Provided by: systemd_237-3ubuntu10_amd64 bug


       systemd.unit - Unit configuration


       service.service, socket.socket, device.device, mount.mount, automount.automount,
       swap.swap,, path.path, timer.timer, slice.slice, scope.scope




       A unit configuration file encodes information about a service, a socket, a device, a mount
       point, an automount point, a swap file or partition, a start-up target, a watched file
       system path, a timer controlled and supervised by systemd(1), a resource management slice
       or a group of externally created processes. The syntax is inspired by XDG Desktop Entry
       Specification[1] .desktop files, which are in turn inspired by Microsoft Windows .ini

       This man page lists the common configuration options of all the unit types. These options
       need to be configured in the [Unit] or [Install] sections of the unit files.

       In addition to the generic [Unit] and [Install] sections described here, each unit may
       have a type-specific section, e.g. [Service] for a service unit. See the respective man
       pages for more information: systemd.service(5), systemd.socket(5), systemd.device(5),
       systemd.mount(5), systemd.automount(5), systemd.swap(5),,
       systemd.path(5), systemd.timer(5), systemd.slice(5), systemd.scope(5).

       Various settings are allowed to be specified more than once, in which case the
       interpretation depends on the setting. Often, multiple settings form a list, and setting
       to an empty value "resets", which means that previous assignments are ignored. When this
       is allowed, it is mentioned in the description of the setting. Note that using multiple
       assignments to the same value makes the unit file incompatible with parsers for the XDG
       .desktop file format.

       Unit files are loaded from a set of paths determined during compilation, described in the
       next section.

       Unit files may contain additional options on top of those listed here. If systemd
       encounters an unknown option, it will write a warning log message but continue loading the
       unit. If an option or section name is prefixed with X-, it is ignored completely by
       systemd. Options within an ignored section do not need the prefix. Applications may use
       this to include additional information in the unit files.

       Boolean arguments used in unit files can be written in various formats. For positive
       settings the strings 1, yes, true and on are equivalent. For negative settings, the
       strings 0, no, false and off are equivalent.

       Time span values encoded in unit files can be written in various formats. A stand-alone
       number specifies a time in seconds. If suffixed with a time unit, the unit is honored. A
       concatenation of multiple values with units is supported, in which case the values are
       added up. Example: "50" refers to 50 seconds; "2min 200ms" refers to 2 minutes and 200
       milliseconds, i.e. 120200 ms. The following time units are understood: "s", "min", "h",
       "d", "w", "ms", "us". For details see systemd.time(7).

       Empty lines and lines starting with "#" or ";" are ignored. This may be used for
       commenting. Lines ending in a backslash are concatenated with the following line while
       reading and the backslash is replaced by a space character. This may be used to wrap long

       Units can be aliased (have an alternative name), by creating a symlink from the new name
       to the existing name in one of the unit search paths. For example,
       systemd-networkd.service has the alias dbus-org.freedesktop.network1.service, created
       during installation as the symlink
       /lib/systemd/system/dbus-org.freedesktop.network1.service. In addition, unit files may
       specify aliases through the Alias= directive in the [Install] section; those aliases are
       only effective when the unit is enabled. When the unit is enabled, symlinks will be
       created for those names, and removed when the unit is disabled. For example,
       specifies, so when enabled it will be invoked whenever
       CTRL+ALT+DEL is pressed. Alias names may be used in commands like enable, disable, start,
       stop, status, ..., and in unit dependency directives Wants=, Requires=, Before=, After=,
       ..., with the limitation that aliases specified through Alias= are only effective when the
       unit is enabled. Aliases cannot be used with the preset command.

       Along with a unit file foo.service, the directory foo.service.wants/ may exist. All unit
       files symlinked from such a directory are implicitly added as dependencies of type Wants=
       to the unit. This is useful to hook units into the start-up of other units, without having
       to modify their unit files. For details about the semantics of Wants=, see below. The
       preferred way to create symlinks in the .wants/ directory of a unit file is with the
       enable command of the systemctl(1) tool which reads information from the [Install] section
       of unit files (see below). A similar functionality exists for Requires= type dependencies
       as well, the directory suffix is .requires/ in this case.

       Along with a unit file foo.service, a "drop-in" directory foo.service.d/ may exist. All
       files with the suffix ".conf" from this directory will be parsed after the file itself is
       parsed. This is useful to alter or add configuration settings for a unit, without having
       to modify unit files. Each drop-in file must have appropriate section headers. Note that
       for instantiated units, this logic will first look for the instance ".d/" subdirectory and
       read its ".conf" files, followed by the template ".d/" subdirectory and the ".conf" files

       In addition to /etc/systemd/system, the drop-in ".d" directories for system services can
       be placed in /lib/systemd/system or /run/systemd/system directories. Drop-in files in /etc
       take precedence over those in /run which in turn take precedence over those in /lib.
       Drop-in files under any of these directories take precedence over unit files wherever
       located. Multiple drop-in files with different names are applied in lexicographic order,
       regardless of which of the directories they reside in.

       Note that while systemd offers a flexible dependency system between units it is
       recommended to use this functionality only sparingly and instead rely on techniques such
       as bus-based or socket-based activation which make dependencies implicit, resulting in a
       both simpler and more flexible system.

       Optionally, units may be instantiated from a template file at runtime. This allows
       creation of multiple units from a single configuration file. If systemd looks for a unit
       configuration file, it will first search for the literal unit name in the file system. If
       that yields no success and the unit name contains an "@" character, systemd will look for
       a unit template that shares the same name but with the instance string (i.e. the part
       between the "@" character and the suffix) removed. Example: if a service
       getty@tty3.service is requested and no file by that name is found, systemd will look for
       getty@.service and instantiate a service from that configuration file if it is found.

       To refer to the instance string from within the configuration file you may use the special
       "%i" specifier in many of the configuration options. See below for details.

       If a unit file is empty (i.e. has the file size 0) or is symlinked to /dev/null, its
       configuration will not be loaded and it appears with a load state of "masked", and cannot
       be activated. Use this as an effective way to fully disable a unit, making it impossible
       to start it even manually.

       The unit file format is covered by the Interface Stability Promise[2].


       Sometimes it is useful to convert arbitrary strings into unit names. To facilitate this, a
       method of string escaping is used, in order to map strings containing arbitrary byte
       values (except NUL) into valid unit names and their restricted character set. A common
       special case are unit names that reflect paths to objects in the file system hierarchy.
       Example: a device unit dev-sda.device refers to a device with the device node /dev/sda in
       the file system.

       The escaping algorithm operates as follows: given a string, any "/" character is replaced
       by "-", and all other characters which are not ASCII alphanumerics or "_" are replaced by
       C-style "\x2d" escapes. In addition, "."  is replaced with such a C-style escape when it
       would appear as the first character in the escaped string.

       When the input qualifies as absolute file system path, this algorithm is extended
       slightly: the path to the root directory "/" is encoded as single dash "-". In addition,
       any leading, trailing or duplicate "/" characters are removed from the string before
       transformation. Example: /foo//bar/baz/ becomes "foo-bar-baz".

       This escaping is fully reversible, as long as it is known whether the escaped string was a
       path (the unescaping results are different for paths and non-path strings). The systemd-
       escape(1) command may be used to apply and reverse escaping on arbitrary strings. Use
       systemd-escape --path to escape path strings, and systemd-escape without --path otherwise.


       A number of unit dependencies are implicitly established, depending on unit type and unit
       configuration. These implicit dependencies can make unit configuration file cleaner. For
       the implicit dependencies in each unit type, please refer to section "Implicit
       Dependencies" in respective man pages.

       For example, service units with Type=dbus automatically acquire dependencies of type
       Requires= and After= on dbus.socket. See systemd.service(5) for details.


       Default dependencies are similar to implicit dependencies, but can be turned on and off by
       setting DefaultDependencies= to yes (the default) and no, while implicit dependencies are
       always in effect. See section "Default Dependencies" in respective man pages for the
       effect of enabling DefaultDependencies= in each unit types.

       For example, target units will complement all configured dependencies of type Wants= or
       Requires= with dependencies of type After= unless DefaultDependencies=no is set in the
       specified units. See for details. Note that this behavior can be turned
       off by setting DefaultDependencies=no.


       Unit files are loaded from a set of paths determined during compilation, described in the
       two tables below. Unit files found in directories listed earlier override files with the
       same name in directories lower in the list.

       When the variable $SYSTEMD_UNIT_PATH is set, the contents of this variable overrides the
       unit load path. If $SYSTEMD_UNIT_PATH ends with an empty component (":"), the usual unit
       load path will be appended to the contents of the variable.

       Table 1.  Load path when running in system mode (--system).
       │PathDescription                 │
       │/etc/systemd/system │ Local configuration         │
       │/run/systemd/system │ Runtime units               │
       │/lib/systemd/system │ Units of installed packages │

       Table 2.  Load path when running in user mode (--user).
       │PathDescription                      │
       │$XDG_CONFIG_HOME/systemd/user   │ User configuration (only used    │
       │                                │ when $XDG_CONFIG_HOME is set)    │
       │$HOME/.config/systemd/user      │ User configuration (only used    │
       │                                │ when $XDG_CONFIG_HOME is not     │
       │                                │ set)                             │
       │/etc/systemd/user               │ Local configuration              │
       │$XDG_RUNTIME_DIR/systemd/user   │ Runtime units (only used when    │
       │                                │ $XDG_RUNTIME_DIR is set)         │
       │/run/systemd/user               │ Runtime units                    │
       │$XDG_DATA_HOME/systemd/user     │ Units of packages that have been │
       │                                │ installed in the home directory  │
       │                                │ (only used when $XDG_DATA_HOME   │
       │                                │ is set)                          │
       │$HOME/.local/share/systemd/user │ Units of packages that have been │
       │                                │ installed in the home directory  │
       │                                │ (only used when $XDG_DATA_HOME   │
       │                                │ is not set)                      │
       │/usr/lib/systemd/user           │ Units of packages that have been │
       │                                │ installed system-wide            │

       Additional units might be loaded into systemd ("linked") from directories not on the unit
       load path. See the link command for systemctl(1). Also, some units are dynamically created
       via a systemd.generator(7).


       The system and service manager loads a unit's configuration automatically when a unit is
       referenced for the first time. It will automatically unload the unit configuration and
       state again when the unit is not needed anymore ("garbage collection"). A unit may be
       referenced through a number of different mechanisms:

        1. Another loaded unit references it with a dependency such as After=, Wants=, ...

        2. The unit is currently starting, running, reloading or stopping.

        3. The unit is currently in the failed state. (But see below.)

        4. A job for the unit is pending.

        5. The unit is pinned by an active IPC client program.

        6. The unit is a special "perpetual" unit that is always active and loaded. Examples for
           perpetual units are the root mount unit -.mount or the scope unit init.scope that the
           service manager itself lives in.

        7. The unit has running processes associated with it.

       The garbage collection logic may be altered with the CollectMode= option, which allows
       configuration whether automatic unloading of units that are in failed state is
       permissible, see below.

       Note that when a unit's configuration and state is unloaded, all execution results, such
       as exit codes, exit signals, resource consumption and other statistics are lost, except
       for what is stored in the log subsystem.

       Use systemctl daemon-reload or an equivalent command to reload unit configuration while
       the unit is already loaded. In this case all configuration settings are flushed out and
       replaced with the new configuration (which however might not be in effect immediately),
       however all runtime state is saved/restored.


       The unit file may include a [Unit] section, which carries generic information about the
       unit that is not dependent on the type of unit:

           A free-form string describing the unit. This is intended for use in UIs to show
           descriptive information along with the unit name. The description should contain a
           name that means something to the end user.  "Apache2 Web Server" is a good example.
           Bad examples are "high-performance light-weight HTTP server" (too generic) or
           "Apache2" (too specific and meaningless for people who do not know Apache).

           A space-separated list of URIs referencing documentation for this unit or its
           configuration. Accepted are only URIs of the types "http://", "https://", "file:",
           "info:", "man:". For more information about the syntax of these URIs, see uri(7). The
           URIs should be listed in order of relevance, starting with the most relevant. It is a
           good idea to first reference documentation that explains what the unit's purpose is,
           followed by how it is configured, followed by any other related documentation. This
           option may be specified more than once, in which case the specified list of URIs is
           merged. If the empty string is assigned to this option, the list is reset and all
           prior assignments will have no effect.

           Configures requirement dependencies on other units. If this unit gets activated, the
           units listed here will be activated as well. If one of the other units fails to
           activate, and an ordering dependency After= on the failing unit is set, this unit will
           not be started. Besides, with or without specifying After=, this unit will be stopped
           if one of the other units is explicitly stopped. This option may be specified more
           than once or multiple space-separated units may be specified in one option in which
           case requirement dependencies for all listed names will be created. Note that
           requirement dependencies do not influence the order in which services are started or
           stopped. This has to be configured independently with the After= or Before= options.
           If a unit foo.service requires a unit bar.service as configured with Requires= and no
           ordering is configured with After= or Before=, then both units will be started
           simultaneously and without any delay between them if foo.service is activated. Often,
           it is a better choice to use Wants= instead of Requires= in order to achieve a system
           that is more robust when dealing with failing services.

           Note that this dependency type does not imply that the other unit always has to be in
           active state when this unit is running. Specifically: failing condition checks (such
           as ConditionPathExists=, ConditionPathIsSymbolicLink=, ... — see below) do not cause
           the start job of a unit with a Requires= dependency on it to fail. Also, some unit
           types may deactivate on their own (for example, a service process may decide to exit
           cleanly, or a device may be unplugged by the user), which is not propagated to units
           having a Requires= dependency. Use the BindsTo= dependency type together with After=
           to ensure that a unit may never be in active state without a specific other unit also
           in active state (see below).

           Note that dependencies of this type may also be configured outside of the unit
           configuration file by adding a symlink to a .requires/ directory accompanying the unit
           file. For details, see above.

           Similar to Requires=. However, if the units listed here are not started already, they
           will not be started and the transaction will fail immediately.

           When Requisite=b.service is used on a.service, this dependency will show as
           RequisiteOf=a.service in property listing of b.service.  RequisiteOf= dependency
           cannot be specified directly.

           A weaker version of Requires=. Units listed in this option will be started if the
           configuring unit is. However, if the listed units fail to start or cannot be added to
           the transaction, this has no impact on the validity of the transaction as a whole.
           This is the recommended way to hook start-up of one unit to the start-up of another

           Note that dependencies of this type may also be configured outside of the unit
           configuration file by adding symlinks to a .wants/ directory accompanying the unit
           file. For details, see above.

           Configures requirement dependencies, very similar in style to Requires=. However, this
           dependency type is stronger: in addition to the effect of Requires= it declares that
           if the unit bound to is stopped, this unit will be stopped too. This means a unit
           bound to another unit that suddenly enters inactive state will be stopped too. Units
           can suddenly, unexpectedly enter inactive state for different reasons: the main
           process of a service unit might terminate on its own choice, the backing device of a
           device unit might be unplugged or the mount point of a mount unit might be unmounted
           without involvement of the system and service manager.

           When used in conjunction with After= on the same unit the behaviour of BindsTo= is
           even stronger. In this case, the unit bound to strictly has to be in active state for
           this unit to also be in active state. This not only means a unit bound to another unit
           that suddenly enters inactive state, but also one that is bound to another unit that
           gets skipped due to a failed condition check (such as ConditionPathExists=,
           ConditionPathIsSymbolicLink=, ... — see below) will be stopped, should it be running.
           Hence, in many cases it is best to combine BindsTo= with After=.

           When BindsTo=b.service is used on a.service, this dependency will show as
           BoundBy=a.service in property listing of b.service.  BoundBy= dependency cannot be
           specified directly.

           Configures dependencies similar to Requires=, but limited to stopping and restarting
           of units. When systemd stops or restarts the units listed here, the action is
           propagated to this unit. Note that this is a one-way dependency — changes to this unit
           do not affect the listed units.

           When PartOf=b.service is used on a.service, this dependency will show as
           ConsistsOf=a.service in property listing of b.service.  ConsistsOf= dependency cannot
           be specified directly.

           A space-separated list of unit names. Configures negative requirement dependencies. If
           a unit has a Conflicts= setting on another unit, starting the former will stop the
           latter and vice versa. Note that this setting is independent of and orthogonal to the
           After= and Before= ordering dependencies.

           If a unit A that conflicts with a unit B is scheduled to be started at the same time
           as B, the transaction will either fail (in case both are required part of the
           transaction) or be modified to be fixed (in case one or both jobs are not a required
           part of the transaction). In the latter case, the job that is not the required will be
           removed, or in case both are not required, the unit that conflicts will be started and
           the unit that is conflicted is stopped.

       Before=, After=
           These two settings expect a space-separated list of unit names. They configure
           ordering dependencies between units. If a unit foo.service contains a setting
           Before=bar.service and both units are being started, bar.service's start-up is delayed
           until foo.service has finished starting up. Note that this setting is independent of
           and orthogonal to the requirement dependencies as configured by Requires=, Wants= or
           BindsTo=. It is a common pattern to include a unit name in both the After= and
           Requires= options, in which case the unit listed will be started before the unit that
           is configured with these options. This option may be specified more than once, in
           which case ordering dependencies for all listed names are created.  After= is the
           inverse of Before=, i.e. while After= ensures that the configured unit is started
           after the listed unit finished starting up, Before= ensures the opposite, that the
           configured unit is fully started up before the listed unit is started. Note that when
           two units with an ordering dependency between them are shut down, the inverse of the
           start-up order is applied. i.e. if a unit is configured with After= on another unit,
           the former is stopped before the latter if both are shut down. Given two units with
           any ordering dependency between them, if one unit is shut down and the other is
           started up, the shutdown is ordered before the start-up. It doesn't matter if the
           ordering dependency is After= or Before=, in this case. It also doesn't matter which
           of the two is shut down, as long as one is shut down and the other is started up. The
           shutdown is ordered before the start-up in all cases. If two units have no ordering
           dependencies between them, they are shut down or started up simultaneously, and no
           ordering takes place. It depends on the unit type when precisely a unit has finished
           starting up. Most importantly, for service units start-up is considered completed for
           the purpose of Before=/After= when all its configured start-up commands have been
           invoked and they either failed or reported start-up success.

           A space-separated list of one or more units that are activated when this unit enters
           the "failed" state. A service unit using Restart= enters the failed state only after
           the start limits are reached.

       PropagatesReloadTo=, ReloadPropagatedFrom=
           A space-separated list of one or more units where reload requests on this unit will be
           propagated to, or reload requests on the other unit will be propagated to this unit,
           respectively. Issuing a reload request on a unit will automatically also enqueue a
           reload request on all units that the reload request shall be propagated to via these
           two settings.

           For units that start processes (such as service units), lists one or more other units
           whose network and/or temporary file namespace to join. This only applies to unit types
           which support the PrivateNetwork= and PrivateTmp= directives (see systemd.exec(5) for
           details). If a unit that has this setting set is started, its processes will see the
           same /tmp, /var/tmp and network namespace as one listed unit that is started. If
           multiple listed units are already started, it is not defined which namespace is
           joined. Note that this setting only has an effect if PrivateNetwork= and/or
           PrivateTmp= is enabled for both the unit that joins the namespace and the unit whose
           namespace is joined.

           Takes a space-separated list of absolute paths. Automatically adds dependencies of
           type Requires= and After= for all mount units required to access the specified path.

           Mount points marked with noauto are not mounted automatically through,
           but are still honored for the purposes of this option, i.e. they will be pulled in by
           this unit.

           Takes a value of "fail", "replace", "replace-irreversibly", "isolate", "flush",
           "ignore-dependencies" or "ignore-requirements". Defaults to "replace". Specifies how
           the units listed in OnFailure= will be enqueued. See systemctl(1)'s --job-mode= option
           for details on the possible values. If this is set to "isolate", only a single unit
           may be listed in OnFailure=..

           Takes a boolean argument. If true, this unit will not be stopped when isolating
           another unit. Defaults to false for service, target, socket, busname, timer, and path
           units, and true for slice, scope, device, swap, mount, and automount units.

           Takes a boolean argument. If true, this unit will be stopped when it is no longer
           used. Note that, in order to minimize the work to be executed, systemd will not stop
           units by default unless they are conflicting with other units, or the user explicitly
           requested their shut down. If this option is set, a unit will be automatically cleaned
           up if no other active unit requires it. Defaults to false.

       RefuseManualStart=, RefuseManualStop=
           Takes a boolean argument. If true, this unit can only be activated or deactivated
           indirectly. In this case, explicit start-up or termination requested by the user is
           denied, however if it is started or stopped as a dependency of another unit, start-up
           or termination will succeed. This is mostly a safety feature to ensure that the user
           does not accidentally activate units that are not intended to be activated explicitly,
           and not accidentally deactivate units that are not intended to be deactivated. These
           options default to false.

           Takes a boolean argument. If true, this unit may be used with the systemctl isolate
           command. Otherwise, this will be refused. It probably is a good idea to leave this
           disabled except for target units that shall be used similar to runlevels in SysV init
           systems, just as a precaution to avoid unusable system states. This option defaults to

           Takes a boolean argument. If true, (the default), a few default dependencies will
           implicitly be created for the unit. The actual dependencies created depend on the unit
           type. For example, for service units, these dependencies ensure that the service is
           started only after basic system initialization is completed and is properly terminated
           on system shutdown. See the respective man pages for details. Generally, only services
           involved with early boot or late shutdown should set this option to false. It is
           highly recommended to leave this option enabled for the majority of common units. If
           set to false, this option does not disable all implicit dependencies, just
           non-essential ones.

           Tweaks the "garbage collection" algorithm for this unit. Takes one of inactive or
           inactive-or-failed. If set to inactive the unit will be unloaded if it is in the
           inactive state and is not referenced by clients, jobs or other units — however it is
           not unloaded if it is in the failed state. In failed mode, failed units are not
           unloaded until the user invoked systemctl reset-failed on them to reset the failed
           state, or an equivalent command. This behaviour is altered if this option is set to
           inactive-or-failed: in this case the unit is unloaded even if the unit is in a failed
           state, and thus an explicitly resetting of the failed state is not necessary. Note
           that if this mode is used unit results (such as exit codes, exit signals, consumed
           resources, ...) are flushed out immediately after the unit completed, except for what
           is stored in the logging subsystem. Defaults to inactive.

       JobTimeoutSec=, JobRunningTimeoutSec=, JobTimeoutAction=, JobTimeoutRebootArgument=
           When a job for this unit is queued, a time-out JobTimeoutSec= may be configured.
           Similarly, JobRunningTimeoutSec= starts counting when the queued job is actually
           started. If either time limit is reached, the job will be cancelled, the unit however
           will not change state or even enter the "failed" mode. This value defaults to
           "infinity" (job timeouts disabled), except for device units (JobRunningTimeoutSec=
           defaults to DefaultTimeoutStartSec=). NB: this timeout is independent from any
           unit-specific timeout (for example, the timeout set with TimeoutStartSec= in service
           units) as the job timeout has no effect on the unit itself, only on the job that might
           be pending for it. Or in other words: unit-specific timeouts are useful to abort unit
           state changes, and revert them. The job timeout set with this option however is useful
           to abort only the job waiting for the unit state to change.

           JobTimeoutAction= optionally configures an additional action to take when the time-out
           is hit. It takes the same values as StartLimitAction=. Defaults to none.
           JobTimeoutRebootArgument= configures an optional reboot string to pass to the
           reboot(2) system call.

       StartLimitIntervalSec=interval, StartLimitBurst=burst
           Configure unit start rate limiting. Units which are started more than burst times
           within an interval time interval are not permitted to start any more. Use
           StartLimitIntervalSec= to configure the checking interval (defaults to
           DefaultStartLimitIntervalSec= in manager configuration file, set it to 0 to disable
           any kind of rate limiting). Use StartLimitBurst= to configure how many starts per
           interval are allowed (defaults to DefaultStartLimitBurst= in manager configuration
           file). These configuration options are particularly useful in conjunction with the
           service setting Restart= (see systemd.service(5)); however, they apply to all kinds of
           starts (including manual), not just those triggered by the Restart= logic. Note that
           units which are configured for Restart= and which reach the start limit are not
           attempted to be restarted anymore; however, they may still be restarted manually at a
           later point, after the interval has passed. From this point on, the restart logic is
           activated again. Note that systemctl reset-failed will cause the restart rate counter
           for a service to be flushed, which is useful if the administrator wants to manually
           start a unit and the start limit interferes with that. Note that this rate-limiting is
           enforced after any unit condition checks are executed, and hence unit activations with
           failing conditions do not count towards this rate limit. This setting does not apply
           to slice, target, device, and scope units, since they are unit types whose activation
           may either never fail, or may succeed only a single time.

           When a unit is unloaded due to the garbage collection logic (see above) its rate limit
           counters are flushed out too. This means that configuring start rate limiting for a
           unit that is not referenced continously has no effect.

           Configure the action to take if the rate limit configured with StartLimitIntervalSec=
           and StartLimitBurst= is hit. Takes one of none, reboot, reboot-force,
           reboot-immediate, poweroff, poweroff-force or poweroff-immediate. If none is set,
           hitting the rate limit will trigger no action besides that the start will not be
           permitted.  reboot causes a reboot following the normal shutdown procedure (i.e.
           equivalent to systemctl reboot).  reboot-force causes a forced reboot which will
           terminate all processes forcibly but should cause no dirty file systems on reboot
           (i.e. equivalent to systemctl reboot -f) and reboot-immediate causes immediate
           execution of the reboot(2) system call, which might result in data loss. Similarly,
           poweroff, poweroff-force, poweroff-immediate have the effect of powering down the
           system with similar semantics. Defaults to none.

       FailureAction=, SuccessAction=
           Configure the action to take when the unit stops and enters a failed state or inactive
           state. Takes the same values as the setting StartLimitAction= setting and executes the
           same actions (see systemd.unit(5)). Both options default to none.

           Configure the optional argument for the reboot(2) system call if StartLimitAction= or
           FailureAction= is a reboot action. This works just like the optional argument to
           systemctl reboot command.

       ConditionArchitecture=, ConditionVirtualization=, ConditionHost=,
       ConditionKernelCommandLine=, ConditionKernelVersion=, ConditionSecurity=,
       ConditionCapability=, ConditionACPower=, ConditionNeedsUpdate=, ConditionFirstBoot=,
       ConditionPathExists=, ConditionPathExistsGlob=, ConditionPathIsDirectory=,
       ConditionPathIsSymbolicLink=, ConditionPathIsMountPoint=, ConditionPathIsReadWrite=,
       ConditionDirectoryNotEmpty=, ConditionFileNotEmpty=, ConditionFileIsExecutable=,
       ConditionUser=, ConditionGroup=, ConditionControlGroupController=
           Before starting a unit, verify that the specified condition is true. If it is not
           true, the starting of the unit will be (mostly silently) skipped, however all ordering
           dependencies of it are still respected. A failing condition will not result in the
           unit being moved into a failure state. The condition is checked at the time the queued
           start job is to be executed. Use condition expressions in order to silently skip units
           that do not apply to the local running system, for example because the kernel or
           runtime environment doesn't require its functionality. Use the various
           AssertArchitecture=, AssertVirtualization=, ... options for a similar mechanism that
           puts the unit in a failure state and logs about the failed check (see below).

           ConditionArchitecture= may be used to check whether the system is running on a
           specific architecture. Takes one of x86, x86-64, ppc, ppc-le, ppc64, ppc64-le, ia64,
           parisc, parisc64, s390, s390x, sparc, sparc64, mips, mips-le, mips64, mips64-le,
           alpha, arm, arm-be, arm64, arm64-be, sh, sh64, m68k, tilegx, cris, arc, arc-be to test
           against a specific architecture. The architecture is determined from the information
           returned by uname(2) and is thus subject to personality(2). Note that a Personality=
           setting in the same unit file has no effect on this condition. A special architecture
           name native is mapped to the architecture the system manager itself is compiled for.
           The test may be negated by prepending an exclamation mark.

           ConditionVirtualization= may be used to check whether the system is executed in a
           virtualized environment and optionally test whether it is a specific implementation.
           Takes either boolean value to check if being executed in any virtualized environment,
           or one of vm and container to test against a generic type of virtualization solution,
           or one of qemu, kvm, zvm, vmware, microsoft, oracle, xen, bochs, uml, openvz, lxc,
           lxc-libvirt, systemd-nspawn, docker, rkt to test against a specific implementation, or
           private-users to check whether we are running in a user namespace. See systemd-detect-
           virt(1) for a full list of known virtualization technologies and their identifiers. If
           multiple virtualization technologies are nested, only the innermost is considered. The
           test may be negated by prepending an exclamation mark.

           ConditionHost= may be used to match against the hostname or machine ID of the host.
           This either takes a hostname string (optionally with shell style globs) which is
           tested against the locally set hostname as returned by gethostname(2), or a machine ID
           formatted as string (see machine-id(5)). The test may be negated by prepending an
           exclamation mark.

           ConditionKernelCommandLine= may be used to check whether a specific kernel command
           line option is set (or if prefixed with the exclamation mark unset). The argument must
           either be a single word, or an assignment (i.e. two words, separated "="). In the
           former case the kernel command line is searched for the word appearing as is, or as
           left hand side of an assignment. In the latter case, the exact assignment is looked
           for with right and left hand side matching.

           ConditionKernelVersion= may be used to check whether the kernel version (as reported
           by uname -r) matches a certain expression (or if prefixed with the exclamation mark
           does not match it). The argument must be a single string. If the string starts with
           one of "<", "<=", "=", ">=", ">" a relative version comparison is done, otherwise the
           specified string is matched with shell-style globs.

           Note that using the kernel version string is an unreliable way to determine which
           features are supported by a kernel, because of the widespread practice of backporting
           drivers, features, and fixes from newer upstream kernels into older versions provided
           by distributions. Hence, this check is inherently unportable and should not be used
           for units which may be used on different distributions.

           ConditionSecurity= may be used to check whether the given security module is enabled
           on the system. Currently, the recognized values are selinux, apparmor, tomoyo, ima,
           smack and audit. The test may be negated by prepending an exclamation mark.

           ConditionCapability= may be used to check whether the given capability exists in the
           capability bounding set of the service manager (i.e. this does not check whether
           capability is actually available in the permitted or effective sets, see
           capabilities(7) for details). Pass a capability name such as "CAP_MKNOD", possibly
           prefixed with an exclamation mark to negate the check.

           ConditionACPower= may be used to check whether the system has AC power, or is
           exclusively battery powered at the time of activation of the unit. This takes a
           boolean argument. If set to true, the condition will hold only if at least one AC
           connector of the system is connected to a power source, or if no AC connectors are
           known. Conversely, if set to false, the condition will hold only if there is at least
           one AC connector known and all AC connectors are disconnected from a power source.

           ConditionNeedsUpdate= takes one of /var or /etc as argument, possibly prefixed with a
           "!"  (for inverting the condition). This condition may be used to conditionalize units
           on whether the specified directory requires an update because /usr's modification time
           is newer than the stamp file .updated in the specified directory. This is useful to
           implement offline updates of the vendor operating system resources in /usr that
           require updating of /etc or /var on the next following boot. Units making use of this
           condition should order themselves before systemd-update-done.service(8), to make sure
           they run before the stamp file's modification time gets reset indicating a completed

           ConditionFirstBoot= takes a boolean argument. This condition may be used to
           conditionalize units on whether the system is booting up with an unpopulated /etc
           directory (specifically: an /etc with no /etc/machine-id). This may be used to
           populate /etc on the first boot after factory reset, or when a new system instance
           boots up for the first time.

           With ConditionPathExists= a file existence condition is checked before a unit is
           started. If the specified absolute path name does not exist, the condition will fail.
           If the absolute path name passed to ConditionPathExists= is prefixed with an
           exclamation mark ("!"), the test is negated, and the unit is only started if the path
           does not exist.

           ConditionPathExistsGlob= is similar to ConditionPathExists=, but checks for the
           existence of at least one file or directory matching the specified globbing pattern.

           ConditionPathIsDirectory= is similar to ConditionPathExists= but verifies whether a
           certain path exists and is a directory.

           ConditionPathIsSymbolicLink= is similar to ConditionPathExists= but verifies whether a
           certain path exists and is a symbolic link.

           ConditionPathIsMountPoint= is similar to ConditionPathExists= but verifies whether a
           certain path exists and is a mount point.

           ConditionPathIsReadWrite= is similar to ConditionPathExists= but verifies whether the
           underlying file system is readable and writable (i.e. not mounted read-only).

           ConditionDirectoryNotEmpty= is similar to ConditionPathExists= but verifies whether a
           certain path exists and is a non-empty directory.

           ConditionFileNotEmpty= is similar to ConditionPathExists= but verifies whether a
           certain path exists and refers to a regular file with a non-zero size.

           ConditionFileIsExecutable= is similar to ConditionPathExists= but verifies whether a
           certain path exists, is a regular file and marked executable.

           ConditionUser= takes a numeric "UID", a UNIX user name, or the special value
           "@system". This condition may be used to check whether the service manager is running
           as the given user. The special value "@system" can be used to check if the user id is
           within the system user range. This option is not useful for system services, as the
           system manager exclusively runs as the root user, and thus the test result is

           ConditionGroup= is similar to ConditionUser= but verifies that the service manager's
           real or effective group, or any of its auxiliary groups match the specified group or
           GID. This setting does not have a special value "@system".

           ConditionControlGroupController= takes a cgroup controller name (eg.  cpu), verifying
           that it is available for use on the system. For example, a particular controller may
           not be available if it was disabled on the kernel command line with
           "cgroup_disable="controller. Multiple controllers may be passed with a space
           separating them; in this case the condition will only pass if all listed controllers
           are available for use. Controllers unknown to systemd are ignored. Valid controllers
           are cpu, cpuacct, io, blkio, memory, devices, and pids.

           If multiple conditions are specified, the unit will be executed if all of them apply
           (i.e. a logical AND is applied). Condition checks can be prefixed with a pipe symbol
           (|) in which case a condition becomes a triggering condition. If at least one
           triggering condition is defined for a unit, then the unit will be executed if at least
           one of the triggering conditions apply and all of the non-triggering conditions. If
           you prefix an argument with the pipe symbol and an exclamation mark, the pipe symbol
           must be passed first, the exclamation second. Except for ConditionPathIsSymbolicLink=,
           all path checks follow symlinks. If any of these options is assigned the empty string,
           the list of conditions is reset completely, all previous condition settings (of any
           kind) will have no effect.

       AssertArchitecture=, AssertVirtualization=, AssertHost=, AssertKernelCommandLine=,
       AssertKernelVersion=, AssertSecurity=, AssertCapability=, AssertACPower=,
       AssertNeedsUpdate=, AssertFirstBoot=, AssertPathExists=, AssertPathExistsGlob=,
       AssertPathIsDirectory=, AssertPathIsSymbolicLink=, AssertPathIsMountPoint=,
       AssertPathIsReadWrite=, AssertDirectoryNotEmpty=, AssertFileNotEmpty=,
       AssertFileIsExecutable=, AssertUser=, AssertGroup=, AssertControlGroupController=
           Similar to the ConditionArchitecture=, ConditionVirtualization=, ..., condition
           settings described above, these settings add assertion checks to the start-up of the
           unit. However, unlike the conditions settings, any assertion setting that is not met
           results in failure of the start job (which means this is logged loudly). Use assertion
           expressions for units that cannot operate when specific requirements are not met, and
           when this is something the administrator or user should look into.

           A path to a configuration file this unit has been generated from. This is primarily
           useful for implementation of generator tools that convert configuration from an
           external configuration file format into native unit files. This functionality should
           not be used in normal units.


       Unit settings that create a relationship with a second unit usually show up in properties
       of both units, for example in systemctl show output. In some cases the name of the
       property is the same as the name of the configuration setting, but not always. This table
       lists the pairs of properties that are shown on two units which are connected through some
       dependency, and shows which property on "source" unit corresponds to which property on the
       "target" unit.

       Table 3.  Forward and reverse unit properties
       │"Forward" property"Reverse" propertyWhere used              │
       │Before=After=                │ Both are unit file      │
       ├──────────────────────┼───────────────────────┤ options                 │
       │After=Before=               │                         │
       │Requires=RequiredBy=           │ A unit file option; an  │
       │                      │                       │ option in the [Install] │
       │                      │                       │ section                 │
       │Wants=WantedBy=             │ A unit file option; an  │
       │                      │                       │ option in the [Install] │
       │                      │                       │ section                 │
       │PartOf=ConsistsOf=           │ A unit file option; an  │
       │                      │                       │ automatic property      │
       │BindsTo=BoundBy=              │ A unit file option; an  │
       │                      │                       │ automatic property      │
       │Requisite=RequisiteOf=          │ A unit file option; an  │
       │                      │                       │ automatic property      │
       │Triggers=TriggeredBy=          │ Automatic properties,   │
       │                      │                       │ see notes below         │
       │Conflicts=ConflictedBy=         │ A unit file option; an  │
       │                      │                       │ automatic property      │
       │PropagatesReloadTo=ReloadPropagatedFrom= │ Both are unit file      │
       ├──────────────────────┼───────────────────────┤ options                 │
       │ReloadPropagatedFrom=PropagatesReloadTo=   │                         │

       Note: WantedBy= and RequiredBy= are used in the [Install] section to create symlinks in
       .wants/ and .requires/ directories. They cannot be used directly as a unit configuration

       Note: ConsistsOf=, BoundBy=, RequisiteOf=, ConflictedBy= are created implicitly along with
       their reverse and cannot be specified directly.

       Note: Triggers= is created implicitly between a socket, path unit, or an automount unit,
       and the unit they activate. By default a unit with the same name is triggered, but this
       can be overriden using Sockets=, Service=, and Unit= settings. See systemd.service(5),
       systemd.socket(5), systemd.path(5), and systemd.automount(5) for details.  TriggersBy= is
       created implicitly on the triggered unit.


       Unit files may include an "[Install]" section, which carries installation information for
       the unit. This section is not interpreted by systemd(1) during runtime; it is used by the
       enable and disable commands of the systemctl(1) tool during installation of a unit.

           A space-separated list of additional names this unit shall be installed under. The
           names listed here must have the same suffix (i.e. type) as the unit filename. This
           option may be specified more than once, in which case all listed names are used. At
           installation time, systemctl enable will create symlinks from these names to the unit
           filename. Note that not all unit types support such alias names, and this setting is
           not supported for them. Specifically, mount, slice, swap, and automount units do not
           support aliasing.

       WantedBy=, RequiredBy=
           This option may be used more than once, or a space-separated list of unit names may be
           given. A symbolic link is created in the .wants/ or .requires/ directory of each of
           the listed units when this unit is installed by systemctl enable. This has the effect
           that a dependency of type Wants= or Requires= is added from the listed unit to the
           current unit. The primary result is that the current unit will be started when the
           listed unit is started. See the description of Wants= and Requires= in the [Unit]
           section for details.

           WantedBy=foo.service in a service bar.service is mostly equivalent to
           Alias=foo.service.wants/bar.service in the same file. In case of template units,
           systemctl enable must be called with an instance name, and this instance will be added
           to the .wants/ or .requires/ list of the listed unit. E.g. in a
           service getty@.service will result in systemctl enable getty@tty2.service creating a
  link to getty@.service.

           Additional units to install/deinstall when this unit is installed/deinstalled. If the
           user requests installation/deinstallation of a unit with this option configured,
           systemctl enable and systemctl disable will automatically install/uninstall units
           listed in this option as well.

           This option may be used more than once, or a space-separated list of unit names may be

           In template unit files, this specifies for which instance the unit shall be enabled if
           the template is enabled without any explicitly set instance. This option has no effect
           in non-template unit files. The specified string must be usable as instance

       The following specifiers are interpreted in the Install section: %n, %N, %p, %i, %U, %u,
       %m, %H, %b, %v. For their meaning see the next section.


       Many settings resolve specifiers which may be used to write generic unit files referring
       to runtime or unit parameters that are replaced when the unit files are loaded. Specifiers
       must be known and resolvable for the setting to be valid. The following specifiers are

       Table 4. Specifiers available in unit files
       │SpecifierMeaningDetails                  │
       │"%n"      │ Full unit name           │                          │
       │"%N"      │ Unescaped full unit name │ Same as "%n", but with   │
       │          │                          │ escaping undone. This    │
       │          │                          │ undoes the escaping used │
       │          │                          │ when generating unit     │
       │          │                          │ names from arbitrary     │
       │          │                          │ strings (see above).     │
       │"%p"      │ Prefix name              │ For instantiated units,  │
       │          │                          │ this refers to the       │
       │          │                          │ string before the "@"    │
       │          │                          │ character of the unit    │
       │          │                          │ name. For                │
       │          │                          │ non-instantiated units,  │
       │          │                          │ this refers to the name  │
       │          │                          │ of the unit with the     │
       │          │                          │ type suffix removed.     │
       │"%P"      │ Unescaped prefix name    │ Same as "%p", but with   │
       │          │                          │ escaping undone          │
       │"%i"      │ Instance name            │ For instantiated units:  │
       │          │                          │ this is the string       │
       │          │                          │ between the "@"          │
       │          │                          │ character and the suffix │
       │          │                          │ of the unit name.        │
       │"%I"      │ Unescaped instance name  │ Same as "%i", but with   │
       │          │                          │ escaping undone          │
       │"%f"      │ Unescaped filename       │ This is either the       │
       │          │                          │ unescaped instance name  │
       │          │                          │ (if applicable) with /   │
       │          │                          │ prepended (if            │
       │          │                          │ applicable), or the      │
       │          │                          │ unescaped prefix name    │
       │          │                          │ prepended with /. This   │
       │          │                          │ implements unescaping    │
       │          │                          │ according to the rules   │
       │          │                          │ for escaping absolute    │
       │          │                          │ file system paths        │
       │          │                          │ discussed above.         │
       │"%t"      │ Runtime directory root   │ This is either /run (for │
       │          │                          │ the system manager) or   │
       │          │                          │ the path                 │
       │          │                          │ "$XDG_RUNTIME_DIR"       │
       │          │                          │ resolves to (for user    │
       │          │                          │ managers).               │
       │"%S"      │ State directory root     │ This is either /var/lib  │
       │          │                          │ (for the system manager) │
       │          │                          │ or the path              │
       │          │                          │ "$XDG_CONFIG_HOME"       │
       │          │                          │ resolves to (for user    │
       │          │                          │ managers).               │
       │"%C"      │ Cache directory root     │ This is either           │
       │          │                          │ /var/cache (for the      │
       │          │                          │ system manager) or the   │
       │          │                          │ path "$XDG_CACHE_HOME"   │
       │          │                          │ resolves to (for user    │
       │          │                          │ managers).               │
       │"%L"      │ Log directory root       │ This is either /var/log  │
       │          │                          │ (for the system manager) │
       │          │                          │ or the path              │
       │          │                          │ "$XDG_CONFIG_HOME"       │
       │          │                          │ resolves to with /log    │
       │          │                          │ appended (for user       │
       │          │                          │ managers).               │
       │"%u"      │ User name                │ This is the name of the  │
       │          │                          │ user running the service │
       │          │                          │ manager instance. In     │
       │          │                          │ case of the system       │
       │          │                          │ manager this resolves to │
       │          │                          │ "root".                  │
       │"%U"      │ User UID                 │ This is the numeric UID  │
       │          │                          │ of the user running the  │
       │          │                          │ service manager          │
       │          │                          │ instance. In case of the │
       │          │                          │ system manager this      │
       │          │                          │ resolves to "0".         │
       │"%h"      │ User home directory      │ This is the home         │
       │          │                          │ directory of the user    │
       │          │                          │ running the service      │
       │          │                          │ manager instance. In     │
       │          │                          │ case of the system       │
       │          │                          │ manager this resolves to │
       │          │                          │ "/root".                 │
       │"%s"      │ User shell               │ This is the shell of the │
       │          │                          │ user running the service │
       │          │                          │ manager instance. In     │
       │          │                          │ case of the system       │
       │          │                          │ manager this resolves to │
       │          │                          │ "/bin/sh".               │
       │"%m"      │ Machine ID               │ The machine ID of the    │
       │          │                          │ running system,          │
       │          │                          │ formatted as string. See │
       │          │                          │ machine-id(5) for more   │
       │          │                          │ information.             │
       │"%b"      │ Boot ID                  │ The boot ID of the       │
       │          │                          │ running system,          │
       │          │                          │ formatted as string. See │
       │          │                          │ random(4) for more       │
       │          │                          │ information.             │
       │"%H"      │ Host name                │ The hostname of the      │
       │          │                          │ running system at the    │
       │          │                          │ point in time the unit   │
       │          │                          │ configuration is loaded. │
       │"%v"      │ Kernel release           │ Identical to uname -r    │
       │          │                          │ output                   │
       │"%%"      │ Single percent sign      │ Use "%%" in place of "%" │
       │          │                          │ to specify a single      │
       │          │                          │ percent sign.            │


       Example 1. Allowing units to be enabled

       The following snippet (highlighted) allows a unit (e.g.  foo.service) to be enabled via
       systemctl enable:




       After running systemctl enable, a symlink
       /etc/systemd/system/ linking to the actual unit will be
       created. It tells systemd to pull in the unit when starting The inverse
       systemctl disable will remove that symlink again.

       Example 2. Overriding vendor settings

       There are two methods of overriding vendor settings in unit files: copying the unit file
       from /lib/systemd/system to /etc/systemd/system and modifying the chosen settings.
       Alternatively, one can create a directory named unit.d/ within /etc/systemd/system and
       place a drop-in file name.conf there that only changes the specific settings one is
       interested in. Note that multiple such drop-in files are read if present, processed in
       lexicographic order of their filename.

       The advantage of the first method is that one easily overrides the complete unit, the
       vendor unit is not parsed at all anymore. It has the disadvantage that improvements to the
       unit file by the vendor are not automatically incorporated on updates.

       The advantage of the second method is that one only overrides the settings one
       specifically wants, where updates to the unit by the vendor automatically apply. This has
       the disadvantage that some future updates by the vendor might be incompatible with the
       local changes.

       This also applies for user instances of systemd, but with different locations for the unit
       files. See the section on unit load paths for further details.

       Suppose there is a vendor-supplied unit /lib/systemd/system/httpd.service with the
       following contents:

           Description=Some HTTP server



       Now one wants to change some settings as an administrator: firstly, in the local setup,
       /srv/webserver might not exist, because the HTTP server is configured to use /srv/www
       instead. Secondly, the local configuration makes the HTTP server also depend on a memory
       cache service, memcached.service, that should be pulled in (Requires=) and also be ordered
       appropriately (After=). Thirdly, in order to harden the service a bit more, the
       administrator would like to set the PrivateTmp= setting (see systemd.exec(5) for details).
       And lastly, the administrator would like to reset the niceness of the service to its
       default value of 0.

       The first possibility is to copy the unit file to /etc/systemd/system/httpd.service and
       change the chosen settings:

           Description=Some HTTP server
  sqldb.service memcached.service
           Requires=sqldb.service memcached.service



       Alternatively, the administrator could create a drop-in file
       /etc/systemd/system/httpd.service.d/local.conf with the following contents:

           # Reset all assertions and then re-add the condition we want


       Note that for drop-in files, if one wants to remove entries from a setting that is parsed
       as a list (and is not a dependency), such as AssertPathExists= (or e.g.  ExecStart= in
       service units), one needs to first clear the list before re-adding all entries except the
       one that is to be removed. Dependencies (After=, etc.) cannot be reset to an empty list,
       so dependencies can only be added in drop-ins. If you want to remove dependencies, you
       have to override the entire unit.


       systemd(1), systemctl(1), systemd.special(7), systemd.service(5), systemd.socket(5),
       systemd.device(5), systemd.mount(5), systemd.automount(5), systemd.swap(5),, systemd.path(5), systemd.timer(5), systemd.scope(5), systemd.slice(5),
       systemd.time(7), systemd-analyze(1), capabilities(7), systemd.directives(7), uname(1)


        1. XDG Desktop Entry Specification

        2. Interface Stability Promise