload-or-restart PATTERN...
           Reload one or more units if they support it. If not, stop and then start them instead. If the units
           are not running yet, they will be started.

       try-reload-or-restart PATTERN...
           Reload one or more units if they support it. If not, stop and then start them instead. This does
           nothing if the units are not running.

       isolate NAME
           Start the unit specified on the command line and its dependencies and stop all others, unless they
           have IgnoreOnIsolate=yes (see systemd.unit(5)). If a unit name with no extension is given, an
           extension of ".target" will be assumed.

           This is similar to changing the runlevel in a traditional init system. The isolate command will
           immediately stop processes that are not enabled in the new unit, possibly including the graphical
           environment or terminal you are currently using.

           Note that this is allowed only on units where AllowIsolate= is enabled. See systemd.unit(5) for
           details.

       kill PATTERN...
           Send a signal to one or more processes of the unit. Use --kill-who= to select which process to kill.
           Use --signal= to select the signal to send.

       is-active PATTERN...
           Check whether any of the specified units are active (i.e. running). Returns an exit code 0 if at
           least one is active, or non-zero otherwise. Unless --quiet is specified, this will also print the
           current unit state to standard output.

       is-failed PATTERN...
           Check whether any of the specified units are in a "failed" state. Returns an exit code 0 if at least
           one has failed, non-zero otherwise. Unless --quiet is specified, this will also print the current
           unit state to standard output.

       status [PATTERN...|PID...]]
           Show terse runtime status information about one or more units, followed by most recent log data from
           the journal. If no units are specified, show system status. If combined with --all, also show the
           status of all units (subject to limitations specified with -t). If a PID is passed, show information
           about the unit the process belongs to.

           This function is intended to generate human-readable output. If you are looking for computer-parsable
           output, use show instead. By default, this function only shows 10 lines of output and ellipsizes
           lines to fit in the terminal window. This can be changed with --lines and --full, see above. In
           addition, journalctl --unit=NAME or journalctl --user-unit=NAME use a similar filter for messages and
           might be more convenient.

           systemd implicitly loads units as necessary, so just running the status will attempt to load a file.
           The command is thus not useful for determining if something was already loaded or not. The units may
           possibly also be quickly unloaded after the operation is completed if there's no reason to keep it in
           memory thereafter.

           Example 1. Example output from systemctl status

               $ systemctl status bluetooth
               ● bluetooth.service - Bluetooth service
                  Loaded: loaded (/lib/systemd/system/bluetooth.service; enabled; vendor preset: enabled)
                  Active: active (running) since Wed 2017-01-04 13:54:04 EST; 1 weeks 0 days ago
                    Docs: man:bluetoothd(8)
                Main PID: 930 (bluetoothd)
                  Status: "Running"
                   Tasks: 1
                  Memory: 648.0K
                     CPU: 435ms
                  CGroup: /system.slice/bluetooth.service
                          └─930 /usr/lib/bluetooth/bluetoothd

               Jan 12 10:46:45 example.com bluetoothd[8900]: Not enough free handles to register service
               Jan 12 10:46:45 example.com bluetoothd[8900]: Current Time Service could not be registered
               Jan 12 10:46:45 example.com bluetoothd[8900]: gatt-time-server: Input/output error (5)

           The dot ("●") uses color on supported terminals to summarize the unit state at a glance. White
           indicates an "inactive" or "deactivating" state. Red indicates a "failed" or "error" state and green
           indicates an "active", "reloading" or "activating" state.

           The "Loaded:" line in the output will show "loaded" if the unit has been loaded into memory. Other
           possible values for "Loaded:" include: "error" if there was a problem loading it, "not-found", and
           "masked". Along with showing the path to the unit file, this line will also show the enablement
           state. Enabled commands start at boot. See the full table of possible enablement states — including
           the definition of "masked" — in the documentation for the is-enabled command.

           The "Active:" line shows active state. The value is usually "active" or "inactive". Active could mean
           started, bound, plugged in, etc depending on the unit type. The unit could also be in process of
           changing states, reporting a state of "activating" or "deactivating". A special "failed" state is
           entered when the service failed in some way, such as a crash, exiting with an error code or timing
           out. If the failed state is entered the cause will be logged for later reference.

       show [PATTERN...|JOB...]
           Show properties of one or more units, jobs, or the manager itself. If no argument is specified,
           properties of the manager will be shown. If a unit name is specified, properties of the unit are
           shown, and if a job ID is specified, properties of the job are shown. By default, empty properties
           are suppressed. Use --all to show those too. To select specific properties to show, use --property=.
           This command is intended to be used whenever computer-parsable output is required. Use status if you
           are looking for formatted human-readable output.

           Many properties shown by systemctl show map directly to configuration settings of the system and
           service manager and its unit files. Note that the properties shown by the command are generally more
           low-level, normalized versions of the original configuration settings and expose runtime state in
           addition to configuration. For example, properties shown for service units include the service's
           current main process identifier as "MainPID" (which is runtime state), and time settings are always
           exposed as properties ending in the "...USec" suffix even if a matching configuration options end in
           "...Sec", because microseconds is the normalized time unit used by the system and service manager.

       cat PATTERN...
           Show backing files of one or more units. Prints the "fragment" and "drop-ins" (source files) of
           units. Each file is preceded by a comment which includes the file name. Note that this shows the
           contents of the backing files on disk, which may not match the system manager's understanding of
           these units if any unit files were updated on disk and the daemon-reload command wasn't issued since.

       set-property NAME ASSIGNMENT...
           Set the specified unit properties at runtime where this is supported. This allows changing
           configuration parameter properties such as resource control settings at runtime. Not all properties
           may be changed at runtime, but many resource control settings (primarily those in systemd.resource-
           control(5)) may. The changes are applied instantly, and stored on disk for future boots, unless
           --runtime is passed, in which case the settings only apply until the next reboot. The syntax of the
           property assignment follows closely the syntax of assignments in unit files.

           Example: systemctl set-property foobar.service CPUShares=777

           If the specified unit appears to be inactive, the changes will be only stored on disk as described
           previously hence they will be effective when the unit will be started.

           Note that this command allows changing multiple properties at the same time, which is preferable over
           setting them individually. Like unit file configuration settings, assigning the empty list to list
           parameters will reset the list.

       help PATTERN...|PID...
           Show manual pages for one or more units, if available. If a PID is given, the manual pages for the
           unit the process belongs to are shown.

       reset-failed [PATTERN...]
           Reset the "failed" state of the specified units, or if no unit name is passed, reset the state of all
           units. When a unit fails in some way (i.e. process exiting with non-zero error code, terminating
           abnormally or timing out), it will automatically enter the "failed" state and its exit code and
           status is recorded for introspection by the administrator until the service is stopped/re-started or
           reset with this command.

       list-dependencies [NAME]
           Shows units required and wanted by the specified unit. This recursively lists units following the
           Requires=, Requisite=, ConsistsOf=, Wants=, BindsTo= dependencies. If no unit is specified,
           default.target is implied.

           By default, only target units are recursively expanded. When --all is passed, all other units are
           recursively expanded as well.

           Options --reverse, --after, --before may be used to change what types of dependencies are shown.

   Unit File Commands
       list-unit-files [PATTERN...]
           List unit files installed on the system, in combination with their enablement state (as reported by
           is-enabled). If one or more PATTERNs are specified, only unit files whose name matches one of them
           are shown (patterns matching unit file system paths are not supported).

       enable NAME..., enable PATH...
           Enable one or more units or unit instances. This will create a set of symlinks, as encoded in the
           "[Install]" sections of the indicated unit files. After the symlinks have been created, the system
           manager configuration is reloaded (in a way equivalent to daemon-reload), in order to ensure the
           changes are taken into account immediately. Note that this does not have the effect of also starting
           any of the units being enabled. If this is desired, combine this command with the --now switch, or
           invoke start with appropriate arguments later. Note that in case of unit instance enablement (i.e.
           enablement of units of the form foo@bar.service), symlinks named the same as instances are created in
           the unit configuration directory, however they point to the single template unit file they are
           instantiated from.

           This command expects either valid unit names (in which case various unit file directories are
           automatically searched for unit files with appropriate names), or absolute paths to unit files (in
           which case these files are read directly). If a specified unit file is located outside of the usual
           unit file directories, an additional symlink is created, linking it into the unit configuration path,
           thus ensuring it is found when requested by commands such as start.

           This command will print the file system operations executed. This output may be suppressed by passing
           --quiet.

           Note that this operation creates only the symlinks suggested in the "[Install]" section of the unit
           files. While this command is the recommended way to manipulate the unit configuration directory, the
           administrator is free to make additional changes manually by placing or removing symlinks below this
           directory. This is particularly useful to create configurations that deviate from the suggested
           default installation. In this case, the administrator must make sure to invoke daemon-reload manually
           as necessary, in order to ensure the changes are taken into account.

           Enabling units should not be confused with starting (activating) units, as done by the start command.
           Enabling and starting units is orthogonal: units may be enabled without being started and started
           without being enabled. Enabling simply hooks the unit into various suggested places (for example, so
           that the unit is automatically started on boot or when a particular kind of hardware is plugged in).
           Starting actually spawns the daemon process (in case of service units), or binds the socket (in case
           of socket units), and so on.

           Depending on whether --system, --user, --runtime, or --global is specified, this enables the unit for
           the system, for the calling user only, for only this boot of the system, or for all future logins of
           all users. Note that in the last case, no systemd daemon configuration is reloaded.

           Using enable on masked units is not supported and results in an error.

       disable NAME...
           Disables one or more units. This removes all symlinks to the unit files backing the specified units
           from the unit configuration directory, and hence undoes any changes made by enable or link. Note that
           this removes all symlinks to matching unit files, including manually created symlinks, and not just
           those actually created by enable or link. Note that while disable undoes the effect of enable, the
           two commands are otherwise not symmetric, as disable may remove more symlinks than a prior enable
           invocation of the same unit created.

           This command expects valid unit names only, it does not accept paths to unit files.

           In addition to the units specified as arguments, all units are disabled that are listed in the Also=
           setting contained in the "[Install]" section of any of the unit files being operated on.

           This command implicitly reloads the system manager configuration after completing the operation. Note
           that this command does not implicitly stop the units that are being disabled. If this is desired,
           either combine this command with the --now switch, or invoke the stop command with appropriate
           arguments later.

           This command will print information about the file system operations (symlink removals) executed.
           This output may be suppressed by passing --quiet.

           This command honors --system, --user, --runtime and --global in a similar way as enable.

       reenable NAME...
           Reenable one or more units, as specified on the command line. This is a combination of disable and
           enable and is useful to reset the symlinks a unit file is enabled with to the defaults configured in
           its "[Install]" section. This command expects a unit name only, it does not accept paths to unit
           files.

       preset NAME...
           Reset the enable/disable status one or more unit files, as specified on the command line, to the
           defaults configured in the preset policy files. This has the same effect as disable or enable,
           depending how the unit is listed in the preset files.

           Use --preset-mode= to control whether units shall be enabled and disabled, or only enabled, or only
           disabled.

           If the unit carries no install information, it will be silently ignored by this command.  NAME must
           be the real unit name, any alias names are ignored silently.

           For more information on the preset policy format, see systemd.preset(5). For more information on the
           concept of presets, please consult the Preset[1] document.

       preset-all
           Resets all installed unit files to the defaults configured in the preset policy file (see above).

           Use --preset-mode= to control whether units shall be enabled and disabled, or only enabled, or only
           disabled.

       is-enabled NAME...
           Checks whether any of the specified unit files are enabled (as with enable). Returns an exit code of
           0 if at least one is enabled, non-zero otherwise. Prints the current enable status (see table). To
           suppress this output, use --quiet. To show installation targets, use --full.

           Table 1.  is-enabled output
           ┌──────────────────┬──────────────────────────────┬───────────┐
           │NameDescriptionExit Code │
           ├──────────────────┼──────────────────────────────┼───────────┤
           │"enabled"         │ Enabled via .wants/,         │           │
           ├──────────────────┤ .requires/ or Alias=         │           │
           │"enabled-runtime" │ symlinks (permanently in     │ 0         │
           │                  │ /etc/systemd/system/, or     │           │
           │                  │ transiently in               │           │
           │                  │ /run/systemd/system/).       │           │
           ├──────────────────┼──────────────────────────────┼───────────┤
           │"linked"          │ Made available through one   │           │
           ├──────────────────┤ or more symlinks to the unit │           │
           │"linked-runtime"  │ file (permanently in         │           │
           │                  │ /etc/systemd/system/ or      │           │
           │                  │ transiently in               │ > 0       │
           │                  │ /run/systemd/system/), even  │           │
           │                  │ though the unit file might   │           │
           │                  │ reside outside of the unit   │           │
           │                  │ file search path.            │           │
           ├──────────────────┼──────────────────────────────┼───────────┤
           │"masked"          │ Completely disabled, so that │           │
           ├──────────────────┤ any start operation on it    │           │
           │"masked-runtime"  │ fails (permanently in        │ > 0       │
           │                  │ /etc/systemd/system/ or      │           │
           │                  │ transiently in               │           │
           │                  │ /run/systemd/systemd/).      │           │
           ├──────────────────┼──────────────────────────────┼───────────┤
           │"static"          │ The unit file is not         │ 0         │
           │                  │ enabled, and has no          │           │
           │                  │ provisions for enabling in   │           │
           │                  │ the "[Install]" unit file    │           │
           │                  │ section.                     │           │
           ├──────────────────┼──────────────────────────────┼───────────┤
           │"indirect"        │ The unit file itself is not  │ 0         │
           │                  │ enabled, but it has a        │           │
           │                  │ non-empty Also= setting in   │           │
           │                  │ the "[Install]" unit file    │           │
           │                  │ section, listing other unit  │           │
           │                  │ files that might be enabled, │           │
           │                  │ or it has an alias under a   │           │
           │                  │ different name through a     │           │
           │                  │ symlink that is not          │           │
           │                  │ specified in Also=. For      │           │
           │                  │ template unit file, an       │           │
           │                  │ instance different than the  │           │
           │                  │ one specified in             │           │
           │                  │ DefaultInstance= is enabled. │           │
           ├──────────────────┼──────────────────────────────┼───────────┤
           │"disabled"        │ The unit file is not         │ > 0       │
           │                  │ enabled, but contains an     │           │
           │                  │ "[Install]" section with     │           │
           │                  │ installation instructions.   │           │
           ├──────────────────┼──────────────────────────────┼───────────┤
           │"generated"       │ The unit file was generated  │ 0         │
           │                  │ dynamically via a generator  │           │
           │                  │ tool. See                    │           │
           │                  │ systemd.generator(7).        │           │
           │                  │ Generated unit files may not │           │
           │                  │ be enabled, they are enabled │           │
           │                  │ implicitly by their          │           │
           │                  │ generator.                   │           │
           ├──────────────────┼──────────────────────────────┼───────────┤
           │"transient"       │ The unit file has been       │ 0         │
           │                  │ created dynamically with the │           │
           │                  │ runtime API. Transient units │           │
           │                  │ may not be enabled.          │           │
           ├──────────────────┼──────────────────────────────┼───────────┤
           │"bad"             │ The unit file is invalid or  │ > 0       │
           │                  │ another error occurred. Note │           │
           │                  │ that is-enabled will not     │           │
           │                  │ actually return this state,  │           │
           │                  │ but print an error message   │           │
           │                  │ instead. However the unit    │           │
           │                  │ file listing printed by      │           │
           │                  │ list-unit-files might show   │           │
           │                  │ it.                          │           │
           └──────────────────┴──────────────────────────────┴───────────┘

       mask NAME...
           Mask one or more units, as specified on the command line. This will link these unit files to
           /dev/null, making it impossible to start them. This is a stronger version of disable, since it
           prohibits all kinds of activation of the unit, including enablement and manual activation. Use this
           option with care. This honors the --runtime option to only mask temporarily until the next reboot of
           the system. The --now option may be used to ensure that the units are also stopped. This command
           expects valid unit names only, it does not accept unit file paths.

       unmask NAME...
           Unmask one or more unit files, as specified on the command line. This will undo the effect of mask.
           This command expects valid unit names only, it does not accept unit file paths.

       link PATH...
           Link a unit file that is not in the unit file search paths into the unit file search path. This
           command expects an absolute path to a unit file. The effect of this may be undone with disable. The
           effect of this command is that a unit file is made available for commands such as start, even though
           it is not installed directly in the unit search path.

       revert NAME...
           Revert one or more unit files to their vendor versions. This command removes drop-in configuration
           files that modify the specified units, as well as any user-configured unit file that overrides a
           matching vendor supplied unit file. Specifically, for a unit "foo.service" the matching directories
           "foo.service.d/" with all their contained files are removed, both below the persistent and runtime
           configuration directories (i.e. below /etc/systemd/system and /run/systemd/system); if the unit file
           has a vendor-supplied version (i.e. a unit file located below /usr) any matching persistent or
           runtime unit file that overrides it is removed, too. Note that if a unit file has no vendor-supplied
           version (i.e. is only defined below /etc/systemd/system or /run/systemd/system, but not in a unit
           file stored below /usr), then it is not removed. Also, if a unit is masked, it is unmasked.

           Effectively, this command may be used to undo all changes made with systemctl edit, systemctl
           set-property and systemctl mask and puts the original unit file with its settings back in effect.

       add-wants TARGET NAME..., add-requires TARGET NAME...
           Adds "Wants=" or "Requires=" dependencies, respectively, to the specified TARGET for one or more
           units.

           This command honors --system, --user, --runtime and --global in a way similar to enable.

       edit NAME...
           Edit a drop-in snippet or a whole replacement file if --full is specified, to extend or override the
           specified unit.

           Depending on whether --system (the default), --user, or --global is specified, this command creates a
           drop-in file for each unit either for the system, for the calling user, or for all futures logins of
           all users. Then, the editor (see the "Environment" section below) is invoked on temporary files which
           will be written to the real location if the editor exits successfully.

           If --full is specified, this will copy the original units instead of creating drop-in files.

           If --force is specified and any units do not already exist, new unit files will be opened for
           editing.

           If --runtime is specified, the changes will be made temporarily in /run and they will be lost on the
           next reboot.

           If the temporary file is empty upon exit, the modification of the related unit is canceled.

           After the units have been edited, systemd configuration is reloaded (in a way that is equivalent to
           daemon-reload).

           Note that this command cannot be used to remotely edit units and that you cannot temporarily edit
           units which are in /etc, since they take precedence over /run.

       get-default
           Return the default target to boot into. This returns the target unit name default.target is aliased
           (symlinked) to.

       set-default NAME
           Set the default target to boot into. This sets (symlinks) the default.target alias to the given
           target unit.

   Machine Commands
       list-machines [PATTERN...]
           List the host and all running local containers with their state. If one or more PATTERNs are
           specified, only containers matching one of them are shown.

   Job Commands
       list-jobs [PATTERN...]
           List jobs that are in progress. If one or more PATTERNs are specified, only jobs for units matching
           one of them are shown.

           When combined with --after or --before the list is augmented with information on which other job each
           job is waiting for, and which other jobs are waiting for it, see above.

       cancel JOB...
           Cancel one or more jobs specified on the command line by their numeric job IDs. If no job ID is
           specified, cancel all pending jobs.

   Environment Commands
       show-environment
           Dump the systemd manager environment block. This is the environment block that is passed to all
           processes the manager spawns. The environment block will be dumped in straight-forward form suitable
           for sourcing into most shells. If no special characters or whitespace is present in the variable
           values, no escaping is performed, and the assignments have the form "VARIABLE=value". If whitespace
           or characters which have special meaning to the shell are present, dollar-single-quote escaping is
           used, and assignments have the form "VARIABLE=$'value'". This syntax is known to be supported by
           bash(1), zsh(1), ksh(1), and busybox(1)'s ash(1), but not dash(1) or fish(1).

       set-environment VARIABLE=VALUE...
           Set one or more systemd manager environment variables, as specified on the command line.

       unset-environment VARIABLE...
           Unset one or more systemd manager environment variables. If only a variable name is specified, it
           will be removed regardless of its value. If a variable and a value are specified, the variable is
           only removed if it has the specified value.

       import-environment [VARIABLE...]
           Import all, one or more environment variables set on the client into the systemd manager environment
           block. If no arguments are passed, the entire environment block is imported. Otherwise, a list of one
           or more environment variable names should be passed, whose client-side values are then imported into
           the manager's environment block.

   Manager Lifecycle Commands
       daemon-reload
           Reload the systemd manager configuration. This will rerun all generators (see systemd.generator(7)),
           reload all unit files, and recreate the entire dependency tree. While the daemon is being reloaded,
           all sockets systemd listens on behalf of user configuration will stay accessible.

           This command should not be confused with the reload command.

       daemon-reexec
           Reexecute the systemd manager. This will serialize the manager state, reexecute the process and
           deserialize the state again. This command is of little use except for debugging and package upgrades.
           Sometimes, it might be helpful as a heavy-weight daemon-reload. While the daemon is being reexecuted,
           all sockets systemd listening on behalf of user configuration will stay accessible.

   System Commands
       is-system-running
           Checks whether the system is operational. This returns success (exit code 0) when the system is fully
           up and running, specifically not in startup, shutdown or maintenance mode, and with no failed
           services. Failure is returned otherwise (exit code non-zero). In addition, the current state is
           printed in a short string to standard output, see the table below. Use --quiet to suppress this
           output.

           Table 2. is-system-running output
           ┌─────────────┬──────────────────────────────┬───────────┐
           │NameDescriptionExit Code │
           ├─────────────┼──────────────────────────────┼───────────┤
           │initializing │ Early bootup, before         │ > 0       │
           │             │ basic.target is reached or   │           │
           │             │ the maintenance state        │           │
           │             │ entered.                     │           │
           ├─────────────┼──────────────────────────────┼───────────┤
           │starting     │ Late bootup, before the job  │ > 0       │
           │             │ queue becomes idle for the   │           │
           │             │ first time, or one of the    │           │
           │             │ rescue targets are reached.  │           │
           ├─────────────┼──────────────────────────────┼───────────┤
           │running      │ The system is fully          │ 0         │
           │             │ operational.                 │           │
           ├─────────────┼──────────────────────────────┼───────────┤
           │degraded     │ The system is operational    │ > 0       │
           │             │ but one or more units        │           │
           │             │ failed.                      │           │
           ├─────────────┼──────────────────────────────┼───────────┤
           │maintenance  │ The rescue or emergency      │ > 0       │
           │             │ target is active.            │           │
           ├─────────────┼──────────────────────────────┼───────────┤
           │stopping     │ The manager is shutting      │ > 0       │
           │             │ down.                        │           │
           ├─────────────┼──────────────────────────────┼───────────┤
           │offline      │ The manager is not running.  │ > 0       │
           │             │ Specifically, this is the    │           │
           │             │ operational state if an      │           │
           │             │ incompatible program is      │           │
           │             │ running as system manager    │           │
           │             │ (PID 1).                     │           │
           ├─────────────┼──────────────────────────────┼───────────┤
           │unknown      │ The operational state could  │ > 0       │
           │             │ not be determined, due to    │           │
           │             │ lack of resources or another │           │
           │             │ error cause.                 │           │
           └─────────────┴──────────────────────────────┴───────────┘

       default
           Enter default mode. This is equivalent to systemctl isolate default.target. This operation is
           blocking by default, use --no-block to request asynchronous behavior.

       rescue
           Enter rescue mode. This is equivalent to systemctl isolate rescue.target. This operation is blocking
           by default, use --no-block to request asynchronous behavior.

       emergency
           Enter emergency mode. This is equivalent to systemctl isolate emergency.target. This operation is
           blocking by default, use --no-block to request asynchronous behavior.

       halt
           Shut down and halt the system. This is mostly equivalent to systemctl start halt.target
           --job-mode=replace-irreversibly --no-block, but also prints a wall message to all users. This command
           is asynchronous; it will return after the halt operation is enqueued, without waiting for it to
           complete. Note that this operation will simply halt the OS kernel after shutting down, leaving the
           hardware powered on. Use systemctl poweroff for powering off the system (see below).

           If combined with --force, shutdown of all running services is skipped, however all processes are
           killed and all file systems are unmounted or mounted read-only, immediately followed by the system
           halt. If --force is specified twice, the operation is immediately executed without terminating any
           processes or unmounting any file systems. This may result in data loss. Note that when --force is
           specified twice the halt operation is executed by systemctl itself, and the system manager is not
           contacted. This means the command should succeed even when the system manager has crashed.

       poweroff
           Shut down and power-off the system. This is mostly equivalent to systemctl start poweroff.target
           --job-mode=replace-irreversibly --no-block, but also prints a wall message to all users. This command
           is asynchronous; it will return after the power-off operation is enqueued, without waiting for it to
           complete.

           If combined with --force, shutdown of all running services is skipped, however all processes are
           killed and all file systems are unmounted or mounted read-only, immediately followed by the powering
           off. If --force is specified twice, the operation is immediately executed without terminating any
           processes or unmounting any file systems. This may result in data loss. Note that when --force is
           specified twice the power-off operation is executed by systemctl itself, and the system manager is
           not contacted. This means the command should succeed even when the system manager has crashed.

       reboot [arg]
           Shut down and reboot the system. This is mostly equivalent to systemctl start reboot.target
           --job-mode=replace-irreversibly --no-block, but also prints a wall message to all users. This command
           is asynchronous; it will return after the reboot operation is enqueued, without waiting for it to
           complete.

           If combined with --force, shutdown of all running services is skipped, however all processes are
           killed and all file systems are unmounted or mounted read-only, immediately followed by the reboot.
           If --force is specified twice, the operation is immediately executed without terminating any
           processes or unmounting any file systems. This may result in data loss. Note that when --force is
           specified twice the reboot operation is executed by systemctl itself, and the system manager is not
           contacted. This means the command should succeed even when the system manager has crashed.

           If the optional argument arg is given, it will be passed as the optional argument to the reboot(2)
           system call. The value is architecture and firmware specific. As an example, "recovery" might be used
           to trigger system recovery, and "fota" might be used to trigger a “firmware over the air” update.

       kexec
           Shut down and reboot the system via kexec. This is equivalent to systemctl start kexec.target
           --job-mode=replace-irreversibly --no-block. This command is asynchronous; it will return after the
           reboot operation is enqueued, without waiting for it to complete.

           If combined with --force, shutdown of all running services is skipped, however all processes are
           killed and all file systems are unmounted or mounted read-only, immediately followed by the reboot.

       exit [EXIT_CODE]
           Ask the service manager to quit. This is only supported for user service managers (i.e. in
           conjunction with the --user option) or in containers and is equivalent to poweroff otherwise. This
           command is asynchronous; it will return after the exit operation is enqueued, without waiting for it
           to complete.

           The service manager will exit with the specified exit code, if EXIT_CODE is passed.

       switch-root ROOT [INIT]
           Switches to a different root directory and executes a new system manager process below it. This is
           intended for usage in initial RAM disks ("initrd"), and will transition from the initrd's system
           manager process (a.k.a. "init" process) to the main system manager process which is loaded from the
           actual host volume. This call takes two arguments: the directory that is to become the new root
           directory, and the path to the new system manager binary below it to execute as PID 1. If the latter
           is omitted or the empty string, a systemd binary will automatically be searched for and used as init.
           If the system manager path is omitted, equal to the empty string or identical to the path to the
           systemd binary, the state of the initrd's system manager process is passed to the main system
           manager, which allows later introspection of the state of the services involved in the initrd boot
           phase.

       suspend
           Suspend the system. This will trigger activation of the special target unit suspend.target. This
           command is asynchronous, and will return after the suspend operation is successfully enqueued. It
           will not wait for the suspend/resume cycle to complete.

       hibernate
           Hibernate the system. This will trigger activation of the special target unit hibernate.target. This
           command is asynchronous, and will return after the hibernation operation is successfully enqueued. It
           will not wait for the hibernate/thaw cycle to complete.

       hybrid-sleep
           Hibernate and suspend the system. This will trigger activation of the special target unit
           hybrid-sleep.target. This command is asynchronous, and will return after the hybrid sleep operation
           is successfully enqueued. It will not wait for the sleep/wake-up cycle to complete.

   Parameter Syntax
       Unit commands listed above take either a single unit name (designated as NAME), or multiple unit
       specifications (designated as PATTERN...). In the first case, the unit name with or without a suffix must
       be given. If the suffix is not specified (unit name is "abbreviated"), systemctl will append a suitable
       suffix, ".service" by default, and a type-specific suffix in case of commands which operate only on
       specific unit types. For example,

           # systemctl start sshd

       and

           # systemctl start sshd.service

       are equivalent, as are

           # systemctl isolate default

       and

           # systemctl isolate default.target

       Note that (absolute) paths to device nodes are automatically converted to device unit names, and other
       (absolute) paths to mount unit names.

           # systemctl status /dev/sda
           # systemctl status /home

       are equivalent to:

           # systemctl status dev-sda.device
           # systemctl status home.mount

       In the second case, shell-style globs will be matched against the primary names of all units currently in
       memory; literal unit names, with or without a suffix, will be treated as in the first case. This means
       that literal unit names always refer to exactly one unit, but globs may match zero units and this is not
       considered an error.

       Glob patterns use fnmatch(3), so normal shell-style globbing rules are used, and "*", "?", "[]" may be
       used. See glob(7) for more details. The patterns are matched against the primary names of units currently
       in memory, and patterns which do not match anything are silently skipped. For example:

           # systemctl stop sshd@*.service

       will stop all sshd@.service instances. Note that alias names of units, and units that aren't in memory
       are not considered for glob expansion.

       For unit file commands, the specified NAME should be the name of the unit file (possibly abbreviated, see
       above), or the absolute path to the unit file:

           # systemctl enable foo.service

       or

           # systemctl link /path/to/foo.service

EXIT STATUS

       On success, 0 is returned, a non-zero failure code otherwise.

ENVIRONMENT

       $SYSTEMD_EDITOR
           Editor to use when editing units; overrides $EDITOR and $VISUAL. If neither $SYSTEMD_EDITOR nor
           $EDITOR nor $VISUAL are present or if it is set to an empty string or if their execution failed,
           systemctl will try to execute well known editors in this order: editor(1), nano(1), vim(1), vi(1).

       $SYSTEMD_PAGER
           Pager to use when --no-pager is not given; overrides $PAGER. If neither $SYSTEMD_PAGER nor $PAGER are
           set, a set of well-known pager implementations are tried in turn, including less(1) and more(1),
           until one is found. If no pager implementation is discovered no pager is invoked. Setting this
           environment variable to an empty string or the value "cat" is equivalent to passing --no-pager.

       $SYSTEMD_LESS
           Override the options passed to less (by default "FRSXMK").

       $SYSTEMD_LESSCHARSET
           Override the charset passed to less (by default "utf-8", if the invoking terminal is determined to be
           UTF-8 compatible).

SEE ALSO

       systemd(1), journalctl(1), loginctl(1), machinectl(1), systemd.unit(5), systemd.resource-control(5),
       systemd.special(7), wall(1), systemd.preset(5), systemd.generator(7), glob(7)

NOTES

        1. Preset
           https://www.freedesktop.org/wiki/Software/systemd/Preset