Provided by: libguestfs-dev_1.36.13-1ubuntu3.3_amd64
NAME
guestfs - Library for accessing and modifying virtual machine images
SYNOPSIS
#include <guestfs.h> guestfs_h *g = guestfs_create (); guestfs_add_drive (g, "guest.img"); guestfs_launch (g); guestfs_mount (g, "/dev/sda1", "/"); guestfs_touch (g, "/hello"); guestfs_umount (g, "/"); guestfs_shutdown (g); guestfs_close (g); cc prog.c -o prog -lguestfs or: cc prog.c -o prog `pkg-config libguestfs --cflags --libs`
DESCRIPTION
Libguestfs is a library for accessing and modifying disk images and virtual machines. This manual page documents the C API. If you are looking for an introduction to libguestfs, see the web site: http://libguestfs.org/ Each virt tool has its own man page (for a full list, go to "SEE ALSO" at the end of this file). Other libguestfs manual pages: guestfs-faq(1) Frequently Asked Questions (FAQ). guestfs-examples(3) Examples of using the API from C. For examples in other languages, see "USING LIBGUESTFS WITH OTHER PROGRAMMING LANGUAGES" below. guestfs-recipes(1) Tips and recipes. guestfs-performance(1) Performance tips and solutions. libguestfs-test-tool(1) guestfs-testing(1) Help testing libguestfs. guestfs-building(1) How to build libguestfs from source. guestfs-hacking(1) Contribute code to libguestfs. guestfs-internals(1) How libguestfs works. guestfs-security(1) Security information, including CVEs affecting libguestfs.
API OVERVIEW
This section provides a gentler overview of the libguestfs API. We also try to group API calls together, where that may not be obvious from reading about the individual calls in the main section of this manual. HANDLES Before you can use libguestfs calls, you have to create a handle. Then you must add at least one disk image to the handle, followed by launching the handle, then performing whatever operations you want, and finally closing the handle. By convention we use the single letter "g" for the name of the handle variable, although of course you can use any name you want. The general structure of all libguestfs-using programs looks like this: guestfs_h *g = guestfs_create (); /* Call guestfs_add_drive additional times if there are * multiple disk images. */ guestfs_add_drive (g, "guest.img"); /* Most manipulation calls won't work until you've launched * the handle 'g'. You have to do this _after_ adding drives * and _before_ other commands. */ guestfs_launch (g); /* Either: examine what partitions, LVs etc are available: */ char **partitions = guestfs_list_partitions (g); char **logvols = guestfs_lvs (g); /* Or: ask libguestfs to find filesystems for you: */ char **filesystems = guestfs_list_filesystems (g); /* Or: use inspection (see INSPECTION section below). */ /* To access a filesystem in the image, you must mount it. */ guestfs_mount (g, "/dev/sda1", "/"); /* Now you can perform filesystem actions on the guest * disk image. */ guestfs_touch (g, "/hello"); /* Synchronize the disk. This is the opposite of guestfs_launch. */ guestfs_shutdown (g); /* Close and free the handle 'g'. */ guestfs_close (g); The code above doesn't include any error checking. In real code you should check return values carefully for errors. In general all functions that return integers return "-1" on error, and all functions that return pointers return "NULL" on error. See section "ERROR HANDLING" below for how to handle errors, and consult the documentation for each function call below to see precisely how they return error indications. The code above does not free(3) the strings and arrays returned from functions. Consult the documentation for each function to find out how to free the return value. See guestfs-examples(3) for fully worked examples. DISK IMAGES The image filename ("guest.img" in the example above) could be a disk image from a virtual machine, a dd(1) copy of a physical hard disk, an actual block device, or simply an empty file of zeroes that you have created through posix_fallocate(3). Libguestfs lets you do useful things to all of these. The call you should use in modern code for adding drives is "guestfs_add_drive_opts". To add a disk image, allowing writes, and specifying that the format is raw, do: guestfs_add_drive_opts (g, filename, GUESTFS_ADD_DRIVE_OPTS_FORMAT, "raw", -1); You can add a disk read-only using: guestfs_add_drive_opts (g, filename, GUESTFS_ADD_DRIVE_OPTS_FORMAT, "raw", GUESTFS_ADD_DRIVE_OPTS_READONLY, 1, -1); or by calling the older function "guestfs_add_drive_ro". If you use the readonly flag, libguestfs won't modify the file. (See also "DISK IMAGE FORMATS" below). Be extremely cautious if the disk image is in use, eg. if it is being used by a virtual machine. Adding it read-write will almost certainly cause disk corruption, but adding it read-only is safe. You should usually add at least one disk image, and you may add multiple disk images. If adding multiple disk images, they usually have to be "related", ie. from the same guest. In the API, the disk images are usually referred to as /dev/sda (for the first one you added), /dev/sdb (for the second one you added), etc. Once "guestfs_launch" has been called you cannot add any more images. You can call "guestfs_list_devices" to get a list of the device names, in the order that you added them. See also "BLOCK DEVICE NAMING" below. There are slightly different rules when hotplugging disks (in libguestfs ≥ 1.20). See "HOTPLUGGING" below. MOUNTING Before you can read or write files, create directories and so on in a disk image that contains filesystems, you have to mount those filesystems using "guestfs_mount" or "guestfs_mount_ro". If you already know that a disk image contains (for example) one partition with a filesystem on that partition, then you can mount it directly: guestfs_mount (g, "/dev/sda1", "/"); where /dev/sda1 means literally the first partition (1) of the first disk image that we added (/dev/sda). If the disk contains Linux LVM2 logical volumes you could refer to those instead (eg. /dev/VG/LV). Note that these are libguestfs virtual devices, and are nothing to do with host devices. If you are given a disk image and you don't know what it contains then you have to find out. Libguestfs can do that too: use "guestfs_list_partitions" and "guestfs_lvs" to list possible partitions and LVs, and either try mounting each to see what is mountable, or else examine them with "guestfs_vfs_type" or "guestfs_file". To list just filesystems, use "guestfs_list_filesystems". Libguestfs also has a set of APIs for inspection of unknown disk images (see "INSPECTION" below). You might also want to look at higher level programs built on top of libguestfs, in particular virt-inspector(1). To mount a filesystem read-only, use "guestfs_mount_ro". There are several other variations of the "guestfs_mount_*" call. FILESYSTEM ACCESS AND MODIFICATION The majority of the libguestfs API consists of fairly low-level calls for accessing and modifying the files, directories, symlinks etc on mounted filesystems. There are over a hundred such calls which you can find listed in detail below in this man page, and we don't even pretend to cover them all in this overview. Specify filenames as full paths, starting with "/" and including the mount point. For example, if you mounted a filesystem at "/" and you want to read the file called "etc/passwd" then you could do: char *data = guestfs_cat (g, "/etc/passwd"); This would return "data" as a newly allocated buffer containing the full content of that file (with some conditions: see also "DOWNLOADING" below), or "NULL" if there was an error. As another example, to create a top-level directory on that filesystem called "var" you would do: guestfs_mkdir (g, "/var"); To create a symlink you could do: guestfs_ln_s (g, "/etc/init.d/portmap", "/etc/rc3.d/S30portmap"); Libguestfs will reject attempts to use relative paths and there is no concept of a current working directory. Libguestfs can return errors in many situations: for example if the filesystem isn't writable, or if a file or directory that you requested doesn't exist. If you are using the C API (documented here) you have to check for those error conditions after each call. (Other language bindings turn these errors into exceptions). File writes are affected by the per-handle umask, set by calling "guestfs_umask" and defaulting to 022. See "UMASK". Since libguestfs 1.18, it is possible to mount the libguestfs filesystem on a local directory, subject to some restrictions. See "MOUNT LOCAL" below. PARTITIONING Libguestfs contains API calls to read, create and modify partition tables on disk images. In the common case where you want to create a single partition covering the whole disk, you should use the "guestfs_part_disk" call: const char *parttype = "mbr"; if (disk_is_larger_than_2TB) parttype = "gpt"; guestfs_part_disk (g, "/dev/sda", parttype); Obviously this effectively wipes anything that was on that disk image before. LVM2 Libguestfs provides access to a large part of the LVM2 API, such as "guestfs_lvcreate" and "guestfs_vgremove". It won't make much sense unless you familiarize yourself with the concepts of physical volumes, volume groups and logical volumes. This author strongly recommends reading the LVM HOWTO, online at http://tldp.org/HOWTO/LVM-HOWTO/. DOWNLOADING Use "guestfs_cat" to download small, text only files. This call cannot handle files containing any ASCII NUL ("\0") characters. However the API is very simple to use. "guestfs_read_file" can be used to read files which contain arbitrary 8 bit data, since it returns a (pointer, size) pair. "guestfs_download" can be used to download any file, with no limits on content or size. To download multiple files, see "guestfs_tar_out" and "guestfs_tgz_out". UPLOADING To write a small file with fixed content, use "guestfs_write". To create a file of all zeroes, use "guestfs_truncate_size" (sparse) or "guestfs_fallocate64" (with all disk blocks allocated). There are a variety of other functions for creating test files, for example "guestfs_fill" and "guestfs_fill_pattern". To upload a single file, use "guestfs_upload". This call has no limits on file content or size. To upload multiple files, see "guestfs_tar_in" and "guestfs_tgz_in". However the fastest way to upload large numbers of arbitrary files is to turn them into a squashfs or CD ISO (see mksquashfs(8) and mkisofs(8)), then attach this using "guestfs_add_drive_ro". If you add the drive in a predictable way (eg. adding it last after all other drives) then you can get the device name from "guestfs_list_devices" and mount it directly using "guestfs_mount_ro". Note that squashfs images are sometimes non- portable between kernel versions, and they don't support labels or UUIDs. If you want to pre-build an image or you need to mount it using a label or UUID, use an ISO image instead. COPYING There are various different commands for copying between files and devices and in and out of the guest filesystem. These are summarised in the table below. file to file Use "guestfs_cp" to copy a single file, or "guestfs_cp_a" to copy directories recursively. To copy part of a file (offset and size) use "guestfs_copy_file_to_file". file to device device to file device to device Use "guestfs_copy_file_to_device", "guestfs_copy_device_to_file", or "guestfs_copy_device_to_device". Example: duplicate the contents of an LV: guestfs_copy_device_to_device (g, "/dev/VG/Original", "/dev/VG/Copy", /* -1 marks the end of the list of optional parameters */ -1); The destination (/dev/VG/Copy) must be at least as large as the source (/dev/VG/Original). To copy less than the whole source device, use the optional "size" parameter: guestfs_copy_device_to_device (g, "/dev/VG/Original", "/dev/VG/Copy", GUESTFS_COPY_DEVICE_TO_DEVICE_SIZE, 10000, -1); file on the host to file or device Use "guestfs_upload". See "UPLOADING" above. file or device to file on the host Use "guestfs_download". See "DOWNLOADING" above. UPLOADING AND DOWNLOADING TO PIPES AND FILE DESCRIPTORS Calls like "guestfs_upload", "guestfs_download", "guestfs_tar_in", "guestfs_tar_out" etc appear to only take filenames as arguments, so it appears you can only upload and download to files. However many Un*x-like hosts let you use the special device files /dev/stdin, /dev/stdout, /dev/stderr and /dev/fd/N to read and write from stdin, stdout, stderr, and arbitrary file descriptor N. For example, virt-cat(1) writes its output to stdout by doing: guestfs_download (g, filename, "/dev/stdout"); and you can write tar output to a file descriptor "fd" by doing: char devfd[64]; snprintf (devfd, sizeof devfd, "/dev/fd/%d", fd); guestfs_tar_out (g, "/", devfd); LISTING FILES "guestfs_ll" is just designed for humans to read (mainly when using the guestfish(1)-equivalent command "ll"). "guestfs_ls" is a quick way to get a list of files in a directory from programs, as a flat list of strings. "guestfs_readdir" is a programmatic way to get a list of files in a directory, plus additional information about each one. It is more equivalent to using the readdir(3) call on a local filesystem. "guestfs_find" and "guestfs_find0" can be used to recursively list files. RUNNING COMMANDS Although libguestfs is primarily an API for manipulating files inside guest images, we also provide some limited facilities for running commands inside guests. There are many limitations to this: • The kernel version that the command runs under will be different from what it expects. • If the command needs to communicate with daemons, then most likely they won't be running. • The command will be running in limited memory. • The network may not be available unless you enable it (see "guestfs_set_network"). • Only supports Linux guests (not Windows, BSD, etc). • Architecture limitations (eg. won't work for a PPC guest on an X86 host). • For SELinux guests, you may need to relabel the guest after creating new files. See "SELINUX" below. • Security: It is not safe to run commands from untrusted, possibly malicious guests. These commands may attempt to exploit your program by sending unexpected output. They could also try to exploit the Linux kernel or qemu provided by the libguestfs appliance. They could use the network provided by the libguestfs appliance to bypass ordinary network partitions and firewalls. They could use the elevated privileges or different SELinux context of your program to their advantage. A secure alternative is to use libguestfs to install a "firstboot" script (a script which runs when the guest next boots normally), and to have this script run the commands you want in the normal context of the running guest, network security and so on. For information about other security issues, see guestfs-security(1). The two main API calls to run commands are "guestfs_command" and "guestfs_sh" (there are also variations). The difference is that "guestfs_sh" runs commands using the shell, so any shell globs, redirections, etc will work. CONFIGURATION FILES To read and write configuration files in Linux guest filesystems, we strongly recommend using Augeas. For example, Augeas understands how to read and write, say, a Linux shadow password file or X.org configuration file, and so avoids you having to write that code. The main Augeas calls are bound through the "guestfs_aug_*" APIs. We don't document Augeas itself here because there is excellent documentation on the http://augeas.net/ website. If you don't want to use Augeas (you fool!) then try calling "guestfs_read_lines" to get the file as a list of lines which you can iterate over. SYSTEMD JOURNAL FILES To read the systemd journal from a Linux guest, use the "guestfs_journal_*" APIs starting with "guestfs_journal_open". Consult the journal documentation here: sd-journal(3), sd_journal_open(3). SELINUX We support SELinux guests. However it is not possible to load the SELinux policy of the guest into the appliance kernel. Therefore the strategy for dealing with SELinux guests is to relabel them after making changes. In libguestfs ≥ 1.34 there is a new API, "guestfs_setfiles", which can be used for this. To properly use this API you have to parse the guest SELinux configuration. See the virt-customize(1) module customize/SELinux_relabel.ml for how to do this. A simpler but slower alternative is to touch /.autorelabel in the guest, which means that the guest will relabel itself at next boot. Libguestfs ≤ 1.32 had APIs "guestfs_set_selinux", "guestfs_get_selinux", "guestfs_setcon" and "guestfs_getcon". These did not work properly, are deprecated, and should not be used in new code. UMASK Certain calls are affected by the current file mode creation mask (the "umask"). In particular ones which create files or directories, such as "guestfs_touch", "guestfs_mknod" or "guestfs_mkdir". This affects either the default mode that the file is created with or modifies the mode that you supply. The default umask is 022, so files are created with modes such as 0644 and directories with 0755. There are two ways to avoid being affected by umask. Either set umask to 0 (call "guestfs_umask (g, 0)" early after launching). Or call "guestfs_chmod" after creating each file or directory. For more information about umask, see umask(2). LABELS AND UUIDS Many filesystems, devices and logical volumes support either labels (short strings like "BOOT" which might not be unique) and/or UUIDs (globally unique IDs). For filesystems, use "guestfs_vfs_label" or "guestfs_vfs_uuid" to read the label or UUID. Some filesystems let you call "guestfs_set_label" or "guestfs_set_uuid" to change the label or UUID. You can locate a filesystem by its label or UUID using "guestfs_findfs_label" or "guestfs_findfs_uuid". For LVM2 (which supports only UUIDs), there is a rich set of APIs for fetching UUIDs, fetching UUIDs of the contained objects, and changing UUIDs. See: "guestfs_lvuuid", "guestfs_vguuid", "guestfs_pvuuid", "guestfs_vglvuuids", "guestfs_vgpvuuids", "guestfs_vgchange_uuid", "guestfs_vgchange_uuid_all", "guestfs_pvchange_uuid", "guestfs_pvchange_uuid_all". Note when cloning a filesystem, device or whole guest, it is a good idea to set new randomly generated UUIDs on the copy. ENCRYPTED DISKS Libguestfs allows you to access Linux guests which have been encrypted using whole disk encryption that conforms to the Linux Unified Key Setup (LUKS) standard. This includes nearly all whole disk encryption systems used by modern Linux guests. Use "guestfs_vfs_type" to identify LUKS-encrypted block devices (it returns the string "crypto_LUKS"). Then open these devices by calling "guestfs_luks_open". Obviously you will require the passphrase! Opening a LUKS device creates a new device mapper device called /dev/mapper/mapname (where "mapname" is the string you supply to "guestfs_luks_open"). Reads and writes to this mapper device are decrypted from and encrypted to the underlying block device respectively. LVM volume groups on the device can be made visible by calling "guestfs_vgscan" followed by "guestfs_vg_activate_all". The logical volume(s) can now be mounted in the usual way. Use the reverse process to close a LUKS device. Unmount any logical volumes on it, deactivate the volume groups by calling "guestfs_vg_activate (g, 0, ["/dev/VG"])". Then close the mapper device by calling "guestfs_luks_close" on the /dev/mapper/mapname device (not the underlying encrypted block device). MOUNT LOCAL In libguestfs ≥ 1.18, it is possible to mount the libguestfs filesystem on a local directory and access it using ordinary POSIX calls and programs. Availability of this is subject to a number of restrictions: it requires FUSE (the Filesystem in USErspace), and libfuse must also have been available when libguestfs was compiled. FUSE may require that a kernel module is loaded, and it may be necessary to add the current user to a special "fuse" group. See the documentation for your distribution and http://fuse.sf.net for further information. The call to mount the libguestfs filesystem on a local directory is "guestfs_mount_local" (q.v.) followed by "guestfs_mount_local_run". The latter does not return until you unmount the filesystem. The reason is that the call enters the FUSE main loop and processes kernel requests, turning them into libguestfs calls. An alternative design would have been to create a background thread to do this, but libguestfs doesn't require pthreads. This way is also more flexible: for example the user can create another thread for "guestfs_mount_local_run". "guestfs_mount_local" needs a certain amount of time to set up the mountpoint. The mountpoint is not ready to use until the call returns. At this point, accesses to the filesystem will block until the main loop is entered (ie. "guestfs_mount_local_run"). So if you need to start another process to access the filesystem, put the fork between "guestfs_mount_local" and "guestfs_mount_local_run". MOUNT LOCAL COMPATIBILITY Since local mounting was only added in libguestfs 1.18, and may not be available even in these builds, you should consider writing code so that it doesn't depend on this feature, and can fall back to using libguestfs file system calls. If libguestfs was compiled without support for "guestfs_mount_local" then calling it will return an error with errno set to "ENOTSUP" (see "guestfs_last_errno"). MOUNT LOCAL PERFORMANCE Libguestfs on top of FUSE performs quite poorly. For best performance do not use it. Use ordinary libguestfs filesystem calls, upload, download etc. instead. HOTPLUGGING In libguestfs ≥ 1.20, you may add drives and remove after calling "guestfs_launch". There are some restrictions, see below. This is called hotplugging. Only a subset of the backends support hotplugging (currently only the libvirt backend has support). It also requires that you use libvirt ≥ 0.10.3 and qemu ≥ 1.2. To hot-add a disk, simply call "guestfs_add_drive_opts" after "guestfs_launch". It is mandatory to specify the "label" parameter so that the newly added disk has a predictable name. For example: if (guestfs_launch (g) == -1) error ("launch failed"); if (guestfs_add_drive_opts (g, filename, GUESTFS_ADD_DRIVE_OPTS_LABEL, "newdisk", -1) == -1) error ("hot-add of disk failed"); if (guestfs_part_disk ("/dev/disk/guestfs/newdisk", "mbr") == -1) error ("partitioning of hot-added disk failed"); To hot-remove a disk, call "guestfs_remove_drive". You can call this before or after "guestfs_launch". You can only remove disks that were previously added with a label. Backends that support hotplugging do not require that you add ≥ 1 disk before calling launch. When hotplugging is supported you don't need to add any disks. REMOTE STORAGE CEPH Libguestfs can access Ceph (librbd/RBD) disks. To do this, set the optional "protocol" and "server" parameters of "guestfs_add_drive_opts" like this: char **servers = { "ceph1.example.org:3000", /* ... */, NULL }; guestfs_add_drive_opts (g, "pool/image", GUESTFS_ADD_DRIVE_OPTS_FORMAT, "raw", GUESTFS_ADD_DRIVE_OPTS_PROTOCOL, "rbd", GUESTFS_ADD_DRIVE_OPTS_SERVER, servers, GUESTFS_ADD_DRIVE_OPTS_USERNAME, "rbduser", GUESTFS_ADD_DRIVE_OPTS_SECRET, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA==", -1); "servers" (the "server" parameter) is a list of one or more Ceph servers. The server string is documented in "guestfs_add_drive_opts". The "username" and "secret" parameters are also optional, and if not given, then no authentication will be used. FTP, HTTP AND TFTP Libguestfs can access remote disks over FTP, FTPS, HTTP, HTTPS or TFTP protocols. To do this, set the optional "protocol" and "server" parameters of "guestfs_add_drive_opts" like this: char **servers = { "www.example.org", NULL }; guestfs_add_drive_opts (g, "/disk.img", GUESTFS_ADD_DRIVE_OPTS_FORMAT, "raw", GUESTFS_ADD_DRIVE_OPTS_PROTOCOL, "http", GUESTFS_ADD_DRIVE_OPTS_SERVER, servers, -1); The "protocol" can be one of "ftp", "ftps", "http", "https" or "tftp". "servers" (the "server" parameter) is a list which must have a single element. The single element is a string defining the web, FTP or TFTP server. The format of this string is documented in "guestfs_add_drive_opts". GLUSTER Libguestfs can access Gluster disks. To do this, set the optional "protocol" and "server" parameters of "guestfs_add_drive_opts" like this: char **servers = { "gluster.example.org:24007", NULL }; guestfs_add_drive_opts (g, "volname/image", GUESTFS_ADD_DRIVE_OPTS_FORMAT, "raw", GUESTFS_ADD_DRIVE_OPTS_PROTOCOL, "gluster", GUESTFS_ADD_DRIVE_OPTS_SERVER, servers, -1); "servers" (the "server" parameter) is a list which must have a single element. The single element is a string defining the Gluster server. The format of this string is documented in "guestfs_add_drive_opts". Note that gluster usually requires the client process (ie. libguestfs) to run as root and will give unfathomable errors if it is not (eg. "No data available"). ISCSI Libguestfs can access iSCSI disks remotely. To do this, set the optional "protocol" and "server" parameters like this: char **server = { "iscsi.example.org:3000", NULL }; guestfs_add_drive_opts (g, "target-iqn-name/lun", GUESTFS_ADD_DRIVE_OPTS_FORMAT, "raw", GUESTFS_ADD_DRIVE_OPTS_PROTOCOL, "iscsi", GUESTFS_ADD_DRIVE_OPTS_SERVER, server, -1); The "server" parameter is a list which must have a single element. The single element is a string defining the iSCSI server. The format of this string is documented in "guestfs_add_drive_opts". NETWORK BLOCK DEVICE Libguestfs can access Network Block Device (NBD) disks remotely. To do this, set the optional "protocol" and "server" parameters of "guestfs_add_drive_opts" like this: char **server = { "nbd.example.org:3000", NULL }; guestfs_add_drive_opts (g, "" /* export name - see below */, GUESTFS_ADD_DRIVE_OPTS_FORMAT, "raw", GUESTFS_ADD_DRIVE_OPTS_PROTOCOL, "nbd", GUESTFS_ADD_DRIVE_OPTS_SERVER, server, -1); Notes: • "server" is in fact a list of servers. For NBD you must always supply a list with a single element. (Other remote protocols require zero or more than one server, hence the requirement for this parameter to be a list). • The "server" string is documented in "guestfs_add_drive_opts". To connect to a local qemu-nbd instance over a Unix domain socket, use "unix:/path/to/socket". • The "filename" parameter is the NBD export name. Use an empty string to mean the default export. Many NBD servers, including qemu-nbd, do not support export names. • If using qemu-nbd as your server, you should always specify the "-t" option. The reason is that libguestfs may open several connections to the server. • The libvirt backend requires that you set the "format" parameter of "guestfs_add_drive_opts" accurately when you use writable NBD disks. • The libvirt backend has a bug that stops Unix domain socket connections from working: https://bugzilla.redhat.com/show_bug.cgi?id=922888 • The direct backend does not support readonly connections because of a bug in qemu: https://bugs.launchpad.net/qemu/+bug/1155677 SHEEPDOG Libguestfs can access Sheepdog disks. To do this, set the optional "protocol" and "server" parameters of "guestfs_add_drive_opts" like this: char **servers = { /* optional servers ... */ NULL }; guestfs_add_drive_opts (g, "volume", GUESTFS_ADD_DRIVE_OPTS_FORMAT, "raw", GUESTFS_ADD_DRIVE_OPTS_PROTOCOL, "sheepdog", GUESTFS_ADD_DRIVE_OPTS_SERVER, servers, -1); The optional list of "servers" may be zero or more server addresses ("hostname:port"). The format of the server strings is documented in "guestfs_add_drive_opts". SSH Libguestfs can access disks over a Secure Shell (SSH) connection. To do this, set the "protocol" and "server" and (optionally) "username" parameters of "guestfs_add_drive_opts" like this: char **server = { "remote.example.com", NULL }; guestfs_add_drive_opts (g, "/path/to/disk.img", GUESTFS_ADD_DRIVE_OPTS_FORMAT, "raw", GUESTFS_ADD_DRIVE_OPTS_PROTOCOL, "ssh", GUESTFS_ADD_DRIVE_OPTS_SERVER, server, GUESTFS_ADD_DRIVE_OPTS_USERNAME, "remoteuser", -1); The format of the server string is documented in "guestfs_add_drive_opts". INSPECTION Libguestfs has APIs for inspecting an unknown disk image to find out if it contains operating systems, an install CD or a live CD. Add all disks belonging to the unknown virtual machine and call "guestfs_launch" in the usual way. Then call "guestfs_inspect_os". This function uses other libguestfs calls and certain heuristics, and returns a list of operating systems that were found. An empty list means none were found. A single element is the root filesystem of the operating system. For dual- or multi-boot guests, multiple roots can be returned, each one corresponding to a separate operating system. (Multi-boot virtual machines are extremely rare in the world of virtualization, but since this scenario can happen, we have built libguestfs to deal with it.) For each root, you can then call various "guestfs_inspect_get_*" functions to get additional details about that operating system. For example, call "guestfs_inspect_get_type" to return the string "windows" or "linux" for Windows and Linux-based operating systems respectively. Un*x-like and Linux-based operating systems usually consist of several filesystems which are mounted at boot time (for example, a separate boot partition mounted on /boot). The inspection rules are able to detect how filesystems correspond to mount points. Call "guestfs_inspect_get_mountpoints" to get this mapping. It might return a hash table like this example: /boot => /dev/sda1 / => /dev/vg_guest/lv_root /usr => /dev/vg_guest/lv_usr The caller can then make calls to "guestfs_mount" to mount the filesystems as suggested. Be careful to mount filesystems in the right order (eg. / before /usr). Sorting the keys of the hash by length, shortest first, should work. Inspection currently only works for some common operating systems. Contributors are welcome to send patches for other operating systems that we currently cannot detect. Encrypted disks must be opened before inspection. See "ENCRYPTED DISKS" for more details. The "guestfs_inspect_os" function just ignores any encrypted devices. A note on the implementation: The call "guestfs_inspect_os" performs inspection and caches the results in the guest handle. Subsequent calls to "guestfs_inspect_get_*" return this cached information, but do not re-read the disks. If you change the content of the guest disks, you can redo inspection by calling "guestfs_inspect_os" again. ("guestfs_inspect_list_applications2" works a little differently from the other calls and does read the disks. See documentation for that function for details). INSPECTING INSTALL DISKS Libguestfs (since 1.9.4) can detect some install disks, install CDs, live CDs and more. Call "guestfs_inspect_get_format" to return the format of the operating system, which currently can be "installed" (a regular operating system) or "installer" (some sort of install disk). Further information is available about the operating system that can be installed using the regular inspection APIs like "guestfs_inspect_get_product_name", "guestfs_inspect_get_major_version" etc. Some additional information specific to installer disks is also available from the "guestfs_inspect_is_live", "guestfs_inspect_is_netinst" and "guestfs_inspect_is_multipart" calls. SPECIAL CONSIDERATIONS FOR WINDOWS GUESTS Libguestfs can mount NTFS partitions. It does this using the http://www.ntfs-3g.org/ driver. DRIVE LETTERS AND PATHS DOS and Windows still use drive letters, and the filesystems are always treated as case insensitive by Windows itself, and therefore you might find a Windows configuration file referring to a path like "c:\windows\system32". When the filesystem is mounted in libguestfs, that directory might be referred to as /WINDOWS/System32. Drive letter mappings can be found using inspection (see "INSPECTION" and "guestfs_inspect_get_drive_mappings") Dealing with separator characters (backslash vs forward slash) is outside the scope of libguestfs, but usually a simple character replacement will work. To resolve the case insensitivity of paths, call "guestfs_case_sensitive_path". LONG FILENAMES ON NTFS NTFS supports filenames up to 255 characters long. "Character" means a 2 byte UTF-16 codepoint which can encode the most common Unicode codepoints. Most Linux filesystems support filenames up to 255 bytes. This means you may get an error: File name too long when you copy a file from NTFS to a Linux filesystem if the name, when reencoded as UTF-8, would exceed 255 bytes in length. This will most often happen when using non-ASCII names that are longer than ~127 characters (eg. Greek, Cyrillic) or longer than ~85 characters (Asian languages). A workaround is not to try to store such long filenames on Linux native filesystems. Since the tar(1) format can store unlimited length filenames, keep the files in a tarball. ACCESSING THE WINDOWS REGISTRY Libguestfs also provides some help for decoding Windows Registry "hive" files, through a separate C library called hivex(3). Before libguestfs 1.19.35 you had to download the hive file, operate on it locally using hivex, and upload it again. Since this version, we have included the major hivex APIs directly in the libguestfs API (see "guestfs_hivex_open"). This means that if you have opened a Windows guest, you can read and write the registry directly. See also virt-win-reg(1). SYMLINKS ON NTFS-3G FILESYSTEMS Ntfs-3g tries to rewrite "Junction Points" and NTFS "symbolic links" to provide something which looks like a Linux symlink. The way it tries to do the rewriting is described here: http://www.tuxera.com/community/ntfs-3g-advanced/junction-points-and-symbolic-links/ The essential problem is that ntfs-3g simply does not have enough information to do a correct job. NTFS links can contain drive letters and references to external device GUIDs that ntfs-3g has no way of resolving. It is almost certainly the case that libguestfs callers should ignore what ntfs-3g does (ie. don't use "guestfs_readlink" on NTFS volumes). Instead if you encounter a symbolic link on an ntfs-3g filesystem, use "guestfs_lgetxattr" to read the "system.ntfs_reparse_data" extended attribute, and read the raw reparse data from that (you can find the format documented in various places around the web). EXTENDED ATTRIBUTES ON NTFS-3G FILESYSTEMS There are other useful extended attributes that can be read from ntfs-3g filesystems (using "guestfs_getxattr"). See: http://www.tuxera.com/community/ntfs-3g-advanced/extended-attributes/ WINDOWS HIBERNATION AND WINDOWS 8 FAST STARTUP Windows guests which have been hibernated (instead of fully shut down) cannot be mounted. This is a limitation of ntfs-3g. You will see an error like this: The disk contains an unclean file system (0, 0). Metadata kept in Windows cache, refused to mount. Failed to mount '/dev/sda2': Operation not permitted The NTFS partition is in an unsafe state. Please resume and shutdown Windows fully (no hibernation or fast restarting), or mount the volume read-only with the 'ro' mount option. In Windows 8, the shutdown button does not shut down the guest at all. Instead it usually hibernates the guest. This is known as "fast startup". Some suggested workarounds are: • Mount read-only (eg. "guestfs_mount_ro"). • On Windows 8, turn off fast startup. It is in the Control Panel → Power Options → Choose what the power buttons do → Change settings that are currently unavailable → Turn on fast startup. • On Windows 7 and earlier, shut the guest off properly instead of hibernating it. RESIZE2FS ERRORS The "guestfs_resize2fs", "guestfs_resize2fs_size" and "guestfs_resize2fs_M" calls are used to resize ext2/3/4 filesystems. The underlying program (resize2fs(8)) requires that the filesystem is clean and recently fsck'd before you can resize it. Also, if the resize operation fails for some reason, then you had to call fsck the filesystem again to fix it. In libguestfs "lt" 1.17.14, you usually had to call "guestfs_e2fsck_f" before the resize. However, in "ge" 1.17.14, e2fsck(8) is called automatically before the resize, so you no longer need to do this. The resize2fs(8) program can still fail, in which case it prints an error message similar to: Please run 'e2fsck -fy <device>' to fix the filesystem after the aborted resize operation. You can do this by calling "guestfs_e2fsck" with the "forceall" option. However in the context of disk images, it is usually better to avoid this situation, eg. by rolling back to an earlier snapshot, or by copying and resizing and on failure going back to the original. USING LIBGUESTFS WITH OTHER PROGRAMMING LANGUAGES Although we don't want to discourage you from using the C API, we will mention here that the same API is also available in other languages. The API is broadly identical in all supported languages. This means that the C call "guestfs_add_drive_ro(g,file)" is "$g->add_drive_ro($file)" in Perl, "g.add_drive_ro(file)" in Python, and "g#add_drive_ro file" in OCaml. In other words, a straightforward, predictable isomorphism between each language. Error messages are automatically transformed into exceptions if the language supports it. We don't try to "object orientify" parts of the API in OO languages, although contributors are welcome to write higher level APIs above what we provide in their favourite languages if they wish. C++ You can use the guestfs.h header file from C++ programs. The C++ API is identical to the C API. C++ classes and exceptions are not used. C# The C# bindings are highly experimental. Please read the warnings at the top of csharp/Libguestfs.cs. Erlang See guestfs-erlang(3). GObject Experimental GObject bindings (with GObject Introspection support) are available. See guestfs-gobject(3). Go See guestfs-golang(3). Haskell This language binding is working but incomplete: • Functions with optional arguments are not bound. Implementing optional arguments in Haskell seems to be very complex. • Events are not bound. • Functions with the following return types are not bound: • Any function returning a struct. • Any function returning a list of structs. • A few functions that return fixed length buffers (specifically ones declared "RBufferOut" in the generator). • A tiny number of obscure functions that return constant strings (specifically ones declared "RConstOptString" in the generator). Java Full documentation is contained in the Javadoc which is distributed with libguestfs. For examples, see guestfs-java(3). Lua See guestfs-lua(3). OCaml See guestfs-ocaml(3). Perl See guestfs-perl(3) and Sys::Guestfs(3). PHP For documentation see "README-PHP" supplied with libguestfs sources or in the php- libguestfs package for your distribution. The PHP binding only works correctly on 64 bit machines. Python See guestfs-python(3). Ruby See guestfs-ruby(3). For JRuby, use the Java bindings. shell scripts See guestfish(1). LIBGUESTFS GOTCHAS http://en.wikipedia.org/wiki/Gotcha_(programming): "A feature of a system [...] that works in the way it is documented but is counterintuitive and almost invites mistakes." Since we developed libguestfs and the associated tools, there are several things we would have designed differently, but are now stuck with for backwards compatibility or other reasons. If there is ever a libguestfs 2.0 release, you can expect these to change. Beware of them. Read-only should be the default. In guestfish(3), --ro should be the default, and you should have to specify --rw if you want to make changes to the image. This would reduce the potential to corrupt live VM images. Note that many filesystems change the disk when you just mount and unmount, even if you didn't perform any writes. You need to use "guestfs_add_drive_ro" to guarantee that the disk is not changed. guestfish command line is hard to use. guestfish disk.img doesn't do what people expect (open disk.img for examination). It tries to run a guestfish command disk.img which doesn't exist, so it fails. In earlier versions of guestfish the error message was also unintuitive, but we have corrected this since. Like the Bourne shell, we should have used "guestfish -c command" to run commands. guestfish megabyte modifiers don't work right on all commands In recent guestfish you can use "1M" to mean 1 megabyte (and similarly for other modifiers). What guestfish actually does is to multiply the number part by the modifier part and pass the result to the C API. However this doesn't work for a few APIs which aren't expecting bytes, but are already expecting some other unit (eg. megabytes). The most common is "guestfs_lvcreate". The guestfish command: lvcreate LV VG 100M does not do what you might expect. Instead because "guestfs_lvcreate" is already expecting megabytes, this tries to create a 100 terabyte (100 megabytes * megabytes) logical volume. The error message you get from this is also a little obscure. This could be fixed in the generator by specially marking parameters and return values which take bytes or other units. Ambiguity between devices and paths There is a subtle ambiguity in the API between a device name (eg. /dev/sdb2) and a similar pathname. A file might just happen to be called "sdb2" in the directory /dev (consider some non-Unix VM image). In the current API we usually resolve this ambiguity by having two separate calls, for example "guestfs_checksum" and "guestfs_checksum_device". Some API calls are ambiguous and (incorrectly) resolve the problem by detecting if the path supplied begins with /dev/. To avoid both the ambiguity and the need to duplicate some calls, we could make paths/devices into structured names. One way to do this would be to use a notation like grub ("hd(0,0)"), although nobody really likes this aspect of grub. Another way would be to use a structured type, equivalent to this OCaml type: type path = Path of string | Device of int | Partition of int * int which would allow you to pass arguments like: Path "/foo/bar" Device 1 (* /dev/sdb, or perhaps /dev/sda *) Partition (1, 2) (* /dev/sdb2 (or is it /dev/sda2 or /dev/sdb3?) *) Path "/dev/sdb2" (* not a device *) As you can see there are still problems to resolve even with this representation. Also consider how it might work in guestfish. KEYS AND PASSPHRASES Certain libguestfs calls take a parameter that contains sensitive key material, passed in as a C string. In the future we would hope to change the libguestfs implementation so that keys are mlock(2)-ed into physical RAM, and thus can never end up in swap. However this is not done at the moment, because of the complexity of such an implementation. Therefore you should be aware that any key parameter you pass to libguestfs might end up being written out to the swap partition. If this is a concern, scrub the swap partition or don't use libguestfs on encrypted devices. MULTIPLE HANDLES AND MULTIPLE THREADS All high-level libguestfs actions are synchronous. If you want to use libguestfs asynchronously then you must create a thread. Only use the handle from a single thread. Either use the handle exclusively from one thread, or provide your own mutex so that two threads cannot issue calls on the same handle at the same time. Even apparently innocent functions like "guestfs_get_trace" are not safe to be called from multiple threads without a mutex. See the graphical program guestfs-browser for one possible architecture for multithreaded programs using libvirt and libguestfs. Use "guestfs_set_identifier" to make it simpler to identify threads in trace output. PATH Libguestfs needs a supermin appliance, which it finds by looking along an internal path. By default it looks for these in the directory "$libdir/guestfs" (eg. /usr/local/lib/guestfs or /usr/lib64/guestfs). Use "guestfs_set_path" or set the environment variable "LIBGUESTFS_PATH" to change the directories that libguestfs will search in. The value is a colon-separated list of paths. The current directory is not searched unless the path contains an empty element or ".". For example "LIBGUESTFS_PATH=:/usr/lib/guestfs" would search the current directory and then /usr/lib/guestfs. QEMU WRAPPERS If you want to compile your own qemu, run qemu from a non-standard location, or pass extra arguments to qemu, then you can write a shell-script wrapper around qemu. There is one important rule to remember: you must "exec qemu" as the last command in the shell script (so that qemu replaces the shell and becomes the direct child of the libguestfs-using program). If you don't do this, then the qemu process won't be cleaned up correctly. Here is an example of a wrapper, where I have built my own copy of qemu from source: #!/bin/sh - qemudir=/home/rjones/d/qemu exec $qemudir/x86_64-softmmu/qemu-system-x86_64 -L $qemudir/pc-bios "$@" Save this script as /tmp/qemu.wrapper (or wherever), "chmod +x", and then use it by setting the LIBGUESTFS_HV environment variable. For example: LIBGUESTFS_HV=/tmp/qemu.wrapper guestfish Note that libguestfs also calls qemu with the -help and -version options in order to determine features. Wrappers can also be used to edit the options passed to qemu. In the following example, the "-machine ..." option ("-machine" and the following argument) are removed from the command line and replaced with "-machine pc,accel=tcg". The while loop iterates over the options until it finds the right one to remove, putting the remaining options into the "args" array. #!/bin/bash - i=0 while [ $# -gt 0 ]; do case "$1" in -machine) shift 2;; *) args[i]="$1" (( i++ )) shift ;; esac done exec qemu-kvm -machine pc,accel=tcg "${args[@]}" BACKEND The backend (previously known as the "attach method") controls how libguestfs creates and/or connects to the backend daemon, eg. by starting qemu directly, or using libvirt to manage an appliance, running User-Mode Linux, or connecting to an already running daemon. You can set the backend by calling "guestfs_set_backend", or by setting the environment variable "LIBGUESTFS_BACKEND". Possible backends are described below: "direct" "appliance" Run qemu directly to launch an appliance. "direct" and "appliance" are synonyms. This is the ordinary method and normally the default, but see the note below. "libvirt" "libvirt:null" "libvirt:URI" Use libvirt to launch and manage the appliance. "libvirt" causes libguestfs to choose a suitable URI for creating session guests. If using the libvirt backend, you almost always should use this. "libvirt:null" causes libguestfs to use the "NULL" connection URI, which causes libvirt to try to guess what the user meant. You probably don't want to use this. "libvirt:URI" uses URI as the libvirt connection URI (see http://libvirt.org/uri.html). The typical libvirt backend with a URI would be "libvirt:qemu:///session" The libvirt backend supports more features, including hotplugging (see "HOTPLUGGING") and sVirt. "uml" Run the User-Mode Linux kernel. The location of the kernel is set using $LIBGUESTFS_HV or using the "guestfs_set_qemu" API (note that qemu is not involved, we just reuse the same variable in the handle for convenience). User-Mode Linux can be much faster, simpler and more lightweight than using a full- blown virtual machine, but it also has some shortcomings. See "USER-MODE LINUX BACKEND" below. "unix:path" Connect to the Unix domain socket path. This method lets you connect to an existing daemon or (using virtio-serial) to a live guest. For more information, see "ATTACHING TO RUNNING DAEMONS". "direct" is usually the default backend. However since libguestfs ≥ 1.19.24, libguestfs can be built with a different default by doing: ./configure --with-default-backend=... To find out if libguestfs was compiled with a different default backend, do: unset LIBGUESTFS_BACKEND guestfish get-backend BACKEND SETTINGS Each backend can be configured by passing a list of strings. You can either call "guestfs_set_backend_settings" with a list of strings, or set the "LIBGUESTFS_BACKEND_SETTINGS" environment variable to a colon-separated list of strings (before creating the handle). force_tcg Using: export LIBGUESTFS_BACKEND_SETTINGS=force_tcg will force the direct and libvirt backends to use TCG (software emulation) instead of KVM (hardware accelerated virtualization). gdb The direct backend supports: export LIBGUESTFS_BACKEND_SETTINGS=gdb When this is set, qemu will not start running the appliance immediately. It will wait for you to connect to it using gdb: $ gdb (gdb) symbol-file /path/to/vmlinux (gdb) target remote tcp::1234 (gdb) cont You can then debug the appliance kernel, which is useful to debug boot failures (especially ones where there are no debug messages printed - tip: look in the kernel "log_buf"). On Fedora, install "kernel-debuginfo" for the "vmlinux" file (containing symbols). Make sure the symbols precisely match the kernel being used. network_bridge The libvirt backend supports: export LIBGUESTFS_BACKEND_SETTINGS=network_bridge=virbrX This allows you to override the bridge that is connected to when the network is enabled. The default is "virbr0". See also "guestfs_set_network". ATTACHING TO RUNNING DAEMONS Note (1): This is highly experimental and has a tendency to eat babies. Use with caution. Note (2): This section explains how to attach to a running daemon from a low level perspective. For most users, simply using virt tools such as guestfish(1) with the --live option will "just work". Using guestfs_set_backend By calling "guestfs_set_backend" you can change how the library connects to the "guestfsd" daemon in "guestfs_launch" (read "ARCHITECTURE" in guestfs-internals(1) for some background). The normal backend is "direct", where a small appliance is created containing the daemon, and then the library connects to this. "libvirt" or "libvirt:URI" are alternatives that use libvirt to start the appliance. Setting the backend to "unix:path" (where path is the path of a Unix domain socket) causes "guestfs_launch" to connect to an existing daemon over the Unix domain socket. The normal use for this is to connect to a running virtual machine that contains a "guestfsd" daemon, and send commands so you can read and write files inside the live virtual machine. Using guestfs_add_domain with live flag "guestfs_add_domain" provides some help for getting the correct backend. If you pass the "live" option to this function, then (if the virtual machine is running) it will examine the libvirt XML looking for a virtio-serial channel to connect to: <domain> ... <devices> ... <channel type='unix'> <source mode='bind' path='/path/to/socket'/> <target type='virtio' name='org.libguestfs.channel.0'/> </channel> ... </devices> </domain> "guestfs_add_domain" extracts /path/to/socket and sets the backend to "unix:/path/to/socket". Some of the libguestfs tools (including guestfish) support a --live option which is passed through to "guestfs_add_domain" thus allowing you to attach to and modify live virtual machines. The virtual machine needs to have been set up beforehand so that it has the virtio-serial channel and so that guestfsd is running inside it. USER-MODE LINUX BACKEND Setting the following environment variables (or the equivalent in the API) selects the User-Mode Linux backend: export LIBGUESTFS_BACKEND=uml export LIBGUESTFS_HV=/path/to/vmlinux "vmlinux" (or it may be called "linux") is the Linux binary, compiled to run as a userspace process. Note that we reuse the qemu variable in the handle for convenience; qemu is not involved. User-Mode Linux can be faster and more lightweight than running a full-blown virtual machine as the backend (especially if you are already running libguestfs in a virtual machine or cloud instance), but it also has some shortcomings compared to the usual qemu/KVM-based backend. BUILDING USER-MODE LINUX FROM SOURCE Your Linux distro may provide UML in which case you can ignore this section. These instructions are adapted from: http://user-mode-linux.sourceforge.net/source.html 1. Check out Linux sources Clone the Linux git repository or download the Linux source tarball. 2. Configure the kernel Note: All 'make' commands must have "ARCH=um" added. make menuconfig ARCH=um Make sure any filesystem drivers that you need are compiled into the kernel. Currently, it needs a large amount of extra work to get modules working. It's recommended that you disable module support in the kernel configuration, which will cause everything to be compiled into the image. 3. Build the kernel make ARCH=um This will leave a file called "linux" or "vmlinux" in the top-level directory. This is the UML kernel. You should set "LIBGUESTFS_HV" to point to this file. USER-MODE LINUX DIFFERENCES FROM KVM UML only supports raw-format images Only plain raw-format images will work. No qcow2, no backing files. UML does not support any remote drives No NBD, etc. UML only works on ix86 and x86-64 UML is experimental In particular, support for UML in libguestfs depends on support for UML in the upstream kernel. If UML was ever removed from the upstream Linux kernel, then we might remove it from libguestfs too. ABI GUARANTEE We guarantee the libguestfs ABI (binary interface), for public, high-level actions as outlined in this section. Although we will deprecate some actions, for example if they get replaced by newer calls, we will keep the old actions forever. This allows you the developer to program in confidence against the libguestfs API. BLOCK DEVICE NAMING In the kernel there is now quite a profusion of schemata for naming block devices (in this context, by block device I mean a physical or virtual hard drive). The original Linux IDE driver used names starting with /dev/hd*. SCSI devices have historically used a different naming scheme, /dev/sd*. When the Linux kernel libata driver became a popular replacement for the old IDE driver (particularly for SATA devices) those devices also used the /dev/sd* scheme. Additionally we now have virtual machines with paravirtualized drivers. This has created several different naming systems, such as /dev/vd* for virtio disks and /dev/xvd* for Xen PV disks. As discussed above, libguestfs uses a qemu appliance running an embedded Linux kernel to access block devices. We can run a variety of appliances based on a variety of Linux kernels. This causes a problem for libguestfs because many API calls use device or partition names. Working scripts and the recipe (example) scripts that we make available over the internet could fail if the naming scheme changes. Therefore libguestfs defines /dev/sd* as the standard naming scheme. Internally /dev/sd* names are translated, if necessary, to other names as required. For example, under RHEL 5 which uses the /dev/hd* scheme, any device parameter /dev/sda2 is translated to /dev/hda2 transparently. Note that this only applies to parameters. The "guestfs_list_devices", "guestfs_list_partitions" and similar calls return the true names of the devices and partitions as known to the appliance, but see "guestfs_canonical_device_name". DISK LABELS In libguestfs ≥ 1.20, you can give a label to a disk when you add it, using the optional "label" parameter to "guestfs_add_drive_opts". (Note that disk labels are different from and not related to filesystem labels). Not all versions of libguestfs support setting a disk label, and when it is supported, it is limited to 20 ASCII characters "[a-zA-Z]". When you add a disk with a label, it can either be addressed using /dev/sd*, or using /dev/disk/guestfs/label. Partitions on the disk can be addressed using /dev/disk/guestfs/labelpartnum. Listing devices ("guestfs_list_devices") and partitions ("guestfs_list_partitions") returns the raw block device name. However you can use "guestfs_list_disk_labels" to map disk labels to raw block device and partition names. ALGORITHM FOR BLOCK DEVICE NAME TRANSLATION Usually this translation is transparent. However in some (very rare) cases you may need to know the exact algorithm. Such cases include where you use "guestfs_config" to add a mixture of virtio and IDE devices to the qemu-based appliance, so have a mixture of /dev/sd* and /dev/vd* devices. The algorithm is applied only to parameters which are known to be either device or partition names. Return values from functions such as "guestfs_list_devices" are never changed. • Is the string a parameter which is a device or partition name? • Does the string begin with /dev/sd? • Does the named device exist? If so, we use that device. However if not then we continue with this algorithm. • Replace initial /dev/sd string with /dev/hd. For example, change /dev/sda2 to /dev/hda2. If that named device exists, use it. If not, continue. • Replace initial /dev/sd string with /dev/vd. If that named device exists, use it. If not, return an error. PORTABILITY CONCERNS WITH BLOCK DEVICE NAMING Although the standard naming scheme and automatic translation is useful for simple programs and guestfish scripts, for larger programs it is best not to rely on this mechanism. Where possible for maximum future portability programs using libguestfs should use these future-proof techniques: • Use "guestfs_list_devices" or "guestfs_list_partitions" to list actual device names, and then use those names directly. Since those device names exist by definition, they will never be translated. • Use higher level ways to identify filesystems, such as LVM names, UUIDs and filesystem labels. NULL DISKS When adding a disk using, eg., "guestfs_add_drive", you can set the filename to "/dev/null". This string is treated specially by libguestfs, causing it to add a "null disk". A null disk has the following properties: • A null disk will appear as a normal device, eg. in calls to "guestfs_list_devices". • You may add "/dev/null" multiple times. • You should not try to access a null disk in any way. For example, you shouldn't try to read it or mount it. Null disks are used for three main purposes: 1. Performance testing of libguestfs (see guestfs-performance(1)). 2. The internal test suite. 3. If you want to use libguestfs APIs that don't refer to disks, since libguestfs requires that at least one disk is added, you should add a null disk. For example, to test if a feature is available, use code like this: guestfs_h *g; char **groups = [ "btrfs", NULL ]; g = guestfs_create (); guestfs_add_drive (g, "/dev/null"); guestfs_launch (g); if (guestfs_available (g, groups) == 0) { // group(s) are available } else { // group(s) are not available } guestfs_close (g); DISK IMAGE FORMATS Virtual disks come in a variety of formats. Some common formats are listed below. Note that libguestfs itself is not responsible for handling the disk format: this is done using qemu(1). If support for a particular format is missing or broken, this has to be fixed in qemu. COMMON VIRTUAL DISK IMAGE FORMATS raw Raw format is simply a dump of the sequential bytes of the virtual hard disk. There is no header, container, compression or processing of any sort. Since raw format requires no translation to read or write, it is both fast and very well supported by qemu and all other hypervisors. You can consider it to be a universal format that any hypervisor can access. Raw format files are not compressed and so take up the full space of the original disk image even when they are empty. A variation (on Linux/Unix at least) is to not store ranges of all-zero bytes by storing the file as a sparse file. This "variant format" is sometimes called raw sparse. Many utilities, including virt-sparsify(1), can make raw disk images sparse. qcow2 Qcow2 is the native disk image format used by qemu. Internally it uses a two-level directory structure so that only blocks containing data are stored in the file. It also has many other features such as compression, snapshots and backing files. There are at least two distinct variants of this format, although qemu (and hence libguestfs) handles both transparently to the user. vmdk VMDK is VMware's native disk image format. There are many variations. Modern qemu (hence libguestfs) supports most variations, but you should be aware that older versions of qemu had some very bad data-corrupting bugs in this area. Note that VMware ESX exposes files with the name guest-flat.vmdk. These are not VMDK. They are raw format files which happen to have a ".vmdk" extension. vdi VDI is VirtualBox's native disk image format. Qemu (hence libguestfs) has generally good support for this. vpc vhd VPC (old) and VHD (modern) are the native disk image format of Microsoft (and previously, Connectix) Virtual PC and Hyper-V. Obsolete formats The following formats are obsolete and should not be used: qcow (aka qcow1), cow, bochs. DETECTING THE FORMAT OF A DISK IMAGE Firstly note there is a security issue with auto-detecting the format of a disk image. It may or may not apply in your use case. Read "CVE-2010-3851" below. Libguestfs offers an API to get the format of a disk image ("guestfs_disk_format", and it is safest to use this. Don't be tempted to try parsing the text / human-readable output of "qemu-img" since it cannot be parsed reliably and securely. Also do not use the "file" command since the output of that changes over time.
CONNECTION MANAGEMENT
guestfs_h * "guestfs_h" is the opaque type representing a connection handle. Create a handle by calling "guestfs_create" or "guestfs_create_flags". Call "guestfs_close" to free the handle and release all resources used. For information on using multiple handles and threads, see the section "MULTIPLE HANDLES AND MULTIPLE THREADS" above. guestfs_create guestfs_h *guestfs_create (void); Create a connection handle. On success this returns a non-NULL pointer to a handle. On error it returns NULL. You have to "configure" the handle after creating it. This includes calling "guestfs_add_drive_opts" (or one of the equivalent calls) on the handle at least once. After configuring the handle, you have to call "guestfs_launch". You may also want to configure error handling for the handle. See the "ERROR HANDLING" section below. guestfs_create_flags guestfs_h *guestfs_create_flags (unsigned flags [, ...]); Create a connection handle, supplying extra flags and extra arguments to control how the handle is created. On success this returns a non-NULL pointer to a handle. On error it returns NULL. "guestfs_create" is equivalent to calling guestfs_create_flags(0). The following flags may be logically ORed together. (Currently no extra arguments are used). "GUESTFS_CREATE_NO_ENVIRONMENT" Don't parse any environment variables (such as "LIBGUESTFS_DEBUG" etc). You can call "guestfs_parse_environment" or "guestfs_parse_environment_list" afterwards to parse environment variables. Alternately, don't call these functions if you want the handle to be unaffected by environment variables. See the example below. The default (if this flag is not given) is to implicitly call "guestfs_parse_environment". "GUESTFS_CREATE_NO_CLOSE_ON_EXIT" Don't try to close the handle in an atexit(3) handler if the program exits without explicitly closing the handle. The default (if this flag is not given) is to install such an atexit handler. USING "GUESTFS_CREATE_NO_ENVIRONMENT" You might use "GUESTFS_CREATE_NO_ENVIRONMENT" and an explicit call to "guestfs_parse_environment" like this: guestfs_h *g; int r; g = guestfs_create_flags (GUESTFS_CREATE_NO_ENVIRONMENT); if (!g) { perror ("guestfs_create_flags"); exit (EXIT_FAILURE); } r = guestfs_parse_environment (g); if (r == -1) exit (EXIT_FAILURE); Or to create a handle which is unaffected by environment variables, omit the call to "guestfs_parse_environment" from the above code. The above code has another advantage which is that any errors from parsing the environment are passed through the error handler, whereas "guestfs_create" prints errors on stderr and ignores them. guestfs_close void guestfs_close (guestfs_h *g); This closes the connection handle and frees up all resources used. If a close callback was set on the handle, then it is called. The correct way to close the handle is: if (guestfs_shutdown (g) == -1) { /* handle write errors here */ } guestfs_close (g); "guestfs_shutdown" is only needed if all of the following are true: 1. one or more disks were added in read-write mode, and 2. guestfs_launch was called, and 3. you made some changes, and 4. you have a way to handle write errors (eg. by exiting with an error code or reporting something to the user).
ERROR HANDLING
API functions can return errors. For example, almost all functions that return "int" will return "-1" to indicate an error. Additional information is available for errors: an error message string and optionally an error number (errno) if the thing that failed was a system call. You can get at the additional information about the last error on the handle by calling "guestfs_last_error", "guestfs_last_errno", and/or by setting up an error handler with "guestfs_set_error_handler". When the handle is created, a default error handler is installed which prints the error message string to "stderr". For small short-running command line programs it is sufficient to do: if (guestfs_launch (g) == -1) exit (EXIT_FAILURE); since the default error handler will ensure that an error message has been printed to "stderr" before the program exits. For other programs the caller will almost certainly want to install an alternate error handler or do error handling in-line as in the example below. The non-C language bindings all install NULL error handlers and turn errors into exceptions using code similar to this: const char *msg; int errnum; /* This disables the default behaviour of printing errors on stderr. */ guestfs_set_error_handler (g, NULL, NULL); if (guestfs_launch (g) == -1) { /* Examine the error message and print it, throw it, etc. */ msg = guestfs_last_error (g); errnum = guestfs_last_errno (g); fprintf (stderr, "%s", msg); if (errnum != 0) fprintf (stderr, ": %s", strerror (errnum)); fprintf (stderr, "\n"); /* ... */ } "guestfs_create" returns "NULL" if the handle cannot be created, and because there is no handle if this happens there is no way to get additional error information. Since libguestfs ≥ 1.20, you can use "guestfs_create_flags" to properly deal with errors during handle creation, although the vast majority of programs can continue to use "guestfs_create" and not worry about this situation. Out of memory errors are handled differently. The default action is to call abort(3). If this is undesirable, then you can set a handler using "guestfs_set_out_of_memory_handler". guestfs_last_error const char *guestfs_last_error (guestfs_h *g); This returns the last error message that happened on "g". If there has not been an error since the handle was created, then this returns "NULL". Note the returned string does not have a newline character at the end. Most error messages are single lines. Some are split over multiple lines and contain "\n" characters within the string but not at the end. The lifetime of the returned string is until the next error occurs on the same handle, or "guestfs_close" is called. If you need to keep it longer, copy it. guestfs_last_errno int guestfs_last_errno (guestfs_h *g); This returns the last error number (errno) that happened on "g". If successful, an errno integer not equal to zero is returned. In many cases the special errno "ENOTSUP" is returned if you tried to call a function or use a feature which is not supported. If no error number is available, this returns 0. This call can return 0 in three situations: 1. There has not been any error on the handle. 2. There has been an error but the errno was meaningless. This corresponds to the case where the error did not come from a failed system call, but for some other reason. 3. There was an error from a failed system call, but for some reason the errno was not captured and returned. This usually indicates a bug in libguestfs. Libguestfs tries to convert the errno from inside the appliance into a corresponding errno for the caller (not entirely trivial: the appliance might be running a completely different operating system from the library and error numbers are not standardized across Un*xen). If this could not be done, then the error is translated to "EINVAL". In practice this should only happen in very rare circumstances. guestfs_set_error_handler typedef void (*guestfs_error_handler_cb) (guestfs_h *g, void *opaque, const char *msg); void guestfs_set_error_handler (guestfs_h *g, guestfs_error_handler_cb cb, void *opaque); The callback "cb" will be called if there is an error. The parameters passed to the callback are an opaque data pointer and the error message string. "errno" is not passed to the callback. To get that the callback must call "guestfs_last_errno". Note that the message string "msg" is freed as soon as the callback function returns, so if you want to stash it somewhere you must make your own copy. The default handler prints messages on "stderr". If you set "cb" to "NULL" then no handler is called. guestfs_get_error_handler guestfs_error_handler_cb guestfs_get_error_handler (guestfs_h *g, void **opaque_rtn); Returns the current error handler callback. guestfs_push_error_handler void guestfs_push_error_handler (guestfs_h *g, guestfs_error_handler_cb cb, void *opaque); This is the same as "guestfs_set_error_handler", except that the old error handler is stashed away in a stack inside the handle. You can restore the previous error handler by calling "guestfs_pop_error_handler". Use the following code to temporarily disable errors around a function: guestfs_push_error_handler (g, NULL, NULL); guestfs_mkdir (g, "/foo"); /* We don't care if this fails. */ guestfs_pop_error_handler (g); guestfs_pop_error_handler void guestfs_pop_error_handler (guestfs_h *g); Restore the previous error handler (see "guestfs_push_error_handler"). If you pop the stack too many times, then the default error handler is restored. guestfs_set_out_of_memory_handler typedef void (*guestfs_abort_cb) (void); void guestfs_set_out_of_memory_handler (guestfs_h *g, guestfs_abort_cb); The callback "cb" will be called if there is an out of memory situation. Note this callback must not return. The default is to call abort(3). You cannot set "cb" to "NULL". You can't ignore out of memory situations. guestfs_get_out_of_memory_handler guestfs_abort_fn guestfs_get_out_of_memory_handler (guestfs_h *g); This returns the current out of memory handler.
API CALLS
guestfs_acl_delete_def_file int guestfs_acl_delete_def_file (guestfs_h *g, const char *dir); This function deletes the default POSIX Access Control List (ACL) attached to directory "dir". This function returns 0 on success or -1 on error. This function depends on the feature "acl". See also "guestfs_feature_available". (Added in 1.19.63) guestfs_acl_get_file char * guestfs_acl_get_file (guestfs_h *g, const char *path, const char *acltype); This function returns the POSIX Access Control List (ACL) attached to "path". The ACL is returned in "long text form" (see acl(5)). The "acltype" parameter may be: "access" Return the ordinary (access) ACL for any file, directory or other filesystem object. "default" Return the default ACL. Normally this only makes sense if "path" is a directory. This function returns a string, or NULL on error. The caller must free the returned string after use. This function depends on the feature "acl". See also "guestfs_feature_available". (Added in 1.19.63) guestfs_acl_set_file int guestfs_acl_set_file (guestfs_h *g, const char *path, const char *acltype, const char *acl); This function sets the POSIX Access Control List (ACL) attached to "path". The "acltype" parameter may be: "access" Set the ordinary (access) ACL for any file, directory or other filesystem object. "default" Set the default ACL. Normally this only makes sense if "path" is a directory. The "acl" parameter is the new ACL in either "long text form" or "short text form" (see acl(5)). The new ACL completely replaces any previous ACL on the file. The ACL must contain the full Unix permissions (eg. "u::rwx,g::rx,o::rx"). If you are specifying individual users or groups, then the mask field is also required (eg. "m::rwx"), followed by the "u:ID:..." and/or "g:ID:..." field(s). A full ACL string might therefore look like this: u::rwx,g::rwx,o::rwx,m::rwx,u:500:rwx,g:500:rwx \ Unix permissions / \mask/ \ ACL / You should use numeric UIDs and GIDs. To map usernames and groupnames to the correct numeric ID in the context of the guest, use the Augeas functions (see "guestfs_aug_init"). This function returns 0 on success or -1 on error. This function depends on the feature "acl". See also "guestfs_feature_available". (Added in 1.19.63) guestfs_add_cdrom int guestfs_add_cdrom (guestfs_h *g, const char *filename); This function is deprecated. In new code, use the "guestfs_add_drive_ro" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This function adds a virtual CD-ROM disk image to the guest. The image is added as read-only drive, so this function is equivalent of "guestfs_add_drive_ro". This function returns 0 on success or -1 on error. (Added in 0.3) guestfs_add_domain int guestfs_add_domain (guestfs_h *g, const char *dom, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_ADD_DOMAIN_LIBVIRTURI, const char *libvirturi, GUESTFS_ADD_DOMAIN_READONLY, int readonly, GUESTFS_ADD_DOMAIN_IFACE, const char *iface, GUESTFS_ADD_DOMAIN_LIVE, int live, GUESTFS_ADD_DOMAIN_ALLOWUUID, int allowuuid, GUESTFS_ADD_DOMAIN_READONLYDISK, const char *readonlydisk, GUESTFS_ADD_DOMAIN_CACHEMODE, const char *cachemode, GUESTFS_ADD_DOMAIN_DISCARD, const char *discard, GUESTFS_ADD_DOMAIN_COPYONREAD, int copyonread, This function adds the disk(s) attached to the named libvirt domain "dom". It works by connecting to libvirt, requesting the domain and domain XML from libvirt, parsing it for disks, and calling "guestfs_add_drive_opts" on each one. The number of disks added is returned. This operation is atomic: if an error is returned, then no disks are added. This function does some minimal checks to make sure the libvirt domain is not running (unless "readonly" is true). In a future version we will try to acquire the libvirt lock on each disk. Disks must be accessible locally. This often means that adding disks from a remote libvirt connection (see http://libvirt.org/remote.html) will fail unless those disks are accessible via the same device path locally too. The optional "libvirturi" parameter sets the libvirt URI (see http://libvirt.org/uri.html). If this is not set then we connect to the default libvirt URI (or one set through an environment variable, see the libvirt documentation for full details). The optional "live" flag controls whether this call will try to connect to a running virtual machine "guestfsd" process if it sees a suitable <channel> element in the libvirt XML definition. The default (if the flag is omitted) is never to try. See "ATTACHING TO RUNNING DAEMONS" for more information. If the "allowuuid" flag is true (default is false) then a UUID may be passed instead of the domain name. The "dom" string is treated as a UUID first and looked up, and if that lookup fails then we treat "dom" as a name as usual. The optional "readonlydisk" parameter controls what we do for disks which are marked <readonly/> in the libvirt XML. Possible values are: readonlydisk = "error" If "readonly" is false: The whole call is aborted with an error if any disk with the <readonly/> flag is found. If "readonly" is true: Disks with the <readonly/> flag are added read-only. readonlydisk = "read" If "readonly" is false: Disks with the <readonly/> flag are added read-only. Other disks are added read/write. If "readonly" is true: Disks with the <readonly/> flag are added read-only. readonlydisk = "write" (default) If "readonly" is false: Disks with the <readonly/> flag are added read/write. If "readonly" is true: Disks with the <readonly/> flag are added read-only. readonlydisk = "ignore" If "readonly" is true or false: Disks with the <readonly/> flag are skipped. The other optional parameters are passed directly through to "guestfs_add_drive_opts". On error this function returns -1. (Added in 1.7.4) guestfs_add_domain_va int guestfs_add_domain_va (guestfs_h *g, const char *dom, va_list args); This is the "va_list variant" of "guestfs_add_domain". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_add_domain_argv int guestfs_add_domain_argv (guestfs_h *g, const char *dom, const struct guestfs_add_domain_argv *optargs); This is the "argv variant" of "guestfs_add_domain". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_add_drive int guestfs_add_drive (guestfs_h *g, const char *filename); This function is provided for backwards compatibility with earlier versions of libguestfs. It simply calls "guestfs_add_drive_opts" with no optional arguments. (Added in 0.3) guestfs_add_drive_opts int guestfs_add_drive_opts (guestfs_h *g, const char *filename, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_ADD_DRIVE_OPTS_READONLY, int readonly, GUESTFS_ADD_DRIVE_OPTS_FORMAT, const char *format, GUESTFS_ADD_DRIVE_OPTS_IFACE, const char *iface, GUESTFS_ADD_DRIVE_OPTS_NAME, const char *name, GUESTFS_ADD_DRIVE_OPTS_LABEL, const char *label, GUESTFS_ADD_DRIVE_OPTS_PROTOCOL, const char *protocol, GUESTFS_ADD_DRIVE_OPTS_SERVER, char *const *server, GUESTFS_ADD_DRIVE_OPTS_USERNAME, const char *username, GUESTFS_ADD_DRIVE_OPTS_SECRET, const char *secret, GUESTFS_ADD_DRIVE_OPTS_CACHEMODE, const char *cachemode, GUESTFS_ADD_DRIVE_OPTS_DISCARD, const char *discard, GUESTFS_ADD_DRIVE_OPTS_COPYONREAD, int copyonread, This function adds a disk image called filename to the handle. filename may be a regular host file or a host device. When this function is called before "guestfs_launch" (the usual case) then the first time you call this function, the disk appears in the API as /dev/sda, the second time as /dev/sdb, and so on. In libguestfs ≥ 1.20 you can also call this function after launch (with some restrictions). This is called "hotplugging". When hotplugging, you must specify a "label" so that the new disk gets a predictable name. For more information see "HOTPLUGGING". You don't necessarily need to be root when using libguestfs. However you obviously do need sufficient permissions to access the filename for whatever operations you want to perform (ie. read access if you just want to read the image or write access if you want to modify the image). This call checks that filename exists. filename may be the special string "/dev/null". See "NULL DISKS". The optional arguments are: "readonly" If true then the image is treated as read-only. Writes are still allowed, but they are stored in a temporary snapshot overlay which is discarded at the end. The disk that you add is not modified. "format" This forces the image format. If you omit this (or use "guestfs_add_drive" or "guestfs_add_drive_ro") then the format is automatically detected. Possible formats include "raw" and "qcow2". Automatic detection of the format opens you up to a potential security hole when dealing with untrusted raw-format images. See CVE-2010-3851 and RHBZ#642934. Specifying the format closes this security hole. "iface" This rarely-used option lets you emulate the behaviour of the deprecated "guestfs_add_drive_with_if" call (q.v.) "name" The name the drive had in the original guest, e.g. /dev/sdb. This is used as a hint to the guest inspection process if it is available. "label" Give the disk a label. The label should be a unique, short string using only ASCII characters "[a-zA-Z]". As well as its usual name in the API (such as /dev/sda), the drive will also be named /dev/disk/guestfs/label. See "DISK LABELS". "protocol" The optional protocol argument can be used to select an alternate source protocol. See also: "REMOTE STORAGE". "protocol = "file"" filename is interpreted as a local file or device. This is the default if the optional protocol parameter is omitted. "protocol = "ftp"|"ftps"|"http"|"https"|"tftp"" Connect to a remote FTP, HTTP or TFTP server. The "server" parameter must also be supplied - see below. See also: "FTP, HTTP AND TFTP" "protocol = "gluster"" Connect to the GlusterFS server. The "server" parameter must also be supplied - see below. See also: "GLUSTER" "protocol = "iscsi"" Connect to the iSCSI server. The "server" parameter must also be supplied - see below. The "username" parameter may be supplied. See below. The "secret" parameter may be supplied. See below. See also: "ISCSI". "protocol = "nbd"" Connect to the Network Block Device server. The "server" parameter must also be supplied - see below. See also: "NETWORK BLOCK DEVICE". "protocol = "rbd"" Connect to the Ceph (librbd/RBD) server. The "server" parameter must also be supplied - see below. The "username" parameter may be supplied. See below. The "secret" parameter may be supplied. See below. See also: "CEPH". "protocol = "sheepdog"" Connect to the Sheepdog server. The "server" parameter may also be supplied - see below. See also: "SHEEPDOG". "protocol = "ssh"" Connect to the Secure Shell (ssh) server. The "server" parameter must be supplied. The "username" parameter may be supplied. See below. See also: "SSH". "server" For protocols which require access to a remote server, this is a list of server(s). Protocol Number of servers required -------- -------------------------- file List must be empty or param not used at all ftp|ftps|http|https|tftp Exactly one gluster Exactly one iscsi Exactly one nbd Exactly one rbd Zero or more sheepdog Zero or more ssh Exactly one Each list element is a string specifying a server. The string must be in one of the following formats: hostname hostname:port tcp:hostname tcp:hostname:port unix:/path/to/socket If the port number is omitted, then the standard port number for the protocol is used (see /etc/services). "username" For the "ftp", "ftps", "http", "https", "iscsi", "rbd", "ssh" and "tftp" protocols, this specifies the remote username. If not given, then the local username is used for "ssh", and no authentication is attempted for ceph. But note this sometimes may give unexpected results, for example if using the libvirt backend and if the libvirt backend is configured to start the qemu appliance as a special user such as "qemu.qemu". If in doubt, specify the remote username you want. "secret" For the "rbd" protocol only, this specifies the 'secret' to use when connecting to the remote device. It must be base64 encoded. If not given, then a secret matching the given username will be looked up in the default keychain locations, or if no username is given, then no authentication will be used. "cachemode" Choose whether or not libguestfs will obey sync operations (safe but slow) or not (unsafe but fast). The possible values for this string are: "cachemode = "writeback"" This is the default. Write operations in the API do not return until a write(2) call has completed in the host [but note this does not imply that anything gets written to disk]. Sync operations in the API, including implicit syncs caused by filesystem journalling, will not return until an fdatasync(2) call has completed in the host, indicating that data has been committed to disk. "cachemode = "unsafe"" In this mode, there are no guarantees. Libguestfs may cache anything and ignore sync requests. This is suitable only for scratch or temporary disks. "discard" Enable or disable discard (a.k.a. trim or unmap) support on this drive. If enabled, operations such as "guestfs_fstrim" will be able to discard / make thin / punch holes in the underlying host file or device. Possible discard settings are: "discard = "disable"" Disable discard support. This is the default. "discard = "enable"" Enable discard support. Fail if discard is not possible. "discard = "besteffort"" Enable discard support if possible, but don't fail if it is not supported. Since not all backends and not all underlying systems support discard, this is a good choice if you want to use discard if possible, but don't mind if it doesn't work. "copyonread" The boolean parameter "copyonread" enables copy-on-read support. This only affects disk formats which have backing files, and causes reads to be stored in the overlay layer, speeding up multiple reads of the same area of disk. The default is false. This function returns 0 on success or -1 on error. (Added in 0.3) guestfs_add_drive_opts_va int guestfs_add_drive_opts_va (guestfs_h *g, const char *filename, va_list args); This is the "va_list variant" of "guestfs_add_drive_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_add_drive_opts_argv int guestfs_add_drive_opts_argv (guestfs_h *g, const char *filename, const struct guestfs_add_drive_opts_argv *optargs); This is the "argv variant" of "guestfs_add_drive_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_add_drive_ro int guestfs_add_drive_ro (guestfs_h *g, const char *filename); This function is the equivalent of calling "guestfs_add_drive_opts" with the optional parameter "GUESTFS_ADD_DRIVE_OPTS_READONLY" set to 1, so the disk is added read-only, with the format being detected automatically. This function returns 0 on success or -1 on error. (Added in 1.0.38) guestfs_add_drive_ro_with_if int guestfs_add_drive_ro_with_if (guestfs_h *g, const char *filename, const char *iface); This function is deprecated. In new code, use the "guestfs_add_drive" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This is the same as "guestfs_add_drive_ro" but it allows you to specify the QEMU interface emulation to use at run time. This function returns 0 on success or -1 on error. (Added in 1.0.84) guestfs_add_drive_scratch int guestfs_add_drive_scratch (guestfs_h *g, int64_t size, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_ADD_DRIVE_SCRATCH_NAME, const char *name, GUESTFS_ADD_DRIVE_SCRATCH_LABEL, const char *label, This command adds a temporary scratch drive to the handle. The "size" parameter is the virtual size (in bytes). The scratch drive is blank initially (all reads return zeroes until you start writing to it). The drive is deleted when the handle is closed. The optional arguments "name" and "label" are passed through to "guestfs_add_drive". This function returns 0 on success or -1 on error. (Added in 1.23.10) guestfs_add_drive_scratch_va int guestfs_add_drive_scratch_va (guestfs_h *g, int64_t size, va_list args); This is the "va_list variant" of "guestfs_add_drive_scratch". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_add_drive_scratch_argv int guestfs_add_drive_scratch_argv (guestfs_h *g, int64_t size, const struct guestfs_add_drive_scratch_argv *optargs); This is the "argv variant" of "guestfs_add_drive_scratch". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_add_drive_with_if int guestfs_add_drive_with_if (guestfs_h *g, const char *filename, const char *iface); This function is deprecated. In new code, use the "guestfs_add_drive" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This is the same as "guestfs_add_drive" but it allows you to specify the QEMU interface emulation to use at run time. This function returns 0 on success or -1 on error. (Added in 1.0.84) guestfs_add_libvirt_dom int guestfs_add_libvirt_dom (guestfs_h *g, void * /* really virDomainPtr */ dom, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_ADD_LIBVIRT_DOM_READONLY, int readonly, GUESTFS_ADD_LIBVIRT_DOM_IFACE, const char *iface, GUESTFS_ADD_LIBVIRT_DOM_LIVE, int live, GUESTFS_ADD_LIBVIRT_DOM_READONLYDISK, const char *readonlydisk, GUESTFS_ADD_LIBVIRT_DOM_CACHEMODE, const char *cachemode, GUESTFS_ADD_LIBVIRT_DOM_DISCARD, const char *discard, GUESTFS_ADD_LIBVIRT_DOM_COPYONREAD, int copyonread, This function adds the disk(s) attached to the libvirt domain "dom". It works by requesting the domain XML from libvirt, parsing it for disks, and calling "guestfs_add_drive_opts" on each one. In the C API we declare "void *dom", but really it has type "virDomainPtr dom". This is so we don't need <libvirt.h>. The number of disks added is returned. This operation is atomic: if an error is returned, then no disks are added. This function does some minimal checks to make sure the libvirt domain is not running (unless "readonly" is true). In a future version we will try to acquire the libvirt lock on each disk. Disks must be accessible locally. This often means that adding disks from a remote libvirt connection (see http://libvirt.org/remote.html) will fail unless those disks are accessible via the same device path locally too. The optional "live" flag controls whether this call will try to connect to a running virtual machine "guestfsd" process if it sees a suitable <channel> element in the libvirt XML definition. The default (if the flag is omitted) is never to try. See "ATTACHING TO RUNNING DAEMONS" for more information. The optional "readonlydisk" parameter controls what we do for disks which are marked <readonly/> in the libvirt XML. See "guestfs_add_domain" for possible values. The other optional parameters are passed directly through to "guestfs_add_drive_opts". On error this function returns -1. (Added in 1.29.14) guestfs_add_libvirt_dom_va int guestfs_add_libvirt_dom_va (guestfs_h *g, void * /* really virDomainPtr */ dom, va_list args); This is the "va_list variant" of "guestfs_add_libvirt_dom". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_add_libvirt_dom_argv int guestfs_add_libvirt_dom_argv (guestfs_h *g, void * /* really virDomainPtr */ dom, const struct guestfs_add_libvirt_dom_argv *optargs); This is the "argv variant" of "guestfs_add_libvirt_dom". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_aug_clear int guestfs_aug_clear (guestfs_h *g, const char *augpath); Set the value associated with "path" to "NULL". This is the same as the augtool(1) "clear" command. This function returns 0 on success or -1 on error. (Added in 1.3.4) guestfs_aug_close int guestfs_aug_close (guestfs_h *g); Close the current Augeas handle and free up any resources used by it. After calling this, you have to call "guestfs_aug_init" again before you can use any other Augeas functions. This function returns 0 on success or -1 on error. (Added in 0.7) guestfs_aug_defnode struct guestfs_int_bool * guestfs_aug_defnode (guestfs_h *g, const char *name, const char *expr, const char *val); Defines a variable "name" whose value is the result of evaluating "expr". If "expr" evaluates to an empty nodeset, a node is created, equivalent to calling "guestfs_aug_set" "expr", "value". "name" will be the nodeset containing that single node. On success this returns a pair containing the number of nodes in the nodeset, and a boolean flag if a node was created. This function returns a "struct guestfs_int_bool *", or NULL if there was an error. The caller must call "guestfs_free_int_bool" after use. (Added in 0.7) guestfs_aug_defvar int guestfs_aug_defvar (guestfs_h *g, const char *name, const char *expr); Defines an Augeas variable "name" whose value is the result of evaluating "expr". If "expr" is NULL, then "name" is undefined. On success this returns the number of nodes in "expr", or 0 if "expr" evaluates to something which is not a nodeset. On error this function returns -1. (Added in 0.7) guestfs_aug_get char * guestfs_aug_get (guestfs_h *g, const char *augpath); Look up the value associated with "path". If "path" matches exactly one node, the "value" is returned. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 0.7) guestfs_aug_init int guestfs_aug_init (guestfs_h *g, const char *root, int flags); Create a new Augeas handle for editing configuration files. If there was any previous Augeas handle associated with this guestfs session, then it is closed. You must call this before using any other "guestfs_aug_*" commands. "root" is the filesystem root. "root" must not be NULL, use / instead. The flags are the same as the flags defined in <augeas.h>, the logical or of the following integers: "AUG_SAVE_BACKUP" = 1 Keep the original file with a ".augsave" extension. "AUG_SAVE_NEWFILE" = 2 Save changes into a file with extension ".augnew", and do not overwrite original. Overrides "AUG_SAVE_BACKUP". "AUG_TYPE_CHECK" = 4 Typecheck lenses. This option is only useful when debugging Augeas lenses. Use of this option may require additional memory for the libguestfs appliance. You may need to set the "LIBGUESTFS_MEMSIZE" environment variable or call "guestfs_set_memsize". "AUG_NO_STDINC" = 8 Do not use standard load path for modules. "AUG_SAVE_NOOP" = 16 Make save a no-op, just record what would have been changed. "AUG_NO_LOAD" = 32 Do not load the tree in "guestfs_aug_init". To close the handle, you can call "guestfs_aug_close". To find out more about Augeas, see http://augeas.net/. This function returns 0 on success or -1 on error. (Added in 0.7) guestfs_aug_insert int guestfs_aug_insert (guestfs_h *g, const char *augpath, const char *label, int before); Create a new sibling "label" for "path", inserting it into the tree before or after "path" (depending on the boolean flag "before"). "path" must match exactly one existing node in the tree, and "label" must be a label, ie. not contain /, "*" or end with a bracketed index "[N]". This function returns 0 on success or -1 on error. (Added in 0.7) guestfs_aug_label char * guestfs_aug_label (guestfs_h *g, const char *augpath); The label (name of the last element) of the Augeas path expression "augpath" is returned. "augpath" must match exactly one node, else this function returns an error. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.23.14) guestfs_aug_load int guestfs_aug_load (guestfs_h *g); Load files into the tree. See "aug_load" in the Augeas documentation for the full gory details. This function returns 0 on success or -1 on error. (Added in 0.7) guestfs_aug_ls char ** guestfs_aug_ls (guestfs_h *g, const char *augpath); This is just a shortcut for listing "guestfs_aug_match" "path/*" and sorting the resulting nodes into alphabetical order. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 0.8) guestfs_aug_match char ** guestfs_aug_match (guestfs_h *g, const char *augpath); Returns a list of paths which match the path expression "path". The returned paths are sufficiently qualified so that they match exactly one node in the current tree. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 0.7) guestfs_aug_mv int guestfs_aug_mv (guestfs_h *g, const char *src, const char *dest); Move the node "src" to "dest". "src" must match exactly one node. "dest" is overwritten if it exists. This function returns 0 on success or -1 on error. (Added in 0.7) guestfs_aug_rm int guestfs_aug_rm (guestfs_h *g, const char *augpath); Remove "path" and all of its children. On success this returns the number of entries which were removed. On error this function returns -1. (Added in 0.7) guestfs_aug_save int guestfs_aug_save (guestfs_h *g); This writes all pending changes to disk. The flags which were passed to "guestfs_aug_init" affect exactly how files are saved. This function returns 0 on success or -1 on error. (Added in 0.7) guestfs_aug_set int guestfs_aug_set (guestfs_h *g, const char *augpath, const char *val); Set the value associated with "path" to "val". In the Augeas API, it is possible to clear a node by setting the value to NULL. Due to an oversight in the libguestfs API you cannot do that with this call. Instead you must use the "guestfs_aug_clear" call. This function returns 0 on success or -1 on error. (Added in 0.7) guestfs_aug_setm int guestfs_aug_setm (guestfs_h *g, const char *base, const char *sub, const char *val); Change multiple Augeas nodes in a single operation. "base" is an expression matching multiple nodes. "sub" is a path expression relative to "base". All nodes matching "base" are found, and then for each node, "sub" is changed to "val". "sub" may also be "NULL" in which case the "base" nodes are modified. This returns the number of nodes modified. On error this function returns -1. (Added in 1.23.14) guestfs_aug_transform int guestfs_aug_transform (guestfs_h *g, const char *lens, const char *file, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_AUG_TRANSFORM_REMOVE, int remove, Add an Augeas transformation for the specified "lens" so it can handle "file". If "remove" is true ("false" by default), then the transformation is removed. This function returns 0 on success or -1 on error. (Added in 1.35.2) guestfs_aug_transform_va int guestfs_aug_transform_va (guestfs_h *g, const char *lens, const char *file, va_list args); This is the "va_list variant" of "guestfs_aug_transform". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_aug_transform_argv int guestfs_aug_transform_argv (guestfs_h *g, const char *lens, const char *file, const struct guestfs_aug_transform_argv *optargs); This is the "argv variant" of "guestfs_aug_transform". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_available int guestfs_available (guestfs_h *g, char *const *groups); This command is used to check the availability of some groups of functionality in the appliance, which not all builds of the libguestfs appliance will be able to provide. The libguestfs groups, and the functions that those groups correspond to, are listed in "AVAILABILITY". You can also fetch this list at runtime by calling "guestfs_available_all_groups". The argument "groups" is a list of group names, eg: "["inotify", "augeas"]" would check for the availability of the Linux inotify functions and Augeas (configuration file editing) functions. The command returns no error if all requested groups are available. It fails with an error if one or more of the requested groups is unavailable in the appliance. If an unknown group name is included in the list of groups then an error is always returned. Notes: • "guestfs_feature_available" is the same as this call, but with a slightly simpler to use API: that call returns a boolean true/false instead of throwing an error. • You must call "guestfs_launch" before calling this function. The reason is because we don't know what groups are supported by the appliance/daemon until it is running and can be queried. • If a group of functions is available, this does not necessarily mean that they will work. You still have to check for errors when calling individual API functions even if they are available. • It is usually the job of distro packagers to build complete functionality into the libguestfs appliance. Upstream libguestfs, if built from source with all requirements satisfied, will support everything. • This call was added in version 1.0.80. In previous versions of libguestfs all you could do would be to speculatively execute a command to find out if the daemon implemented it. See also "guestfs_version". See also "guestfs_filesystem_available". This function returns 0 on success or -1 on error. (Added in 1.0.80) guestfs_available_all_groups char ** guestfs_available_all_groups (guestfs_h *g); This command returns a list of all optional groups that this daemon knows about. Note this returns both supported and unsupported groups. To find out which ones the daemon can actually support you have to call "guestfs_available" / "guestfs_feature_available" on each member of the returned list. See also "guestfs_available", "guestfs_feature_available" and "AVAILABILITY". This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 1.3.15) guestfs_base64_in int guestfs_base64_in (guestfs_h *g, const char *base64file, const char *filename); This command uploads base64-encoded data from "base64file" to filename. This function returns 0 on success or -1 on error. (Added in 1.3.5) guestfs_base64_out int guestfs_base64_out (guestfs_h *g, const char *filename, const char *base64file); This command downloads the contents of filename, writing it out to local file "base64file" encoded as base64. This function returns 0 on success or -1 on error. (Added in 1.3.5) guestfs_blkdiscard int guestfs_blkdiscard (guestfs_h *g, const char *device); This discards all blocks on the block device "device", giving the free space back to the host. This operation requires support in libguestfs, the host filesystem, qemu and the host kernel. If this support isn't present it may give an error or even appear to run but do nothing. You must also set the "discard" attribute on the underlying drive (see "guestfs_add_drive_opts"). This function returns 0 on success or -1 on error. This function depends on the feature "blkdiscard". See also "guestfs_feature_available". (Added in 1.25.44) guestfs_blkdiscardzeroes int guestfs_blkdiscardzeroes (guestfs_h *g, const char *device); This call returns true if blocks on "device" that have been discarded by a call to "guestfs_blkdiscard" are returned as blocks of zero bytes when read the next time. If it returns false, then it may be that discarded blocks are read as stale or random data. This function returns a C truth value on success or -1 on error. This function depends on the feature "blkdiscardzeroes". See also "guestfs_feature_available". (Added in 1.25.44) guestfs_blkid char ** guestfs_blkid (guestfs_h *g, const char *device); This command returns block device attributes for "device". The following fields are usually present in the returned hash. Other fields may also be present. "UUID" The uuid of this device. "LABEL" The label of this device. "VERSION" The version of blkid command. "TYPE" The filesystem type or RAID of this device. "USAGE" The usage of this device, for example "filesystem" or "raid". This function returns a NULL-terminated array of strings, or NULL if there was an error. The array of strings will always have length "2n+1", where "n" keys and values alternate, followed by the trailing NULL entry. The caller must free the strings and the array after use. (Added in 1.15.9) guestfs_blockdev_flushbufs int guestfs_blockdev_flushbufs (guestfs_h *g, const char *device); This tells the kernel to flush internal buffers associated with "device". This uses the blockdev(8) command. This function returns 0 on success or -1 on error. (Added in 1.9.3) guestfs_blockdev_getbsz int guestfs_blockdev_getbsz (guestfs_h *g, const char *device); This returns the block size of a device. Note: this is different from both size in blocks and filesystem block size. Also this setting is not really used by anything. You should probably not use it for anything. Filesystems have their own idea about what block size to choose. This uses the blockdev(8) command. On error this function returns -1. (Added in 1.9.3) guestfs_blockdev_getro int guestfs_blockdev_getro (guestfs_h *g, const char *device); Returns a boolean indicating if the block device is read-only (true if read-only, false if not). This uses the blockdev(8) command. This function returns a C truth value on success or -1 on error. (Added in 1.9.3) guestfs_blockdev_getsize64 int64_t guestfs_blockdev_getsize64 (guestfs_h *g, const char *device); This returns the size of the device in bytes. See also "guestfs_blockdev_getsz". This uses the blockdev(8) command. On error this function returns -1. (Added in 1.9.3) guestfs_blockdev_getss int guestfs_blockdev_getss (guestfs_h *g, const char *device); This returns the size of sectors on a block device. Usually 512, but can be larger for modern devices. (Note, this is not the size in sectors, use "guestfs_blockdev_getsz" for that). This uses the blockdev(8) command. On error this function returns -1. (Added in 1.9.3) guestfs_blockdev_getsz int64_t guestfs_blockdev_getsz (guestfs_h *g, const char *device); This returns the size of the device in units of 512-byte sectors (even if the sectorsize isn't 512 bytes ... weird). See also "guestfs_blockdev_getss" for the real sector size of the device, and "guestfs_blockdev_getsize64" for the more useful size in bytes. This uses the blockdev(8) command. On error this function returns -1. (Added in 1.9.3) guestfs_blockdev_rereadpt int guestfs_blockdev_rereadpt (guestfs_h *g, const char *device); Reread the partition table on "device". This uses the blockdev(8) command. This function returns 0 on success or -1 on error. (Added in 1.9.3) guestfs_blockdev_setbsz int guestfs_blockdev_setbsz (guestfs_h *g, const char *device, int blocksize); This function is deprecated. There is no replacement. Consult the API documentation in guestfs(3) for further information. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This call does nothing and has never done anything because of a bug in blockdev. Do not use it. If you need to set the filesystem block size, use the "blocksize" option of "guestfs_mkfs". This function returns 0 on success or -1 on error. (Added in 1.9.3) guestfs_blockdev_setra int guestfs_blockdev_setra (guestfs_h *g, const char *device, int sectors); Set readahead (in 512-byte sectors) for the device. This uses the blockdev(8) command. This function returns 0 on success or -1 on error. (Added in 1.29.10) guestfs_blockdev_setro int guestfs_blockdev_setro (guestfs_h *g, const char *device); Sets the block device named "device" to read-only. This uses the blockdev(8) command. This function returns 0 on success or -1 on error. (Added in 1.9.3) guestfs_blockdev_setrw int guestfs_blockdev_setrw (guestfs_h *g, const char *device); Sets the block device named "device" to read-write. This uses the blockdev(8) command. This function returns 0 on success or -1 on error. (Added in 1.9.3) guestfs_btrfs_balance_cancel int guestfs_btrfs_balance_cancel (guestfs_h *g, const char *path); Cancel a running balance on a btrfs filesystem. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.22) guestfs_btrfs_balance_pause int guestfs_btrfs_balance_pause (guestfs_h *g, const char *path); Pause a running balance on a btrfs filesystem. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.22) guestfs_btrfs_balance_resume int guestfs_btrfs_balance_resume (guestfs_h *g, const char *path); Resume a paused balance on a btrfs filesystem. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.22) guestfs_btrfs_balance_status struct guestfs_btrfsbalance * guestfs_btrfs_balance_status (guestfs_h *g, const char *path); Show the status of a running or paused balance on a btrfs filesystem. This function returns a "struct guestfs_btrfsbalance *", or NULL if there was an error. The caller must call "guestfs_free_btrfsbalance" after use. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.26) guestfs_btrfs_device_add int guestfs_btrfs_device_add (guestfs_h *g, char *const *devices, const char *fs); Add the list of device(s) in "devices" to the btrfs filesystem mounted at "fs". If "devices" is an empty list, this does nothing. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.17.35) guestfs_btrfs_device_delete int guestfs_btrfs_device_delete (guestfs_h *g, char *const *devices, const char *fs); Remove the "devices" from the btrfs filesystem mounted at "fs". If "devices" is an empty list, this does nothing. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.17.35) guestfs_btrfs_filesystem_balance int guestfs_btrfs_filesystem_balance (guestfs_h *g, const char *fs); Balance the chunks in the btrfs filesystem mounted at "fs" across the underlying devices. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.17.35) guestfs_btrfs_filesystem_defragment int guestfs_btrfs_filesystem_defragment (guestfs_h *g, const char *path, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_BTRFS_FILESYSTEM_DEFRAGMENT_FLUSH, int flush, GUESTFS_BTRFS_FILESYSTEM_DEFRAGMENT_COMPRESS, const char *compress, Defragment a file or directory on a btrfs filesystem. compress is one of zlib or lzo. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.22) guestfs_btrfs_filesystem_defragment_va int guestfs_btrfs_filesystem_defragment_va (guestfs_h *g, const char *path, va_list args); This is the "va_list variant" of "guestfs_btrfs_filesystem_defragment". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_btrfs_filesystem_defragment_argv int guestfs_btrfs_filesystem_defragment_argv (guestfs_h *g, const char *path, const struct guestfs_btrfs_filesystem_defragment_argv *optargs); This is the "argv variant" of "guestfs_btrfs_filesystem_defragment". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_btrfs_filesystem_resize int guestfs_btrfs_filesystem_resize (guestfs_h *g, const char *mountpoint, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_BTRFS_FILESYSTEM_RESIZE_SIZE, int64_t size, This command resizes a btrfs filesystem. Note that unlike other resize calls, the filesystem has to be mounted and the parameter is the mountpoint not the device (this is a requirement of btrfs itself). The optional parameters are: "size" The new size (in bytes) of the filesystem. If omitted, the filesystem is resized to the maximum size. See also btrfs(8). This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.11.17) guestfs_btrfs_filesystem_resize_va int guestfs_btrfs_filesystem_resize_va (guestfs_h *g, const char *mountpoint, va_list args); This is the "va_list variant" of "guestfs_btrfs_filesystem_resize". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_btrfs_filesystem_resize_argv int guestfs_btrfs_filesystem_resize_argv (guestfs_h *g, const char *mountpoint, const struct guestfs_btrfs_filesystem_resize_argv *optargs); This is the "argv variant" of "guestfs_btrfs_filesystem_resize". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_btrfs_filesystem_show char ** guestfs_btrfs_filesystem_show (guestfs_h *g, const char *device); Show all the devices where the filesystems in "device" is spanned over. If not all the devices for the filesystems are present, then this function fails and the "errno" is set to "ENODEV". This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.33.29) guestfs_btrfs_filesystem_sync int guestfs_btrfs_filesystem_sync (guestfs_h *g, const char *fs); Force sync on the btrfs filesystem mounted at "fs". This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.17.35) guestfs_btrfs_fsck int guestfs_btrfs_fsck (guestfs_h *g, const char *device, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_BTRFS_FSCK_SUPERBLOCK, int64_t superblock, GUESTFS_BTRFS_FSCK_REPAIR, int repair, Used to check a btrfs filesystem, "device" is the device file where the filesystem is stored. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.17.43) guestfs_btrfs_fsck_va int guestfs_btrfs_fsck_va (guestfs_h *g, const char *device, va_list args); This is the "va_list variant" of "guestfs_btrfs_fsck". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_btrfs_fsck_argv int guestfs_btrfs_fsck_argv (guestfs_h *g, const char *device, const struct guestfs_btrfs_fsck_argv *optargs); This is the "argv variant" of "guestfs_btrfs_fsck". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_btrfs_image int guestfs_btrfs_image (guestfs_h *g, char *const *source, const char *image, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_BTRFS_IMAGE_COMPRESSLEVEL, int compresslevel, This is used to create an image of a btrfs filesystem. All data will be zeroed, but metadata and the like is preserved. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.32) guestfs_btrfs_image_va int guestfs_btrfs_image_va (guestfs_h *g, char *const *source, const char *image, va_list args); This is the "va_list variant" of "guestfs_btrfs_image". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_btrfs_image_argv int guestfs_btrfs_image_argv (guestfs_h *g, char *const *source, const char *image, const struct guestfs_btrfs_image_argv *optargs); This is the "argv variant" of "guestfs_btrfs_image". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_btrfs_qgroup_assign int guestfs_btrfs_qgroup_assign (guestfs_h *g, const char *src, const char *dst, const char *path); Add qgroup "src" to parent qgroup "dst". This command can group several qgroups into a parent qgroup to share common limit. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.17) guestfs_btrfs_qgroup_create int guestfs_btrfs_qgroup_create (guestfs_h *g, const char *qgroupid, const char *subvolume); Create a quota group (qgroup) for subvolume at "subvolume". This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.17) guestfs_btrfs_qgroup_destroy int guestfs_btrfs_qgroup_destroy (guestfs_h *g, const char *qgroupid, const char *subvolume); Destroy a quota group. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.17) guestfs_btrfs_qgroup_limit int guestfs_btrfs_qgroup_limit (guestfs_h *g, const char *subvolume, int64_t size); Limit the size of the subvolume with path "subvolume". This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.17) guestfs_btrfs_qgroup_remove int guestfs_btrfs_qgroup_remove (guestfs_h *g, const char *src, const char *dst, const char *path); Remove qgroup "src" from the parent qgroup "dst". This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.17) guestfs_btrfs_qgroup_show struct guestfs_btrfsqgroup_list * guestfs_btrfs_qgroup_show (guestfs_h *g, const char *path); Show all subvolume quota groups in a btrfs filesystem, including their usages. This function returns a "struct guestfs_btrfsqgroup_list *", or NULL if there was an error. The caller must call "guestfs_free_btrfsqgroup_list" after use. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.17) guestfs_btrfs_quota_enable int guestfs_btrfs_quota_enable (guestfs_h *g, const char *fs, int enable); Enable or disable subvolume quota support for filesystem which contains "path". This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.17) guestfs_btrfs_quota_rescan int guestfs_btrfs_quota_rescan (guestfs_h *g, const char *fs); Trash all qgroup numbers and scan the metadata again with the current config. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.17) guestfs_btrfs_replace int guestfs_btrfs_replace (guestfs_h *g, const char *srcdev, const char *targetdev, const char *mntpoint); Replace device of a btrfs filesystem. On a live filesystem, duplicate the data to the target device which is currently stored on the source device. After completion of the operation, the source device is wiped out and removed from the filesystem. The "targetdev" needs to be same size or larger than the "srcdev". Devices which are currently mounted are never allowed to be used as the "targetdev". This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.48) guestfs_btrfs_rescue_chunk_recover int guestfs_btrfs_rescue_chunk_recover (guestfs_h *g, const char *device); Recover the chunk tree of btrfs filesystem by scanning the devices one by one. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.22) guestfs_btrfs_rescue_super_recover int guestfs_btrfs_rescue_super_recover (guestfs_h *g, const char *device); Recover bad superblocks from good copies. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.22) guestfs_btrfs_scrub_cancel int guestfs_btrfs_scrub_cancel (guestfs_h *g, const char *path); Cancel a running scrub on a btrfs filesystem. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.22) guestfs_btrfs_scrub_resume int guestfs_btrfs_scrub_resume (guestfs_h *g, const char *path); Resume a previously canceled or interrupted scrub on a btrfs filesystem. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.22) guestfs_btrfs_scrub_start int guestfs_btrfs_scrub_start (guestfs_h *g, const char *path); Reads all the data and metadata on the filesystem, and uses checksums and the duplicate copies from RAID storage to identify and repair any corrupt data. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.22) guestfs_btrfs_scrub_status struct guestfs_btrfsscrub * guestfs_btrfs_scrub_status (guestfs_h *g, const char *path); Show status of running or finished scrub on a btrfs filesystem. This function returns a "struct guestfs_btrfsscrub *", or NULL if there was an error. The caller must call "guestfs_free_btrfsscrub" after use. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.26) guestfs_btrfs_set_seeding int guestfs_btrfs_set_seeding (guestfs_h *g, const char *device, int seeding); Enable or disable the seeding feature of a device that contains a btrfs filesystem. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.17.43) guestfs_btrfs_subvolume_create int guestfs_btrfs_subvolume_create (guestfs_h *g, const char *dest); This function is provided for backwards compatibility with earlier versions of libguestfs. It simply calls "guestfs_btrfs_subvolume_create_opts" with no optional arguments. (Added in 1.17.35) guestfs_btrfs_subvolume_create_opts int guestfs_btrfs_subvolume_create_opts (guestfs_h *g, const char *dest, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_BTRFS_SUBVOLUME_CREATE_OPTS_QGROUPID, const char *qgroupid, Create a btrfs subvolume. The "dest" argument is the destination directory and the name of the subvolume, in the form /path/to/dest/name. The optional parameter "qgroupid" represents the qgroup which the newly created subvolume will be added to. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.17.35) guestfs_btrfs_subvolume_create_opts_va int guestfs_btrfs_subvolume_create_opts_va (guestfs_h *g, const char *dest, va_list args); This is the "va_list variant" of "guestfs_btrfs_subvolume_create_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_btrfs_subvolume_create_opts_argv int guestfs_btrfs_subvolume_create_opts_argv (guestfs_h *g, const char *dest, const struct guestfs_btrfs_subvolume_create_opts_argv *optargs); This is the "argv variant" of "guestfs_btrfs_subvolume_create_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_btrfs_subvolume_delete int guestfs_btrfs_subvolume_delete (guestfs_h *g, const char *subvolume); Delete the named btrfs subvolume or snapshot. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.17.35) guestfs_btrfs_subvolume_get_default int64_t guestfs_btrfs_subvolume_get_default (guestfs_h *g, const char *fs); Get the default subvolume or snapshot of a filesystem mounted at "mountpoint". On error this function returns -1. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.17) guestfs_btrfs_subvolume_list struct guestfs_btrfssubvolume_list * guestfs_btrfs_subvolume_list (guestfs_h *g, const char *fs); List the btrfs snapshots and subvolumes of the btrfs filesystem which is mounted at "fs". This function returns a "struct guestfs_btrfssubvolume_list *", or NULL if there was an error. The caller must call "guestfs_free_btrfssubvolume_list" after use. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.17.35) guestfs_btrfs_subvolume_set_default int guestfs_btrfs_subvolume_set_default (guestfs_h *g, int64_t id, const char *fs); Set the subvolume of the btrfs filesystem "fs" which will be mounted by default. See "guestfs_btrfs_subvolume_list" to get a list of subvolumes. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.17.35) guestfs_btrfs_subvolume_show char ** guestfs_btrfs_subvolume_show (guestfs_h *g, const char *subvolume); Return detailed information of the subvolume. This function returns a NULL-terminated array of strings, or NULL if there was an error. The array of strings will always have length "2n+1", where "n" keys and values alternate, followed by the trailing NULL entry. The caller must free the strings and the array after use. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.17) guestfs_btrfs_subvolume_snapshot int guestfs_btrfs_subvolume_snapshot (guestfs_h *g, const char *source, const char *dest); This function is provided for backwards compatibility with earlier versions of libguestfs. It simply calls "guestfs_btrfs_subvolume_snapshot_opts" with no optional arguments. (Added in 1.17.35) guestfs_btrfs_subvolume_snapshot_opts int guestfs_btrfs_subvolume_snapshot_opts (guestfs_h *g, const char *source, const char *dest, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_BTRFS_SUBVOLUME_SNAPSHOT_OPTS_RO, int ro, GUESTFS_BTRFS_SUBVOLUME_SNAPSHOT_OPTS_QGROUPID, const char *qgroupid, Create a snapshot of the btrfs subvolume "source". The "dest" argument is the destination directory and the name of the snapshot, in the form /path/to/dest/name. By default the newly created snapshot is writable, if the value of optional parameter "ro" is true, then a readonly snapshot is created. The optional parameter "qgroupid" represents the qgroup which the newly created snapshot will be added to. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.17.35) guestfs_btrfs_subvolume_snapshot_opts_va int guestfs_btrfs_subvolume_snapshot_opts_va (guestfs_h *g, const char *source, const char *dest, va_list args); This is the "va_list variant" of "guestfs_btrfs_subvolume_snapshot_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_btrfs_subvolume_snapshot_opts_argv int guestfs_btrfs_subvolume_snapshot_opts_argv (guestfs_h *g, const char *source, const char *dest, const struct guestfs_btrfs_subvolume_snapshot_opts_argv *optargs); This is the "argv variant" of "guestfs_btrfs_subvolume_snapshot_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_btrfstune_enable_extended_inode_refs int guestfs_btrfstune_enable_extended_inode_refs (guestfs_h *g, const char *device); This will Enable extended inode refs. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.29) guestfs_btrfstune_enable_skinny_metadata_extent_refs int guestfs_btrfstune_enable_skinny_metadata_extent_refs (guestfs_h *g, const char *device); This enable skinny metadata extent refs. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.29) guestfs_btrfstune_seeding int guestfs_btrfstune_seeding (guestfs_h *g, const char *device, int seeding); Enable seeding of a btrfs device, this will force a fs readonly so that you can use it to build other filesystems. This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.29.29) guestfs_c_pointer int64_t guestfs_c_pointer (guestfs_h *g); In non-C language bindings, this allows you to retrieve the underlying C pointer to the handle (ie. "guestfs_h *"). The purpose of this is to allow other libraries to interwork with libguestfs. On error this function returns -1. (Added in 1.29.17) guestfs_canonical_device_name char * guestfs_canonical_device_name (guestfs_h *g, const char *device); This utility function is useful when displaying device names to the user. It takes a number of irregular device names and returns them in a consistent format: /dev/hdX /dev/vdX These are returned as /dev/sdX. Note this works for device names and partition names. This is approximately the reverse of the algorithm described in "BLOCK DEVICE NAMING". /dev/mapper/VG-LV /dev/dm-N Converted to /dev/VG/LV form using "guestfs_lvm_canonical_lv_name". Other strings are returned unmodified. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.19.7) guestfs_cap_get_file char * guestfs_cap_get_file (guestfs_h *g, const char *path); This function returns the Linux capabilities attached to "path". The capabilities set is returned in text form (see cap_to_text(3)). If no capabilities are attached to a file, an empty string is returned. This function returns a string, or NULL on error. The caller must free the returned string after use. This function depends on the feature "linuxcaps". See also "guestfs_feature_available". (Added in 1.19.63) guestfs_cap_set_file int guestfs_cap_set_file (guestfs_h *g, const char *path, const char *cap); This function sets the Linux capabilities attached to "path". The capabilities set "cap" should be passed in text form (see cap_from_text(3)). This function returns 0 on success or -1 on error. This function depends on the feature "linuxcaps". See also "guestfs_feature_available". (Added in 1.19.63) guestfs_case_sensitive_path char * guestfs_case_sensitive_path (guestfs_h *g, const char *path); This can be used to resolve case insensitive paths on a filesystem which is case sensitive. The use case is to resolve paths which you have read from Windows configuration files or the Windows Registry, to the true path. The command handles a peculiarity of the Linux ntfs-3g filesystem driver (and probably others), which is that although the underlying filesystem is case-insensitive, the driver exports the filesystem to Linux as case-sensitive. One consequence of this is that special directories such as C:\windows may appear as /WINDOWS or /windows (or other things) depending on the precise details of how they were created. In Windows itself this would not be a problem. Bug or feature? You decide: http://www.tuxera.com/community/ntfs-3g-faq/#posixfilenames1 "guestfs_case_sensitive_path" attempts to resolve the true case of each element in the path. It will return a resolved path if either the full path or its parent directory exists. If the parent directory exists but the full path does not, the case of the parent directory will be correctly resolved, and the remainder appended unmodified. For example, if the file "/Windows/System32/netkvm.sys" exists: "guestfs_case_sensitive_path" ("/windows/system32/netkvm.sys") "Windows/System32/netkvm.sys" "guestfs_case_sensitive_path" ("/windows/system32/NoSuchFile") "Windows/System32/NoSuchFile" "guestfs_case_sensitive_path" ("/windows/system33/netkvm.sys") ERROR Note: Because of the above behaviour, "guestfs_case_sensitive_path" cannot be used to check for the existence of a file. Note: This function does not handle drive names, backslashes etc. See also "guestfs_realpath". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.0.75) guestfs_cat char * guestfs_cat (guestfs_h *g, const char *path); Return the contents of the file named "path". Because, in C, this function returns a "char *", there is no way to differentiate between a "\0" character in a file and end of string. To handle binary files, use the "guestfs_read_file" or "guestfs_download" functions. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 0.4) guestfs_checksum char * guestfs_checksum (guestfs_h *g, const char *csumtype, const char *path); This call computes the MD5, SHAx or CRC checksum of the file named "path". The type of checksum to compute is given by the "csumtype" parameter which must have one of the following values: "crc" Compute the cyclic redundancy check (CRC) specified by POSIX for the "cksum" command. "md5" Compute the MD5 hash (using the "md5sum" program). "sha1" Compute the SHA1 hash (using the "sha1sum" program). "sha224" Compute the SHA224 hash (using the "sha224sum" program). "sha256" Compute the SHA256 hash (using the "sha256sum" program). "sha384" Compute the SHA384 hash (using the "sha384sum" program). "sha512" Compute the SHA512 hash (using the "sha512sum" program). The checksum is returned as a printable string. To get the checksum for a device, use "guestfs_checksum_device". To get the checksums for many files, use "guestfs_checksums_out". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.0.2) guestfs_checksum_device char * guestfs_checksum_device (guestfs_h *g, const char *csumtype, const char *device); This call computes the MD5, SHAx or CRC checksum of the contents of the device named "device". For the types of checksums supported see the "guestfs_checksum" command. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.3.2) guestfs_checksums_out int guestfs_checksums_out (guestfs_h *g, const char *csumtype, const char *directory, const char *sumsfile); This command computes the checksums of all regular files in directory and then emits a list of those checksums to the local output file "sumsfile". This can be used for verifying the integrity of a virtual machine. However to be properly secure you should pay attention to the output of the checksum command (it uses the ones from GNU coreutils). In particular when the filename is not printable, coreutils uses a special backslash syntax. For more information, see the GNU coreutils info file. This function returns 0 on success or -1 on error. (Added in 1.3.7) guestfs_chmod int guestfs_chmod (guestfs_h *g, int mode, const char *path); Change the mode (permissions) of "path" to "mode". Only numeric modes are supported. Note: When using this command from guestfish, "mode" by default would be decimal, unless you prefix it with 0 to get octal, ie. use 0700 not 700. The mode actually set is affected by the umask. This function returns 0 on success or -1 on error. (Added in 0.8) guestfs_chown int guestfs_chown (guestfs_h *g, int owner, int group, const char *path); Change the file owner to "owner" and group to "group". Only numeric uid and gid are supported. If you want to use names, you will need to locate and parse the password file yourself (Augeas support makes this relatively easy). This function returns 0 on success or -1 on error. (Added in 0.8) guestfs_clear_backend_setting int guestfs_clear_backend_setting (guestfs_h *g, const char *name); If there is a backend setting string matching "name" or beginning with "name=", then that string is removed from the backend settings. This call returns the number of strings which were removed (which may be 0, 1 or greater than 1). See "BACKEND", "BACKEND SETTINGS". On error this function returns -1. (Added in 1.27.2) guestfs_command char * guestfs_command (guestfs_h *g, char *const *arguments); This call runs a command from the guest filesystem. The filesystem must be mounted, and must contain a compatible operating system (ie. something Linux, with the same or compatible processor architecture). The single parameter is an argv-style list of arguments. The first element is the name of the program to run. Subsequent elements are parameters. The list must be non-empty (ie. must contain a program name). Note that the command runs directly, and is not invoked via the shell (see "guestfs_sh"). The return value is anything printed to stdout by the command. If the command returns a non-zero exit status, then this function returns an error message. The error message string is the content of stderr from the command. The $PATH environment variable will contain at least /usr/bin and /bin. If you require a program from another location, you should provide the full path in the first parameter. Shared libraries and data files required by the program must be available on filesystems which are mounted in the correct places. It is the caller's responsibility to ensure all filesystems that are needed are mounted at the right locations. This function returns a string, or NULL on error. The caller must free the returned string after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.9.1) guestfs_command_lines char ** guestfs_command_lines (guestfs_h *g, char *const *arguments); This is the same as "guestfs_command", but splits the result into a list of lines. See also: "guestfs_sh_lines" This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.9.1) guestfs_compress_device_out int guestfs_compress_device_out (guestfs_h *g, const char *ctype, const char *device, const char *zdevice, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_COMPRESS_DEVICE_OUT_LEVEL, int level, This command compresses "device" and writes it out to the local file "zdevice". The "ctype" and optional "level" parameters have the same meaning as in "guestfs_compress_out". This function returns 0 on success or -1 on error. (Added in 1.13.15) guestfs_compress_device_out_va int guestfs_compress_device_out_va (guestfs_h *g, const char *ctype, const char *device, const char *zdevice, va_list args); This is the "va_list variant" of "guestfs_compress_device_out". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_compress_device_out_argv int guestfs_compress_device_out_argv (guestfs_h *g, const char *ctype, const char *device, const char *zdevice, const struct guestfs_compress_device_out_argv *optargs); This is the "argv variant" of "guestfs_compress_device_out". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_compress_out int guestfs_compress_out (guestfs_h *g, const char *ctype, const char *file, const char *zfile, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_COMPRESS_OUT_LEVEL, int level, This command compresses file and writes it out to the local file zfile. The compression program used is controlled by the "ctype" parameter. Currently this includes: "compress", "gzip", "bzip2", "xz" or "lzop". Some compression types may not be supported by particular builds of libguestfs, in which case you will get an error containing the substring "not supported". The optional "level" parameter controls compression level. The meaning and default for this parameter depends on the compression program being used. This function returns 0 on success or -1 on error. (Added in 1.13.15) guestfs_compress_out_va int guestfs_compress_out_va (guestfs_h *g, const char *ctype, const char *file, const char *zfile, va_list args); This is the "va_list variant" of "guestfs_compress_out". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_compress_out_argv int guestfs_compress_out_argv (guestfs_h *g, const char *ctype, const char *file, const char *zfile, const struct guestfs_compress_out_argv *optargs); This is the "argv variant" of "guestfs_compress_out". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_config int guestfs_config (guestfs_h *g, const char *hvparam, const char *hvvalue); This can be used to add arbitrary hypervisor parameters of the form -param value. Actually it's not quite arbitrary - we prevent you from setting some parameters which would interfere with parameters that we use. The first character of "hvparam" string must be a "-" (dash). "hvvalue" can be NULL. This function returns 0 on success or -1 on error. (Added in 0.3) guestfs_copy_attributes int guestfs_copy_attributes (guestfs_h *g, const char *src, const char *dest, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_COPY_ATTRIBUTES_ALL, int all, GUESTFS_COPY_ATTRIBUTES_MODE, int mode, GUESTFS_COPY_ATTRIBUTES_XATTRIBUTES, int xattributes, GUESTFS_COPY_ATTRIBUTES_OWNERSHIP, int ownership, Copy the attributes of a path (which can be a file or a directory) to another path. By default "no" attribute is copied, so make sure to specify any (or "all" to copy everything). The optional arguments specify which attributes can be copied: "mode" Copy part of the file mode from "source" to "destination". Only the UNIX permissions and the sticky/setuid/setgid bits can be copied. "xattributes" Copy the Linux extended attributes (xattrs) from "source" to "destination". This flag does nothing if the linuxxattrs feature is not available (see "guestfs_feature_available"). "ownership" Copy the owner uid and the group gid of "source" to "destination". "all" Copy all the attributes from "source" to "destination". Enabling it enables all the other flags, if they are not specified already. This function returns 0 on success or -1 on error. (Added in 1.25.21) guestfs_copy_attributes_va int guestfs_copy_attributes_va (guestfs_h *g, const char *src, const char *dest, va_list args); This is the "va_list variant" of "guestfs_copy_attributes". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_copy_attributes_argv int guestfs_copy_attributes_argv (guestfs_h *g, const char *src, const char *dest, const struct guestfs_copy_attributes_argv *optargs); This is the "argv variant" of "guestfs_copy_attributes". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_copy_device_to_device int guestfs_copy_device_to_device (guestfs_h *g, const char *src, const char *dest, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_COPY_DEVICE_TO_DEVICE_SRCOFFSET, int64_t srcoffset, GUESTFS_COPY_DEVICE_TO_DEVICE_DESTOFFSET, int64_t destoffset, GUESTFS_COPY_DEVICE_TO_DEVICE_SIZE, int64_t size, GUESTFS_COPY_DEVICE_TO_DEVICE_SPARSE, int sparse, GUESTFS_COPY_DEVICE_TO_DEVICE_APPEND, int append, The four calls "guestfs_copy_device_to_device", "guestfs_copy_device_to_file", "guestfs_copy_file_to_device", and "guestfs_copy_file_to_file" let you copy from a source (device|file) to a destination (device|file). Partial copies can be made since you can specify optionally the source offset, destination offset and size to copy. These values are all specified in bytes. If not given, the offsets both default to zero, and the size defaults to copying as much as possible until we hit the end of the source. The source and destination may be the same object. However overlapping regions may not be copied correctly. If the destination is a file, it is created if required. If the destination file is not large enough, it is extended. If the destination is a file and the "append" flag is not set, then the destination file is truncated. If the "append" flag is set, then the copy appends to the destination file. The "append" flag currently cannot be set for devices. If the "sparse" flag is true then the call avoids writing blocks that contain only zeroes, which can help in some situations where the backing disk is thin-provisioned. Note that unless the target is already zeroed, using this option will result in incorrect copying. This function returns 0 on success or -1 on error. This long-running command can generate progress notification messages so that the caller can display a progress bar or indicator. To receive these messages, the caller must register a progress event callback. See "GUESTFS_EVENT_PROGRESS". (Added in 1.13.25) guestfs_copy_device_to_device_va int guestfs_copy_device_to_device_va (guestfs_h *g, const char *src, const char *dest, va_list args); This is the "va_list variant" of "guestfs_copy_device_to_device". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_copy_device_to_device_argv int guestfs_copy_device_to_device_argv (guestfs_h *g, const char *src, const char *dest, const struct guestfs_copy_device_to_device_argv *optargs); This is the "argv variant" of "guestfs_copy_device_to_device". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_copy_device_to_file int guestfs_copy_device_to_file (guestfs_h *g, const char *src, const char *dest, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_COPY_DEVICE_TO_FILE_SRCOFFSET, int64_t srcoffset, GUESTFS_COPY_DEVICE_TO_FILE_DESTOFFSET, int64_t destoffset, GUESTFS_COPY_DEVICE_TO_FILE_SIZE, int64_t size, GUESTFS_COPY_DEVICE_TO_FILE_SPARSE, int sparse, GUESTFS_COPY_DEVICE_TO_FILE_APPEND, int append, See "guestfs_copy_device_to_device" for a general overview of this call. This function returns 0 on success or -1 on error. This long-running command can generate progress notification messages so that the caller can display a progress bar or indicator. To receive these messages, the caller must register a progress event callback. See "GUESTFS_EVENT_PROGRESS". (Added in 1.13.25) guestfs_copy_device_to_file_va int guestfs_copy_device_to_file_va (guestfs_h *g, const char *src, const char *dest, va_list args); This is the "va_list variant" of "guestfs_copy_device_to_file". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_copy_device_to_file_argv int guestfs_copy_device_to_file_argv (guestfs_h *g, const char *src, const char *dest, const struct guestfs_copy_device_to_file_argv *optargs); This is the "argv variant" of "guestfs_copy_device_to_file". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_copy_file_to_device int guestfs_copy_file_to_device (guestfs_h *g, const char *src, const char *dest, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_COPY_FILE_TO_DEVICE_SRCOFFSET, int64_t srcoffset, GUESTFS_COPY_FILE_TO_DEVICE_DESTOFFSET, int64_t destoffset, GUESTFS_COPY_FILE_TO_DEVICE_SIZE, int64_t size, GUESTFS_COPY_FILE_TO_DEVICE_SPARSE, int sparse, GUESTFS_COPY_FILE_TO_DEVICE_APPEND, int append, See "guestfs_copy_device_to_device" for a general overview of this call. This function returns 0 on success or -1 on error. This long-running command can generate progress notification messages so that the caller can display a progress bar or indicator. To receive these messages, the caller must register a progress event callback. See "GUESTFS_EVENT_PROGRESS". (Added in 1.13.25) guestfs_copy_file_to_device_va int guestfs_copy_file_to_device_va (guestfs_h *g, const char *src, const char *dest, va_list args); This is the "va_list variant" of "guestfs_copy_file_to_device". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_copy_file_to_device_argv int guestfs_copy_file_to_device_argv (guestfs_h *g, const char *src, const char *dest, const struct guestfs_copy_file_to_device_argv *optargs); This is the "argv variant" of "guestfs_copy_file_to_device". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_copy_file_to_file int guestfs_copy_file_to_file (guestfs_h *g, const char *src, const char *dest, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_COPY_FILE_TO_FILE_SRCOFFSET, int64_t srcoffset, GUESTFS_COPY_FILE_TO_FILE_DESTOFFSET, int64_t destoffset, GUESTFS_COPY_FILE_TO_FILE_SIZE, int64_t size, GUESTFS_COPY_FILE_TO_FILE_SPARSE, int sparse, GUESTFS_COPY_FILE_TO_FILE_APPEND, int append, See "guestfs_copy_device_to_device" for a general overview of this call. This is not the function you want for copying files. This is for copying blocks within existing files. See "guestfs_cp", "guestfs_cp_a" and "guestfs_mv" for general file copying and moving functions. This function returns 0 on success or -1 on error. This long-running command can generate progress notification messages so that the caller can display a progress bar or indicator. To receive these messages, the caller must register a progress event callback. See "GUESTFS_EVENT_PROGRESS". (Added in 1.13.25) guestfs_copy_file_to_file_va int guestfs_copy_file_to_file_va (guestfs_h *g, const char *src, const char *dest, va_list args); This is the "va_list variant" of "guestfs_copy_file_to_file". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_copy_file_to_file_argv int guestfs_copy_file_to_file_argv (guestfs_h *g, const char *src, const char *dest, const struct guestfs_copy_file_to_file_argv *optargs); This is the "argv variant" of "guestfs_copy_file_to_file". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_copy_in int guestfs_copy_in (guestfs_h *g, const char *localpath, const char *remotedir); "guestfs_copy_in" copies local files or directories recursively into the disk image, placing them in the directory called "remotedir" (which must exist). Wildcards cannot be used. This function returns 0 on success or -1 on error. (Added in 1.29.24) guestfs_copy_out int guestfs_copy_out (guestfs_h *g, const char *remotepath, const char *localdir); "guestfs_copy_out" copies remote files or directories recursively out of the disk image, placing them on the host disk in a local directory called "localdir" (which must exist). To download to the current directory, use "." as in: C<guestfs_copy_out> /home . Wildcards cannot be used. This function returns 0 on success or -1 on error. (Added in 1.29.24) guestfs_copy_size int guestfs_copy_size (guestfs_h *g, const char *src, const char *dest, int64_t size); This function is deprecated. In new code, use the "guestfs_copy_device_to_device" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This command copies exactly "size" bytes from one source device or file "src" to another destination device or file "dest". Note this will fail if the source is too short or if the destination is not large enough. This function returns 0 on success or -1 on error. This long-running command can generate progress notification messages so that the caller can display a progress bar or indicator. To receive these messages, the caller must register a progress event callback. See "GUESTFS_EVENT_PROGRESS". (Added in 1.0.87) guestfs_cp int guestfs_cp (guestfs_h *g, const char *src, const char *dest); This copies a file from "src" to "dest" where "dest" is either a destination filename or destination directory. This function returns 0 on success or -1 on error. (Added in 1.0.18) guestfs_cp_a int guestfs_cp_a (guestfs_h *g, const char *src, const char *dest); This copies a file or directory from "src" to "dest" recursively using the "cp -a" command. This function returns 0 on success or -1 on error. (Added in 1.0.18) guestfs_cp_r int guestfs_cp_r (guestfs_h *g, const char *src, const char *dest); This copies a file or directory from "src" to "dest" recursively using the "cp -rP" command. Most users should use "guestfs_cp_a" instead. This command is useful when you don't want to preserve permissions, because the target filesystem does not support it (primarily when writing to DOS FAT filesystems). This function returns 0 on success or -1 on error. (Added in 1.21.38) guestfs_cpio_out int guestfs_cpio_out (guestfs_h *g, const char *directory, const char *cpiofile, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_CPIO_OUT_FORMAT, const char *format, This command packs the contents of directory and downloads it to local file "cpiofile". The optional "format" parameter can be used to select the format. Only the following formats are currently permitted: "newc" New (SVR4) portable format. This format happens to be compatible with the cpio-like format used by the Linux kernel for initramfs. This is the default format. "crc" New (SVR4) portable format with a checksum. This function returns 0 on success or -1 on error. (Added in 1.27.9) guestfs_cpio_out_va int guestfs_cpio_out_va (guestfs_h *g, const char *directory, const char *cpiofile, va_list args); This is the "va_list variant" of "guestfs_cpio_out". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_cpio_out_argv int guestfs_cpio_out_argv (guestfs_h *g, const char *directory, const char *cpiofile, const struct guestfs_cpio_out_argv *optargs); This is the "argv variant" of "guestfs_cpio_out". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_dd int guestfs_dd (guestfs_h *g, const char *src, const char *dest); This function is deprecated. In new code, use the "guestfs_copy_device_to_device" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This command copies from one source device or file "src" to another destination device or file "dest". Normally you would use this to copy to or from a device or partition, for example to duplicate a filesystem. If the destination is a device, it must be as large or larger than the source file or device, otherwise the copy will fail. This command cannot do partial copies (see "guestfs_copy_device_to_device"). This function returns 0 on success or -1 on error. (Added in 1.0.80) guestfs_device_index int guestfs_device_index (guestfs_h *g, const char *device); This function takes a device name (eg. "/dev/sdb") and returns the index of the device in the list of devices. Index numbers start from 0. The named device must exist, for example as a string returned from "guestfs_list_devices". See also "guestfs_list_devices", "guestfs_part_to_dev". On error this function returns -1. (Added in 1.19.7) guestfs_df char * guestfs_df (guestfs_h *g); This command runs the "df" command to report disk space used. This command is mostly useful for interactive sessions. It is not intended that you try to parse the output string. Use "guestfs_statvfs" from programs. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.0.54) guestfs_df_h char * guestfs_df_h (guestfs_h *g); This command runs the "df -h" command to report disk space used in human-readable format. This command is mostly useful for interactive sessions. It is not intended that you try to parse the output string. Use "guestfs_statvfs" from programs. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.0.54) guestfs_disk_create int guestfs_disk_create (guestfs_h *g, const char *filename, const char *format, int64_t size, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_DISK_CREATE_BACKINGFILE, const char *backingfile, GUESTFS_DISK_CREATE_BACKINGFORMAT, const char *backingformat, GUESTFS_DISK_CREATE_PREALLOCATION, const char *preallocation, GUESTFS_DISK_CREATE_COMPAT, const char *compat, GUESTFS_DISK_CREATE_CLUSTERSIZE, int clustersize, Create a blank disk image called filename (a host file) with format "format" (usually "raw" or "qcow2"). The size is "size" bytes. If used with the optional "backingfile" parameter, then a snapshot is created on top of the backing file. In this case, "size" must be passed as "-1". The size of the snapshot is the same as the size of the backing file, which is discovered automatically. You are encouraged to also pass "backingformat" to describe the format of "backingfile". If filename refers to a block device, then the device is formatted. The "size" is ignored since block devices have an intrinsic size. The other optional parameters are: "preallocation" If format is "raw", then this can be either "off" (or "sparse") or "full" to create a sparse or fully allocated file respectively. The default is "off". If format is "qcow2", then this can be "off" (or "sparse"), "metadata" or "full". Preallocating metadata can be faster when doing lots of writes, but uses more space. The default is "off". "compat" "qcow2" only: Pass the string 1.1 to use the advanced qcow2 format supported by qemu ≥ 1.1. "clustersize" "qcow2" only: Change the qcow2 cluster size. The default is 65536 (bytes) and this setting may be any power of two between 512 and 2097152. Note that this call does not add the new disk to the handle. You may need to call "guestfs_add_drive_opts" separately. This function returns 0 on success or -1 on error. (Added in 1.25.31) guestfs_disk_create_va int guestfs_disk_create_va (guestfs_h *g, const char *filename, const char *format, int64_t size, va_list args); This is the "va_list variant" of "guestfs_disk_create". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_disk_create_argv int guestfs_disk_create_argv (guestfs_h *g, const char *filename, const char *format, int64_t size, const struct guestfs_disk_create_argv *optargs); This is the "argv variant" of "guestfs_disk_create". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_disk_format char * guestfs_disk_format (guestfs_h *g, const char *filename); Detect and return the format of the disk image called filename. filename can also be a host device, etc. If the format of the image could not be detected, then "unknown" is returned. Note that detecting the disk format can be insecure under some circumstances. See "CVE-2010-3851". See also: "DISK IMAGE FORMATS" This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.19.38) guestfs_disk_has_backing_file int guestfs_disk_has_backing_file (guestfs_h *g, const char *filename); Detect and return whether the disk image filename has a backing file. Note that detecting disk features can be insecure under some circumstances. See "CVE-2010-3851". This function returns a C truth value on success or -1 on error. (Added in 1.19.39) guestfs_disk_virtual_size int64_t guestfs_disk_virtual_size (guestfs_h *g, const char *filename); Detect and return the virtual size in bytes of the disk image called filename. Note that detecting disk features can be insecure under some circumstances. See "CVE-2010-3851". On error this function returns -1. (Added in 1.19.39) guestfs_dmesg char * guestfs_dmesg (guestfs_h *g); This returns the kernel messages ("dmesg" output) from the guest kernel. This is sometimes useful for extended debugging of problems. Another way to get the same information is to enable verbose messages with "guestfs_set_verbose" or by setting the environment variable "LIBGUESTFS_DEBUG=1" before running the program. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.0.18) guestfs_download int guestfs_download (guestfs_h *g, const char *remotefilename, const char *filename); Download file remotefilename and save it as filename on the local machine. filename can also be a named pipe. See also "guestfs_upload", "guestfs_cat". This function returns 0 on success or -1 on error. This long-running command can generate progress notification messages so that the caller can display a progress bar or indicator. To receive these messages, the caller must register a progress event callback. See "GUESTFS_EVENT_PROGRESS". (Added in 1.0.2) guestfs_download_blocks int guestfs_download_blocks (guestfs_h *g, const char *device, int64_t start, int64_t stop, const char *filename, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_DOWNLOAD_BLOCKS_UNALLOCATED, int unallocated, Download the data units from start address to stop from the disk partition (eg. /dev/sda1) and save them as filename on the local machine. The use of this API on sparse disk image formats such as QCOW, may result in large zero- filled files downloaded on the host. The size of a data unit varies across filesystem implementations. On NTFS filesystems data units are referred as clusters while on ExtX ones they are referred as fragments. If the optional "unallocated" flag is true (default is false), only the unallocated blocks will be extracted. This is useful to detect hidden data or to retrieve deleted files which data units have not been overwritten yet. This function returns 0 on success or -1 on error. This long-running command can generate progress notification messages so that the caller can display a progress bar or indicator. To receive these messages, the caller must register a progress event callback. See "GUESTFS_EVENT_PROGRESS". This function depends on the feature "sleuthkit". See also "guestfs_feature_available". (Added in 1.33.45) guestfs_download_blocks_va int guestfs_download_blocks_va (guestfs_h *g, const char *device, int64_t start, int64_t stop, const char *filename, va_list args); This is the "va_list variant" of "guestfs_download_blocks". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_download_blocks_argv int guestfs_download_blocks_argv (guestfs_h *g, const char *device, int64_t start, int64_t stop, const char *filename, const struct guestfs_download_blocks_argv *optargs); This is the "argv variant" of "guestfs_download_blocks". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_download_inode int guestfs_download_inode (guestfs_h *g, const char *device, int64_t inode, const char *filename); Download a file given its inode from the disk partition (eg. /dev/sda1) and save it as filename on the local machine. It is not required to mount the disk to run this command. The command is capable of downloading deleted or inaccessible files. This function returns 0 on success or -1 on error. This long-running command can generate progress notification messages so that the caller can display a progress bar or indicator. To receive these messages, the caller must register a progress event callback. See "GUESTFS_EVENT_PROGRESS". This function depends on the feature "sleuthkit". See also "guestfs_feature_available". (Added in 1.33.14) guestfs_download_offset int guestfs_download_offset (guestfs_h *g, const char *remotefilename, const char *filename, int64_t offset, int64_t size); Download file remotefilename and save it as filename on the local machine. remotefilename is read for "size" bytes starting at "offset" (this region must be within the file or device). Note that there is no limit on the amount of data that can be downloaded with this call, unlike with "guestfs_pread", and this call always reads the full amount unless an error occurs. See also "guestfs_download", "guestfs_pread". This function returns 0 on success or -1 on error. This long-running command can generate progress notification messages so that the caller can display a progress bar or indicator. To receive these messages, the caller must register a progress event callback. See "GUESTFS_EVENT_PROGRESS". (Added in 1.5.17) guestfs_drop_caches int guestfs_drop_caches (guestfs_h *g, int whattodrop); This instructs the guest kernel to drop its page cache, and/or dentries and inode caches. The parameter "whattodrop" tells the kernel what precisely to drop, see http://linux-mm.org/Drop_Caches Setting "whattodrop" to 3 should drop everything. This automatically calls sync(2) before the operation, so that the maximum guest memory is freed. This function returns 0 on success or -1 on error. (Added in 1.0.18) guestfs_du int64_t guestfs_du (guestfs_h *g, const char *path); This command runs the "du -s" command to estimate file space usage for "path". "path" can be a file or a directory. If "path" is a directory then the estimate includes the contents of the directory and all subdirectories (recursively). The result is the estimated size in kilobytes (ie. units of 1024 bytes). On error this function returns -1. This long-running command can generate progress notification messages so that the caller can display a progress bar or indicator. To receive these messages, the caller must register a progress event callback. See "GUESTFS_EVENT_PROGRESS". (Added in 1.0.54) guestfs_e2fsck int guestfs_e2fsck (guestfs_h *g, const char *device, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_E2FSCK_CORRECT, int correct, GUESTFS_E2FSCK_FORCEALL, int forceall, This runs the ext2/ext3 filesystem checker on "device". It can take the following optional arguments: "correct" Automatically repair the file system. This option will cause e2fsck to automatically fix any filesystem problems that can be safely fixed without human intervention. This option may not be specified at the same time as the "forceall" option. "forceall" Assume an answer of 'yes' to all questions; allows e2fsck to be used non- interactively. This option may not be specified at the same time as the "correct" option. This function returns 0 on success or -1 on error. (Added in 1.15.17) guestfs_e2fsck_va int guestfs_e2fsck_va (guestfs_h *g, const char *device, va_list args); This is the "va_list variant" of "guestfs_e2fsck". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_e2fsck_argv int guestfs_e2fsck_argv (guestfs_h *g, const char *device, const struct guestfs_e2fsck_argv *optargs); This is the "argv variant" of "guestfs_e2fsck". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_e2fsck_f int guestfs_e2fsck_f (guestfs_h *g, const char *device); This function is deprecated. In new code, use the "guestfs_e2fsck" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This runs "e2fsck -p -f device", ie. runs the ext2/ext3 filesystem checker on "device", noninteractively (-p), even if the filesystem appears to be clean (-f). This function returns 0 on success or -1 on error. (Added in 1.0.29) guestfs_echo_daemon char * guestfs_echo_daemon (guestfs_h *g, char *const *words); This command concatenates the list of "words" passed with single spaces between them and returns the resulting string. You can use this command to test the connection through to the daemon. See also "guestfs_ping_daemon". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.0.69) guestfs_egrep char ** guestfs_egrep (guestfs_h *g, const char *regex, const char *path); This function is deprecated. In new code, use the "guestfs_grep" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This calls the external "egrep" program and returns the matching lines. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.0.66) guestfs_egrepi char ** guestfs_egrepi (guestfs_h *g, const char *regex, const char *path); This function is deprecated. In new code, use the "guestfs_grep" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This calls the external "egrep -i" program and returns the matching lines. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.0.66) guestfs_equal int guestfs_equal (guestfs_h *g, const char *file1, const char *file2); This compares the two files file1 and file2 and returns true if their content is exactly equal, or false otherwise. The external cmp(1) program is used for the comparison. This function returns a C truth value on success or -1 on error. (Added in 1.0.18) guestfs_exists int guestfs_exists (guestfs_h *g, const char *path); This returns "true" if and only if there is a file, directory (or anything) with the given "path" name. See also "guestfs_is_file", "guestfs_is_dir", "guestfs_stat". This function returns a C truth value on success or -1 on error. (Added in 0.8) guestfs_extlinux int guestfs_extlinux (guestfs_h *g, const char *directory); Install the SYSLINUX bootloader on the device mounted at directory. Unlike "guestfs_syslinux" which requires a FAT filesystem, this can be used on an ext2/3/4 or btrfs filesystem. The directory parameter can be either a mountpoint, or a directory within the mountpoint. You also have to mark the partition as "active" ("guestfs_part_set_bootable") and a Master Boot Record must be installed (eg. using "guestfs_pwrite_device") on the first sector of the whole disk. The SYSLINUX package comes with some suitable Master Boot Records. See the extlinux(1) man page for further information. Additional configuration can be supplied to SYSLINUX by placing a file called extlinux.conf on the filesystem under directory. For further information about the contents of this file, see extlinux(1). See also "guestfs_syslinux". This function returns 0 on success or -1 on error. This function depends on the feature "extlinux". See also "guestfs_feature_available". (Added in 1.21.27) guestfs_fallocate int guestfs_fallocate (guestfs_h *g, const char *path, int len); This function is deprecated. In new code, use the "guestfs_fallocate64" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This command preallocates a file (containing zero bytes) named "path" of size "len" bytes. If the file exists already, it is overwritten. Do not confuse this with the guestfish-specific "alloc" command which allocates a file in the host and attaches it as a device. This function returns 0 on success or -1 on error. (Added in 1.0.66) guestfs_fallocate64 int guestfs_fallocate64 (guestfs_h *g, const char *path, int64_t len); This command preallocates a file (containing zero bytes) named "path" of size "len" bytes. If the file exists already, it is overwritten. Note that this call allocates disk blocks for the file. To create a sparse file use "guestfs_truncate_size" instead. The deprecated call "guestfs_fallocate" does the same, but owing to an oversight it only allowed 30 bit lengths to be specified, effectively limiting the maximum size of files created through that call to 1GB. Do not confuse this with the guestfish-specific "alloc" and "sparse" commands which create a file in the host and attach it as a device. This function returns 0 on success or -1 on error. (Added in 1.3.17) guestfs_feature_available int guestfs_feature_available (guestfs_h *g, char *const *groups); This is the same as "guestfs_available", but unlike that call it returns a simple true/false boolean result, instead of throwing an exception if a feature is not found. For other documentation see "guestfs_available". This function returns a C truth value on success or -1 on error. (Added in 1.21.26) guestfs_fgrep char ** guestfs_fgrep (guestfs_h *g, const char *pattern, const char *path); This function is deprecated. In new code, use the "guestfs_grep" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This calls the external "fgrep" program and returns the matching lines. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.0.66) guestfs_fgrepi char ** guestfs_fgrepi (guestfs_h *g, const char *pattern, const char *path); This function is deprecated. In new code, use the "guestfs_grep" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This calls the external "fgrep -i" program and returns the matching lines. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.0.66) guestfs_file char * guestfs_file (guestfs_h *g, const char *path); This call uses the standard file(1) command to determine the type or contents of the file. This call will also transparently look inside various types of compressed file. The exact command which runs is "file -zb path". Note in particular that the filename is not prepended to the output (the -b option). The output depends on the output of the underlying file(1) command and it can change in future in ways beyond our control. In other words, the output is not guaranteed by the ABI. See also: file(1), "guestfs_vfs_type", "guestfs_lstat", "guestfs_is_file", "guestfs_is_blockdev" (etc), "guestfs_is_zero". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.9.1) guestfs_file_architecture char * guestfs_file_architecture (guestfs_h *g, const char *filename); This detects the architecture of the binary filename, and returns it if known. Currently defined architectures are: "aarch64" 64 bit ARM. "arm" 32 bit ARM. "i386" This string is returned for all 32 bit i386, i486, i586, i686 binaries irrespective of the precise processor requirements of the binary. "ia64" Intel Itanium. "ppc" 32 bit Power PC. "ppc64" 64 bit Power PC (big endian). "ppc64le" 64 bit Power PC (little endian). "riscv32" "riscv64" "riscv128" RISC-V 32-, 64- or 128-bit variants. "s390" 31 bit IBM S/390. "s390x" 64 bit IBM S/390. "sparc" 32 bit SPARC. "sparc64" 64 bit SPARC V9 and above. "x86_64" 64 bit x86-64. Libguestfs may return other architecture strings in future. The function works on at least the following types of files: • many types of Un*x and Linux binary • many types of Un*x and Linux shared library • Windows Win32 and Win64 binaries • Windows Win32 and Win64 DLLs Win32 binaries and DLLs return "i386". Win64 binaries and DLLs return "x86_64". • Linux kernel modules • Linux new-style initrd images • some non-x86 Linux vmlinuz kernels What it can't do currently: • static libraries (libfoo.a) • Linux old-style initrd as compressed ext2 filesystem (RHEL 3) • x86 Linux vmlinuz kernels x86 vmlinuz images (bzImage format) consist of a mix of 16-, 32- and compressed code, and are horribly hard to unpack. If you want to find the architecture of a kernel, use the architecture of the associated initrd or kernel module(s) instead. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.5.3) guestfs_filesize int64_t guestfs_filesize (guestfs_h *g, const char *file); This command returns the size of file in bytes. To get other stats about a file, use "guestfs_stat", "guestfs_lstat", "guestfs_is_dir", "guestfs_is_file" etc. To get the size of block devices, use "guestfs_blockdev_getsize64". On error this function returns -1. (Added in 1.0.82) guestfs_filesystem_available int guestfs_filesystem_available (guestfs_h *g, const char *filesystem); Check whether libguestfs supports the named filesystem. The argument "filesystem" is a filesystem name, such as "ext3". You must call "guestfs_launch" before using this command. This is mainly useful as a negative test. If this returns true, it doesn't mean that a particular filesystem can be created or mounted, since filesystems can fail for other reasons such as it being a later version of the filesystem, or having incompatible features, or lacking the right mkfs.<fs> tool. See also "guestfs_available", "guestfs_feature_available", "AVAILABILITY". This function returns a C truth value on success or -1 on error. (Added in 1.19.5) guestfs_filesystem_walk struct guestfs_tsk_dirent_list * guestfs_filesystem_walk (guestfs_h *g, const char *device); Walk through the internal structures of a disk partition (eg. /dev/sda1) in order to return a list of all the files and directories stored within. It is not necessary to mount the disk partition to run this command. All entries in the filesystem are returned. This function can list deleted or unaccessible files. The entries are not sorted. The "tsk_dirent" structure contains the following fields. 'tsk_inode' Filesystem reference number of the node. It might be 0 if the node has been deleted. 'tsk_type' Basic file type information. See below for a detailed list of values. 'tsk_size' File size in bytes. It might be "-1" if the node has been deleted. 'tsk_name' The file path relative to its directory. 'tsk_flags' Bitfield containing extra information regarding the entry. It contains the logical OR of the following values: 0x0001 If set to 1, the file is allocated and visible within the filesystem. Otherwise, the file has been deleted. Under certain circumstances, the function "download_inode" can be used to recover deleted files. 0x0002 Filesystem such as NTFS and Ext2 or greater, separate the file name from the metadata structure. The bit is set to 1 when the file name is in an unallocated state and the metadata structure is in an allocated one. This generally implies the metadata has been reallocated to a new file. Therefore, information such as file type, file size, timestamps, number of links and symlink target might not correspond with the ones of the original deleted entry. 0x0004 The bit is set to 1 when the file is compressed using filesystem native compression support (NTFS). The API is not able to detect application level compression. 'tsk_atime_sec' 'tsk_atime_nsec' 'tsk_mtime_sec' 'tsk_mtime_nsec' 'tsk_ctime_sec' 'tsk_ctime_nsec' 'tsk_crtime_sec' 'tsk_crtime_nsec' Respectively, access, modification, last status change and creation time in Unix format in seconds and nanoseconds. 'tsk_nlink' Number of file names pointing to this entry. 'tsk_link' If the entry is a symbolic link, this field will contain the path to the target file. The "tsk_type" field will contain one of the following characters: 'b' Block special 'c' Char special 'd' Directory 'f' FIFO (named pipe) 'l' Symbolic link 'r' Regular file 's' Socket 'h' Shadow inode (Solaris) 'w' Whiteout inode (BSD) 'u' Unknown file type This function returns a "struct guestfs_tsk_dirent_list *", or NULL if there was an error. The caller must call "guestfs_free_tsk_dirent_list" after use. This long-running command can generate progress notification messages so that the caller can display a progress bar or indicator. To receive these messages, the caller must register a progress event callback. See "GUESTFS_EVENT_PROGRESS". This function depends on the feature "libtsk". See also "guestfs_feature_available". (Added in 1.33.39) guestfs_fill int guestfs_fill (guestfs_h *g, int c, int len, const char *path); This command creates a new file called "path". The initial content of the file is "len" octets of "c", where "c" must be a number in the range "[0..255]". To fill a file with zero bytes (sparsely), it is much more efficient to use "guestfs_truncate_size". To create a file with a pattern of repeating bytes use "guestfs_fill_pattern". This function returns 0 on success or -1 on error. This long-running command can generate progress notification messages so that the caller can display a progress bar or indicator. To receive these messages, the caller must register a progress event callback. See "GUESTFS_EVENT_PROGRESS". (Added in 1.0.79) guestfs_fill_dir int guestfs_fill_dir (guestfs_h *g, const char *dir, int nr); This function, useful for testing filesystems, creates "nr" empty files in the directory "dir" with names 00000000 through "nr-1" (ie. each file name is 8 digits long padded with zeroes). This function returns 0 on success or -1 on error. (Added in 1.19.32) guestfs_fill_pattern int guestfs_fill_pattern (guestfs_h *g, const char *pattern, int len, const char *path); This function is like "guestfs_fill" except that it creates a new file of length "len" containing the repeating pattern of bytes in "pattern". The pattern is truncated if necessary to ensure the length of the file is exactly "len" bytes. This function returns 0 on success or -1 on error. This long-running command can generate progress notification messages so that the caller can display a progress bar or indicator. To receive these messages, the caller must register a progress event callback. See "GUESTFS_EVENT_PROGRESS". (Added in 1.3.12) guestfs_find char ** guestfs_find (guestfs_h *g, const char *directory); This command lists out all files and directories, recursively, starting at directory. It is essentially equivalent to running the shell command "find directory -print" but some post-processing happens on the output, described below. This returns a list of strings without any prefix. Thus if the directory structure was: /tmp/a /tmp/b /tmp/c/d then the returned list from "guestfs_find" /tmp would be 4 elements: a b c c/d If directory is not a directory, then this command returns an error. The returned list is sorted. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 1.0.27) guestfs_find0 int guestfs_find0 (guestfs_h *g, const char *directory, const char *files); This command lists out all files and directories, recursively, starting at directory, placing the resulting list in the external file called files. This command works the same way as "guestfs_find" with the following exceptions: • The resulting list is written to an external file. • Items (filenames) in the result are separated by "\0" characters. See find(1) option -print0. • The result list is not sorted. This function returns 0 on success or -1 on error. (Added in 1.0.74) guestfs_find_inode struct guestfs_tsk_dirent_list * guestfs_find_inode (guestfs_h *g, const char *device, int64_t inode); Searches all the entries associated with the given inode. For each entry, a "tsk_dirent" structure is returned. See "filesystem_walk" for more information about "tsk_dirent" structures. This function returns a "struct guestfs_tsk_dirent_list *", or NULL if there was an error. The caller must call "guestfs_free_tsk_dirent_list" after use. This long-running command can generate progress notification messages so that the caller can display a progress bar or indicator. To receive these messages, the caller must register a progress event callback. See "GUESTFS_EVENT_PROGRESS". This function depends on the feature "libtsk". See also "guestfs_feature_available". (Added in 1.35.6) guestfs_findfs_label char * guestfs_findfs_label (guestfs_h *g, const char *label); This command searches the filesystems and returns the one which has the given label. An error is returned if no such filesystem can be found. To find the label of a filesystem, use "guestfs_vfs_label". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.5.3) guestfs_findfs_uuid char * guestfs_findfs_uuid (guestfs_h *g, const char *uuid); This command searches the filesystems and returns the one which has the given UUID. An error is returned if no such filesystem can be found. To find the UUID of a filesystem, use "guestfs_vfs_uuid". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.5.3) guestfs_fsck int guestfs_fsck (guestfs_h *g, const char *fstype, const char *device); This runs the filesystem checker (fsck) on "device" which should have filesystem type "fstype". The returned integer is the status. See fsck(8) for the list of status codes from "fsck". Notes: • Multiple status codes can be summed together. • A non-zero return code can mean "success", for example if errors have been corrected on the filesystem. • Checking or repairing NTFS volumes is not supported (by linux-ntfs). This command is entirely equivalent to running "fsck -a -t fstype device". On error this function returns -1. (Added in 1.0.16) guestfs_fstrim int guestfs_fstrim (guestfs_h *g, const char *mountpoint, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_FSTRIM_OFFSET, int64_t offset, GUESTFS_FSTRIM_LENGTH, int64_t length, GUESTFS_FSTRIM_MINIMUMFREEEXTENT, int64_t minimumfreeextent, Trim the free space in the filesystem mounted on "mountpoint". The filesystem must be mounted read-write. The filesystem contents are not affected, but any free space in the filesystem is "trimmed", that is, given back to the host device, thus making disk images more sparse, allowing unused space in qcow2 files to be reused, etc. This operation requires support in libguestfs, the mounted filesystem, the host filesystem, qemu and the host kernel. If this support isn't present it may give an error or even appear to run but do nothing. In the case where the kernel vfs driver does not support trimming, this call will fail with errno set to "ENOTSUP". Currently this happens when trying to trim FAT filesystems. See also "guestfs_zero_free_space". That is a slightly different operation that turns free space in the filesystem into zeroes. It is valid to call "guestfs_fstrim" either instead of, or after calling "guestfs_zero_free_space". This function returns 0 on success or -1 on error. This function depends on the feature "fstrim". See also "guestfs_feature_available". (Added in 1.19.6) guestfs_fstrim_va int guestfs_fstrim_va (guestfs_h *g, const char *mountpoint, va_list args); This is the "va_list variant" of "guestfs_fstrim". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_fstrim_argv int guestfs_fstrim_argv (guestfs_h *g, const char *mountpoint, const struct guestfs_fstrim_argv *optargs); This is the "argv variant" of "guestfs_fstrim". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_get_append const char * guestfs_get_append (guestfs_h *g); Return the additional kernel options which are added to the libguestfs appliance kernel command line. If "NULL" then no options are added. This function returns a string which may be NULL. There is no way to return an error from this function. The string is owned by the guest handle and must not be freed. (Added in 1.0.26) guestfs_get_attach_method char * guestfs_get_attach_method (guestfs_h *g); This function is deprecated. In new code, use the "guestfs_get_backend" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. Return the current backend. See "guestfs_set_backend" and "BACKEND". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.9.8) guestfs_get_autosync int guestfs_get_autosync (guestfs_h *g); Get the autosync flag. This function returns a C truth value on success or -1 on error. (Added in 0.3) guestfs_get_backend char * guestfs_get_backend (guestfs_h *g); Return the current backend. This handle property was previously called the "attach method". See "guestfs_set_backend" and "BACKEND". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.21.26) guestfs_get_backend_setting char * guestfs_get_backend_setting (guestfs_h *g, const char *name); Find a backend setting string which is either "name" or begins with "name=". If "name", this returns the string "1". If "name=", this returns the part after the equals sign (which may be an empty string). If no such setting is found, this function throws an error. The errno (see "guestfs_last_errno") will be "ESRCH" in this case. See "BACKEND", "BACKEND SETTINGS". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.27.2) guestfs_get_backend_settings char ** guestfs_get_backend_settings (guestfs_h *g); Return the current backend settings. This call returns all backend settings strings. If you want to find a single backend setting, see "guestfs_get_backend_setting". See "BACKEND", "BACKEND SETTINGS". This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 1.25.24) guestfs_get_cachedir char * guestfs_get_cachedir (guestfs_h *g); Get the directory used by the handle to store the appliance cache. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.19.58) guestfs_get_direct int guestfs_get_direct (guestfs_h *g); Return the direct appliance mode flag. This function returns a C truth value on success or -1 on error. (Added in 1.0.72) guestfs_get_e2attrs char * guestfs_get_e2attrs (guestfs_h *g, const char *file); This returns the file attributes associated with file. The attributes are a set of bits associated with each inode which affect the behaviour of the file. The attributes are returned as a string of letters (described below). The string may be empty, indicating that no file attributes are set for this file. These attributes are only present when the file is located on an ext2/3/4 filesystem. Using this call on other filesystem types will result in an error. The characters (file attributes) in the returned string are currently: 'A' When the file is accessed, its atime is not modified. 'a' The file is append-only. 'c' The file is compressed on-disk. 'D' (Directories only.) Changes to this directory are written synchronously to disk. 'd' The file is not a candidate for backup (see dump(8)). 'E' The file has compression errors. 'e' The file is using extents. 'h' The file is storing its blocks in units of the filesystem blocksize instead of sectors. 'I' (Directories only.) The directory is using hashed trees. 'i' The file is immutable. It cannot be modified, deleted or renamed. No link can be created to this file. 'j' The file is data-journaled. 's' When the file is deleted, all its blocks will be zeroed. 'S' Changes to this file are written synchronously to disk. 'T' (Directories only.) This is a hint to the block allocator that subdirectories contained in this directory should be spread across blocks. If not present, the block allocator will try to group subdirectories together. 't' For a file, this disables tail-merging. (Not used by upstream implementations of ext2.) 'u' When the file is deleted, its blocks will be saved, allowing the file to be undeleted. 'X' The raw contents of the compressed file may be accessed. 'Z' The compressed file is dirty. More file attributes may be added to this list later. Not all file attributes may be set for all kinds of files. For detailed information, consult the chattr(1) man page. See also "guestfs_set_e2attrs". Don't confuse these attributes with extended attributes (see "guestfs_getxattr"). This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.17.31) guestfs_get_e2generation int64_t guestfs_get_e2generation (guestfs_h *g, const char *file); This returns the ext2 file generation of a file. The generation (which used to be called the "version") is a number associated with an inode. This is most commonly used by NFS servers. The generation is only present when the file is located on an ext2/3/4 filesystem. Using this call on other filesystem types will result in an error. See "guestfs_set_e2generation". On error this function returns -1. (Added in 1.17.31) guestfs_get_e2label char * guestfs_get_e2label (guestfs_h *g, const char *device); This function is deprecated. In new code, use the "guestfs_vfs_label" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This returns the ext2/3/4 filesystem label of the filesystem on "device". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.0.15) guestfs_get_e2uuid char * guestfs_get_e2uuid (guestfs_h *g, const char *device); This function is deprecated. In new code, use the "guestfs_vfs_uuid" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This returns the ext2/3/4 filesystem UUID of the filesystem on "device". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.0.15) guestfs_get_hv char * guestfs_get_hv (guestfs_h *g); Return the current hypervisor binary. This is always non-NULL. If it wasn't set already, then this will return the default qemu binary name. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.23.17) guestfs_get_identifier const char * guestfs_get_identifier (guestfs_h *g); Get the handle identifier. See "guestfs_set_identifier". This function returns a string, or NULL on error. The string is owned by the guest handle and must not be freed. (Added in 1.31.14) guestfs_get_libvirt_requested_credential_challenge char * guestfs_get_libvirt_requested_credential_challenge (guestfs_h *g, int index); Get the challenge (provided by libvirt) for the "index"'th requested credential. If libvirt did not provide a challenge, this returns the empty string "". See "LIBVIRT AUTHENTICATION" for documentation and example code. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.19.52) guestfs_get_libvirt_requested_credential_defresult char * guestfs_get_libvirt_requested_credential_defresult (guestfs_h *g, int index); Get the default result (provided by libvirt) for the "index"'th requested credential. If libvirt did not provide a default result, this returns the empty string "". See "LIBVIRT AUTHENTICATION" for documentation and example code. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.19.52) guestfs_get_libvirt_requested_credential_prompt char * guestfs_get_libvirt_requested_credential_prompt (guestfs_h *g, int index); Get the prompt (provided by libvirt) for the "index"'th requested credential. If libvirt did not provide a prompt, this returns the empty string "". See "LIBVIRT AUTHENTICATION" for documentation and example code. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.19.52) guestfs_get_libvirt_requested_credentials char ** guestfs_get_libvirt_requested_credentials (guestfs_h *g); This should only be called during the event callback for events of type "GUESTFS_EVENT_LIBVIRT_AUTH". Return the list of credentials requested by libvirt. Possible values are a subset of the strings provided when you called "guestfs_set_libvirt_supported_credentials". See "LIBVIRT AUTHENTICATION" for documentation and example code. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 1.19.52) guestfs_get_memsize int guestfs_get_memsize (guestfs_h *g); This gets the memory size in megabytes allocated to the hypervisor. If "guestfs_set_memsize" was not called on this handle, and if "LIBGUESTFS_MEMSIZE" was not set, then this returns the compiled-in default value for memsize. For more information on the architecture of libguestfs, see guestfs(3). On error this function returns -1. (Added in 1.0.55) guestfs_get_network int guestfs_get_network (guestfs_h *g); This returns the enable network flag. This function returns a C truth value on success or -1 on error. (Added in 1.5.4) guestfs_get_path const char * guestfs_get_path (guestfs_h *g); Return the current search path. This is always non-NULL. If it wasn't set already, then this will return the default path. This function returns a string, or NULL on error. The string is owned by the guest handle and must not be freed. (Added in 0.3) guestfs_get_pgroup int guestfs_get_pgroup (guestfs_h *g); This returns the process group flag. This function returns a C truth value on success or -1 on error. (Added in 1.11.18) guestfs_get_pid int guestfs_get_pid (guestfs_h *g); Return the process ID of the hypervisor. If there is no hypervisor running, then this will return an error. This is an internal call used for debugging and testing. On error this function returns -1. (Added in 1.0.56) guestfs_get_program const char * guestfs_get_program (guestfs_h *g); Get the program name. See "guestfs_set_program". This function returns a string, or NULL on error. The string is owned by the guest handle and must not be freed. (Added in 1.21.29) guestfs_get_qemu const char * guestfs_get_qemu (guestfs_h *g); This function is deprecated. In new code, use the "guestfs_get_hv" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. Return the current hypervisor binary (usually qemu). This is always non-NULL. If it wasn't set already, then this will return the default qemu binary name. This function returns a string, or NULL on error. The string is owned by the guest handle and must not be freed. (Added in 1.0.6) guestfs_get_recovery_proc int guestfs_get_recovery_proc (guestfs_h *g); Return the recovery process enabled flag. This function returns a C truth value on success or -1 on error. (Added in 1.0.77) guestfs_get_selinux int guestfs_get_selinux (guestfs_h *g); This function is deprecated. In new code, use the "guestfs_selinux_relabel" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This returns the current setting of the selinux flag which is passed to the appliance at boot time. See "guestfs_set_selinux". For more information on the architecture of libguestfs, see guestfs(3). This function returns a C truth value on success or -1 on error. (Added in 1.0.67) guestfs_get_smp int guestfs_get_smp (guestfs_h *g); This returns the number of virtual CPUs assigned to the appliance. On error this function returns -1. (Added in 1.13.15) guestfs_get_sockdir char * guestfs_get_sockdir (guestfs_h *g); Get the directory used by the handle to store temporary socket files. This is different from "guestfs_tmpdir", as we need shorter paths for sockets (due to the limited buffers of filenames for UNIX sockets), and "guestfs_tmpdir" may be too long for them. The environment variable "XDG_RUNTIME_DIR" controls the default value: If "XDG_RUNTIME_DIR" is set, then that is the default. Else /tmp is the default. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.33.8) guestfs_get_state int guestfs_get_state (guestfs_h *g); This returns the current state as an opaque integer. This is only useful for printing debug and internal error messages. For more information on states, see guestfs(3). On error this function returns -1. (Added in 1.0.2) guestfs_get_tmpdir char * guestfs_get_tmpdir (guestfs_h *g); Get the directory used by the handle to store temporary files. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.19.58) guestfs_get_trace int guestfs_get_trace (guestfs_h *g); Return the command trace flag. This function returns a C truth value on success or -1 on error. (Added in 1.0.69) guestfs_get_umask int guestfs_get_umask (guestfs_h *g); Return the current umask. By default the umask is 022 unless it has been set by calling "guestfs_umask". On error this function returns -1. (Added in 1.3.4) guestfs_get_verbose int guestfs_get_verbose (guestfs_h *g); This returns the verbose messages flag. This function returns a C truth value on success or -1 on error. (Added in 0.3) guestfs_getcon char * guestfs_getcon (guestfs_h *g); This function is deprecated. In new code, use the "guestfs_selinux_relabel" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This gets the SELinux security context of the daemon. See the documentation about SELINUX in guestfs(3), and "guestfs_setcon" This function returns a string, or NULL on error. The caller must free the returned string after use. This function depends on the feature "selinux". See also "guestfs_feature_available". (Added in 1.0.67) guestfs_getxattr char * guestfs_getxattr (guestfs_h *g, const char *path, const char *name, size_t *size_r); Get a single extended attribute from file "path" named "name". This call follows symlinks. If you want to lookup an extended attribute for the symlink itself, use "guestfs_lgetxattr". Normally it is better to get all extended attributes from a file in one go by calling "guestfs_getxattrs". However some Linux filesystem implementations are buggy and do not provide a way to list out attributes. For these filesystems (notably ntfs-3g) you have to know the names of the extended attributes you want in advance and call this function. Extended attribute values are blobs of binary data. If there is no extended attribute named "name", this returns an error. See also: "guestfs_getxattrs", "guestfs_lgetxattr", attr(5). This function returns a buffer, or NULL on error. The size of the returned buffer is written to *size_r. The caller must free the returned buffer after use. This function depends on the feature "linuxxattrs". See also "guestfs_feature_available". (Added in 1.7.24) guestfs_getxattrs struct guestfs_xattr_list * guestfs_getxattrs (guestfs_h *g, const char *path); This call lists the extended attributes of the file or directory "path". At the system call level, this is a combination of the listxattr(2) and getxattr(2) calls. See also: "guestfs_lgetxattrs", attr(5). This function returns a "struct guestfs_xattr_list *", or NULL if there was an error. The caller must call "guestfs_free_xattr_list" after use. This function depends on the feature "linuxxattrs". See also "guestfs_feature_available". (Added in 1.0.59) guestfs_glob_expand char ** guestfs_glob_expand (guestfs_h *g, const char *pattern); This function is provided for backwards compatibility with earlier versions of libguestfs. It simply calls "guestfs_glob_expand_opts" with no optional arguments. (Added in 1.0.50) guestfs_glob_expand_opts char ** guestfs_glob_expand_opts (guestfs_h *g, const char *pattern, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_GLOB_EXPAND_OPTS_DIRECTORYSLASH, int directoryslash, This command searches for all the pathnames matching "pattern" according to the wildcard expansion rules used by the shell. If no paths match, then this returns an empty list (note: not an error). It is just a wrapper around the C glob(3) function with flags "GLOB_MARK|GLOB_BRACE". See that manual page for more details. "directoryslash" controls whether use the "GLOB_MARK" flag for glob(3), and it defaults to true. It can be explicitly set as off to return no trailing slashes in filenames of directories. Notice that there is no equivalent command for expanding a device name (eg. /dev/sd*). Use "guestfs_list_devices", "guestfs_list_partitions" etc functions instead. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 1.0.50) guestfs_glob_expand_opts_va char ** guestfs_glob_expand_opts_va (guestfs_h *g, const char *pattern, va_list args); This is the "va_list variant" of "guestfs_glob_expand_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_glob_expand_opts_argv char ** guestfs_glob_expand_opts_argv (guestfs_h *g, const char *pattern, const struct guestfs_glob_expand_opts_argv *optargs); This is the "argv variant" of "guestfs_glob_expand_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_grep char ** guestfs_grep (guestfs_h *g, const char *regex, const char *path); This function is provided for backwards compatibility with earlier versions of libguestfs. It simply calls "guestfs_grep_opts" with no optional arguments. (Added in 1.0.66) guestfs_grep_opts char ** guestfs_grep_opts (guestfs_h *g, const char *regex, const char *path, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_GREP_OPTS_EXTENDED, int extended, GUESTFS_GREP_OPTS_FIXED, int fixed, GUESTFS_GREP_OPTS_INSENSITIVE, int insensitive, GUESTFS_GREP_OPTS_COMPRESSED, int compressed, This calls the external "grep" program and returns the matching lines. The optional flags are: "extended" Use extended regular expressions. This is the same as using the -E flag. "fixed" Match fixed (don't use regular expressions). This is the same as using the -F flag. "insensitive" Match case-insensitive. This is the same as using the -i flag. "compressed" Use "zgrep" instead of "grep". This allows the input to be compress- or gzip- compressed. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.0.66) guestfs_grep_opts_va char ** guestfs_grep_opts_va (guestfs_h *g, const char *regex, const char *path, va_list args); This is the "va_list variant" of "guestfs_grep_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_grep_opts_argv char ** guestfs_grep_opts_argv (guestfs_h *g, const char *regex, const char *path, const struct guestfs_grep_opts_argv *optargs); This is the "argv variant" of "guestfs_grep_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_grepi char ** guestfs_grepi (guestfs_h *g, const char *regex, const char *path); This function is deprecated. In new code, use the "guestfs_grep" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This calls the external "grep -i" program and returns the matching lines. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.0.66) guestfs_grub_install int guestfs_grub_install (guestfs_h *g, const char *root, const char *device); This command installs GRUB 1 (the Grand Unified Bootloader) on "device", with the root directory being "root". Notes: • There is currently no way in the API to install grub2, which is used by most modern Linux guests. It is possible to run the grub2 command from the guest, although see the caveats in "RUNNING COMMANDS". • This uses "grub-install" from the host. Unfortunately grub is not always compatible with itself, so this only works in rather narrow circumstances. Careful testing with each guest version is advisable. • If grub-install reports the error "No suitable drive was found in the generated device map." it may be that you need to create a /boot/grub/device.map file first that contains the mapping between grub device names and Linux device names. It is usually sufficient to create a file containing: (hd0) /dev/vda replacing /dev/vda with the name of the installation device. This function returns 0 on success or -1 on error. This function depends on the feature "grub". See also "guestfs_feature_available". (Added in 1.0.17) guestfs_head char ** guestfs_head (guestfs_h *g, const char *path); This command returns up to the first 10 lines of a file as a list of strings. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.0.54) guestfs_head_n char ** guestfs_head_n (guestfs_h *g, int nrlines, const char *path); If the parameter "nrlines" is a positive number, this returns the first "nrlines" lines of the file "path". If the parameter "nrlines" is a negative number, this returns lines from the file "path", excluding the last "nrlines" lines. If the parameter "nrlines" is zero, this returns an empty list. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.0.54) guestfs_hexdump char * guestfs_hexdump (guestfs_h *g, const char *path); This runs "hexdump -C" on the given "path". The result is the human-readable, canonical hex dump of the file. This function returns a string, or NULL on error. The caller must free the returned string after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.0.22) guestfs_hivex_close int guestfs_hivex_close (guestfs_h *g); Close the current hivex handle. This is a wrapper around the hivex(3) call of the same name. This function returns 0 on success or -1 on error. This function depends on the feature "hivex". See also "guestfs_feature_available". (Added in 1.19.35) guestfs_hivex_commit int guestfs_hivex_commit (guestfs_h *g, const char *filename); Commit (write) changes to the hive. If the optional filename parameter is null, then the changes are written back to the same hive that was opened. If this is not null then they are written to the alternate filename given and the original hive is left untouched. This is a wrapper around the hivex(3) call of the same name. This function returns 0 on success or -1 on error. This function depends on the feature "hivex". See also "guestfs_feature_available". (Added in 1.19.35) guestfs_hivex_node_add_child int64_t guestfs_hivex_node_add_child (guestfs_h *g, int64_t parent, const char *name); Add a child node to "parent" named "name". This is a wrapper around the hivex(3) call of the same name. On error this function returns -1. This function depends on the feature "hivex". See also "guestfs_feature_available". (Added in 1.19.35) guestfs_hivex_node_children struct guestfs_hivex_node_list * guestfs_hivex_node_children (guestfs_h *g, int64_t nodeh); Return the list of nodes which are subkeys of "nodeh". This is a wrapper around the hivex(3) call of the same name. This function returns a "struct guestfs_hivex_node_list *", or NULL if there was an error. The caller must call "guestfs_free_hivex_node_list" after use. This function depends on the feature "hivex". See also "guestfs_feature_available". (Added in 1.19.35) guestfs_hivex_node_delete_child int guestfs_hivex_node_delete_child (guestfs_h *g, int64_t nodeh); Delete "nodeh", recursively if necessary. This is a wrapper around the hivex(3) call of the same name. This function returns 0 on success or -1 on error. This function depends on the feature "hivex". See also "guestfs_feature_available". (Added in 1.19.35) guestfs_hivex_node_get_child int64_t guestfs_hivex_node_get_child (guestfs_h *g, int64_t nodeh, const char *name); Return the child of "nodeh" with the name "name", if it exists. This can return 0 meaning the name was not found. This is a wrapper around the hivex(3) call of the same name. On error this function returns -1. This function depends on the feature "hivex". See also "guestfs_feature_available". (Added in 1.19.35) guestfs_hivex_node_get_value int64_t guestfs_hivex_node_get_value (guestfs_h *g, int64_t nodeh, const char *key); Return the value attached to "nodeh" which has the name "key", if it exists. This can return 0 meaning the key was not found. This is a wrapper around the hivex(3) call of the same name. On error this function returns -1. This function depends on the feature "hivex". See also "guestfs_feature_available". (Added in 1.19.35) guestfs_hivex_node_name char * guestfs_hivex_node_name (guestfs_h *g, int64_t nodeh); Return the name of "nodeh". This is a wrapper around the hivex(3) call of the same name. This function returns a string, or NULL on error. The caller must free the returned string after use. This function depends on the feature "hivex". See also "guestfs_feature_available". (Added in 1.19.35) guestfs_hivex_node_parent int64_t guestfs_hivex_node_parent (guestfs_h *g, int64_t nodeh); Return the parent node of "nodeh". This is a wrapper around the hivex(3) call of the same name. On error this function returns -1. This function depends on the feature "hivex". See also "guestfs_feature_available". (Added in 1.19.35) guestfs_hivex_node_set_value int guestfs_hivex_node_set_value (guestfs_h *g, int64_t nodeh, const char *key, int64_t t, const char *val, size_t val_size); Set or replace a single value under the node "nodeh". The "key" is the name, "t" is the type, and "val" is the data. This is a wrapper around the hivex(3) call of the same name. This function returns 0 on success or -1 on error. This function depends on the feature "hivex". See also "guestfs_feature_available". (Added in 1.19.35) guestfs_hivex_node_values struct guestfs_hivex_value_list * guestfs_hivex_node_values (guestfs_h *g, int64_t nodeh); Return the array of (key, datatype, data) tuples attached to "nodeh". This is a wrapper around the hivex(3) call of the same name. This function returns a "struct guestfs_hivex_value_list *", or NULL if there was an error. The caller must call "guestfs_free_hivex_value_list" after use. This function depends on the feature "hivex". See also "guestfs_feature_available". (Added in 1.19.35) guestfs_hivex_open int guestfs_hivex_open (guestfs_h *g, const char *filename, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_HIVEX_OPEN_VERBOSE, int verbose, GUESTFS_HIVEX_OPEN_DEBUG, int debug, GUESTFS_HIVEX_OPEN_WRITE, int write, GUESTFS_HIVEX_OPEN_UNSAFE, int unsafe, Open the Windows Registry hive file named filename. If there was any previous hivex handle associated with this guestfs session, then it is closed. This is a wrapper around the hivex(3) call of the same name. This function returns 0 on success or -1 on error. This function depends on the feature "hivex". See also "guestfs_feature_available". (Added in 1.19.35) guestfs_hivex_open_va int guestfs_hivex_open_va (guestfs_h *g, const char *filename, va_list args); This is the "va_list variant" of "guestfs_hivex_open". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_hivex_open_argv int guestfs_hivex_open_argv (guestfs_h *g, const char *filename, const struct guestfs_hivex_open_argv *optargs); This is the "argv variant" of "guestfs_hivex_open". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_hivex_root int64_t guestfs_hivex_root (guestfs_h *g); Return the root node of the hive. This is a wrapper around the hivex(3) call of the same name. On error this function returns -1. This function depends on the feature "hivex". See also "guestfs_feature_available". (Added in 1.19.35) guestfs_hivex_value_key char * guestfs_hivex_value_key (guestfs_h *g, int64_t valueh); Return the key (name) field of a (key, datatype, data) tuple. This is a wrapper around the hivex(3) call of the same name. This function returns a string, or NULL on error. The caller must free the returned string after use. This function depends on the feature "hivex". See also "guestfs_feature_available". (Added in 1.19.35) guestfs_hivex_value_type int64_t guestfs_hivex_value_type (guestfs_h *g, int64_t valueh); Return the data type field from a (key, datatype, data) tuple. This is a wrapper around the hivex(3) call of the same name. On error this function returns -1. This function depends on the feature "hivex". See also "guestfs_feature_available". (Added in 1.19.35) guestfs_hivex_value_utf8 char * guestfs_hivex_value_utf8 (guestfs_h *g, int64_t valueh); This calls "guestfs_hivex_value_value" (which returns the data field from a hivex value tuple). It then assumes that the field is a UTF-16LE string and converts the result to UTF-8 (or if this is not possible, it returns an error). This is useful for reading strings out of the Windows registry. However it is not foolproof because the registry is not strongly-typed and fields can contain arbitrary or unexpected data. This function returns a string, or NULL on error. The caller must free the returned string after use. This function depends on the feature "hivex". See also "guestfs_feature_available". (Added in 1.19.35) guestfs_hivex_value_value char * guestfs_hivex_value_value (guestfs_h *g, int64_t valueh, size_t *size_r); Return the data field of a (key, datatype, data) tuple. This is a wrapper around the hivex(3) call of the same name. See also: "guestfs_hivex_value_utf8". This function returns a buffer, or NULL on error. The size of the returned buffer is written to *size_r. The caller must free the returned buffer after use. This function depends on the feature "hivex". See also "guestfs_feature_available". (Added in 1.19.35) guestfs_initrd_cat char * guestfs_initrd_cat (guestfs_h *g, const char *initrdpath, const char *filename, size_t *size_r); This command unpacks the file filename from the initrd file called initrdpath. The filename must be given without the initial / character. For example, in guestfish you could use the following command to examine the boot script (usually called /init) contained in a Linux initrd or initramfs image: initrd-cat /boot/initrd-<version>.img init See also "guestfs_initrd_list". This function returns a buffer, or NULL on error. The size of the returned buffer is written to *size_r. The caller must free the returned buffer after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.0.84) guestfs_initrd_list char ** guestfs_initrd_list (guestfs_h *g, const char *path); This command lists out files contained in an initrd. The files are listed without any initial / character. The files are listed in the order they appear (not necessarily alphabetical). Directory names are listed as separate items. Old Linux kernels (2.4 and earlier) used a compressed ext2 filesystem as initrd. We only support the newer initramfs format (compressed cpio files). This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 1.0.54) guestfs_inotify_add_watch int64_t guestfs_inotify_add_watch (guestfs_h *g, const char *path, int mask); Watch "path" for the events listed in "mask". Note that if "path" is a directory then events within that directory are watched, but this does not happen recursively (in subdirectories). Note for non-C or non-Linux callers: the inotify events are defined by the Linux kernel ABI and are listed in /usr/include/sys/inotify.h. On error this function returns -1. This function depends on the feature "inotify". See also "guestfs_feature_available". (Added in 1.0.66) guestfs_inotify_close int guestfs_inotify_close (guestfs_h *g); This closes the inotify handle which was previously opened by inotify_init. It removes all watches, throws away any pending events, and deallocates all resources. This function returns 0 on success or -1 on error. This function depends on the feature "inotify". See also "guestfs_feature_available". (Added in 1.0.66) guestfs_inotify_files char ** guestfs_inotify_files (guestfs_h *g); This function is a helpful wrapper around "guestfs_inotify_read" which just returns a list of pathnames of objects that were touched. The returned pathnames are sorted and deduplicated. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. This function depends on the feature "inotify". See also "guestfs_feature_available". (Added in 1.0.66) guestfs_inotify_init int guestfs_inotify_init (guestfs_h *g, int maxevents); This command creates a new inotify handle. The inotify subsystem can be used to notify events which happen to objects in the guest filesystem. "maxevents" is the maximum number of events which will be queued up between calls to "guestfs_inotify_read" or "guestfs_inotify_files". If this is passed as 0, then the kernel (or previously set) default is used. For Linux 2.6.29 the default was 16384 events. Beyond this limit, the kernel throws away events, but records the fact that it threw them away by setting a flag "IN_Q_OVERFLOW" in the returned structure list (see "guestfs_inotify_read"). Before any events are generated, you have to add some watches to the internal watch list. See: "guestfs_inotify_add_watch" and "guestfs_inotify_rm_watch". Queued up events should be read periodically by calling "guestfs_inotify_read" (or "guestfs_inotify_files" which is just a helpful wrapper around "guestfs_inotify_read"). If you don't read the events out often enough then you risk the internal queue overflowing. The handle should be closed after use by calling "guestfs_inotify_close". This also removes any watches automatically. See also inotify(7) for an overview of the inotify interface as exposed by the Linux kernel, which is roughly what we expose via libguestfs. Note that there is one global inotify handle per libguestfs instance. This function returns 0 on success or -1 on error. This function depends on the feature "inotify". See also "guestfs_feature_available". (Added in 1.0.66) guestfs_inotify_read struct guestfs_inotify_event_list * guestfs_inotify_read (guestfs_h *g); Return the complete queue of events that have happened since the previous read call. If no events have happened, this returns an empty list. Note: In order to make sure that all events have been read, you must call this function repeatedly until it returns an empty list. The reason is that the call will read events up to the maximum appliance-to-host message size and leave remaining events in the queue. This function returns a "struct guestfs_inotify_event_list *", or NULL if there was an error. The caller must call "guestfs_free_inotify_event_list" after use. This function depends on the feature "inotify". See also "guestfs_feature_available". (Added in 1.0.66) guestfs_inotify_rm_watch int guestfs_inotify_rm_watch (guestfs_h *g, int wd); Remove a previously defined inotify watch. See "guestfs_inotify_add_watch". This function returns 0 on success or -1 on error. This function depends on the feature "inotify". See also "guestfs_feature_available". (Added in 1.0.66) guestfs_inspect_get_arch char * guestfs_inspect_get_arch (guestfs_h *g, const char *root); This returns the architecture of the inspected operating system. The possible return values are listed under "guestfs_file_architecture". If the architecture could not be determined, then the string "unknown" is returned. Please read "INSPECTION" for more details. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.5.3) guestfs_inspect_get_distro char * guestfs_inspect_get_distro (guestfs_h *g, const char *root); This returns the distro (distribution) of the inspected operating system. Currently defined distros are: "alpinelinux" Alpine Linux. "altlinux" ALT Linux. "archlinux" Arch Linux. "buildroot" Buildroot-derived distro, but not one we specifically recognize. "centos" CentOS. "cirros" Cirros. "coreos" CoreOS. "debian" Debian. "fedora" Fedora. "freebsd" FreeBSD. "freedos" FreeDOS. "frugalware" Frugalware. "gentoo" Gentoo. "linuxmint" Linux Mint. "mageia" Mageia. "mandriva" Mandriva. "meego" MeeGo. "netbsd" NetBSD. "openbsd" OpenBSD. "opensuse" OpenSUSE. "oraclelinux" Oracle Linux. "pardus" Pardus. "pldlinux" PLD Linux. "redhat-based" Some Red Hat-derived distro. "rhel" Red Hat Enterprise Linux. "scientificlinux" Scientific Linux. "slackware" Slackware. "sles" SuSE Linux Enterprise Server or Desktop. "suse-based" Some openSuSE-derived distro. "ttylinux" ttylinux. "ubuntu" Ubuntu. "unknown" The distro could not be determined. "voidlinux" Void Linux. "windows" Windows does not have distributions. This string is returned if the OS type is Windows. Future versions of libguestfs may return other strings here. The caller should be prepared to handle any string. Please read "INSPECTION" for more details. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.5.3) guestfs_inspect_get_drive_mappings char ** guestfs_inspect_get_drive_mappings (guestfs_h *g, const char *root); This call is useful for Windows which uses a primitive system of assigning drive letters (like C:\) to partitions. This inspection API examines the Windows Registry to find out how disks/partitions are mapped to drive letters, and returns a hash table as in the example below: C => /dev/vda2 E => /dev/vdb1 F => /dev/vdc1 Note that keys are drive letters. For Windows, the key is case insensitive and just contains the drive letter, without the customary colon separator character. In future we may support other operating systems that also used drive letters, but the keys for those might not be case insensitive and might be longer than 1 character. For example in OS-9, hard drives were named "h0", "h1" etc. For Windows guests, currently only hard drive mappings are returned. Removable disks (eg. DVD-ROMs) are ignored. For guests that do not use drive mappings, or if the drive mappings could not be determined, this returns an empty hash table. Please read "INSPECTION" for more details. See also "guestfs_inspect_get_mountpoints", "guestfs_inspect_get_filesystems". This function returns a NULL-terminated array of strings, or NULL if there was an error. The array of strings will always have length "2n+1", where "n" keys and values alternate, followed by the trailing NULL entry. The caller must free the strings and the array after use. (Added in 1.9.17) guestfs_inspect_get_filesystems char ** guestfs_inspect_get_filesystems (guestfs_h *g, const char *root); This returns a list of all the filesystems that we think are associated with this operating system. This includes the root filesystem, other ordinary filesystems, and non- mounted devices like swap partitions. In the case of a multi-boot virtual machine, it is possible for a filesystem to be shared between operating systems. Please read "INSPECTION" for more details. See also "guestfs_inspect_get_mountpoints". This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 1.5.3) guestfs_inspect_get_format char * guestfs_inspect_get_format (guestfs_h *g, const char *root); This returns the format of the inspected operating system. You can use it to detect install images, live CDs and similar. Currently defined formats are: "installed" This is an installed operating system. "installer" The disk image being inspected is not an installed operating system, but a bootable install disk, live CD, or similar. "unknown" The format of this disk image is not known. Future versions of libguestfs may return other strings here. The caller should be prepared to handle any string. Please read "INSPECTION" for more details. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.9.4) guestfs_inspect_get_hostname char * guestfs_inspect_get_hostname (guestfs_h *g, const char *root); This function returns the hostname of the operating system as found by inspection of the guest's configuration files. If the hostname could not be determined, then the string "unknown" is returned. Please read "INSPECTION" for more details. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.7.9) guestfs_inspect_get_icon char * guestfs_inspect_get_icon (guestfs_h *g, const char *root, size_t *size_r, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_INSPECT_GET_ICON_FAVICON, int favicon, GUESTFS_INSPECT_GET_ICON_HIGHQUALITY, int highquality, This function returns an icon corresponding to the inspected operating system. The icon is returned as a buffer containing a PNG image (re-encoded to PNG if necessary). If it was not possible to get an icon this function returns a zero-length (non-NULL) buffer. Callers must check for this case. Libguestfs will start by looking for a file called /etc/favicon.png or C:\etc\favicon.png and if it has the correct format, the contents of this file will be returned. You can disable favicons by passing the optional "favicon" boolean as false (default is true). If finding the favicon fails, then we look in other places in the guest for a suitable icon. If the optional "highquality" boolean is true then only high quality icons are returned, which means only icons of high resolution with an alpha channel. The default (false) is to return any icon we can, even if it is of substandard quality. Notes: • Unlike most other inspection API calls, the guest's disks must be mounted up before you call this, since it needs to read information from the guest filesystem during the call. • Security: The icon data comes from the untrusted guest, and should be treated with caution. PNG files have been known to contain exploits. Ensure that libpng (or other relevant libraries) are fully up to date before trying to process or display the icon. • The PNG image returned can be any size. It might not be square. Libguestfs tries to return the largest, highest quality icon available. The application must scale the icon to the required size. • Extracting icons from Windows guests requires the external "wrestool" program from the "icoutils" package, and several programs ("bmptopnm", "pnmtopng", "pamcut") from the "netpbm" package. These must be installed separately. • Operating system icons are usually trademarks. Seek legal advice before using trademarks in applications. This function returns a buffer, or NULL on error. The size of the returned buffer is written to *size_r. The caller must free the returned buffer after use. (Added in 1.11.12) guestfs_inspect_get_icon_va char * guestfs_inspect_get_icon_va (guestfs_h *g, const char *root, size_t *size_r, va_list args); This is the "va_list variant" of "guestfs_inspect_get_icon". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_inspect_get_icon_argv char * guestfs_inspect_get_icon_argv (guestfs_h *g, const char *root, size_t *size_r, const struct guestfs_inspect_get_icon_argv *optargs); This is the "argv variant" of "guestfs_inspect_get_icon". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_inspect_get_major_version int guestfs_inspect_get_major_version (guestfs_h *g, const char *root); This returns the major version number of the inspected operating system. Windows uses a consistent versioning scheme which is not reflected in the popular public names used by the operating system. Notably the operating system known as "Windows 7" is really version 6.1 (ie. major = 6, minor = 1). You can find out the real versions corresponding to releases of Windows by consulting Wikipedia or MSDN. If the version could not be determined, then 0 is returned. Please read "INSPECTION" for more details. On error this function returns -1. (Added in 1.5.3) guestfs_inspect_get_minor_version int guestfs_inspect_get_minor_version (guestfs_h *g, const char *root); This returns the minor version number of the inspected operating system. If the version could not be determined, then 0 is returned. Please read "INSPECTION" for more details. See also "guestfs_inspect_get_major_version". On error this function returns -1. (Added in 1.5.3) guestfs_inspect_get_mountpoints char ** guestfs_inspect_get_mountpoints (guestfs_h *g, const char *root); This returns a hash of where we think the filesystems associated with this operating system should be mounted. Callers should note that this is at best an educated guess made by reading configuration files such as /etc/fstab. In particular note that this may return filesystems which are non-existent or not mountable and callers should be prepared to handle or ignore failures if they try to mount them. Each element in the returned hashtable has a key which is the path of the mountpoint (eg. /boot) and a value which is the filesystem that would be mounted there (eg. /dev/sda1). Non-mounted devices such as swap devices are not returned in this list. For operating systems like Windows which still use drive letters, this call will only return an entry for the first drive "mounted on" /. For information about the mapping of drive letters to partitions, see "guestfs_inspect_get_drive_mappings". Please read "INSPECTION" for more details. See also "guestfs_inspect_get_filesystems". This function returns a NULL-terminated array of strings, or NULL if there was an error. The array of strings will always have length "2n+1", where "n" keys and values alternate, followed by the trailing NULL entry. The caller must free the strings and the array after use. (Added in 1.5.3) guestfs_inspect_get_package_format char * guestfs_inspect_get_package_format (guestfs_h *g, const char *root); This function and "guestfs_inspect_get_package_management" return the package format and package management tool used by the inspected operating system. For example for Fedora these functions would return "rpm" (package format), and "yum" or "dnf" (package management). This returns the string "unknown" if we could not determine the package format or if the operating system does not have a real packaging system (eg. Windows). Possible strings include: "rpm", "deb", "ebuild", "pisi", "pacman", "pkgsrc", "apk", "xbps". Future versions of libguestfs may return other strings. Please read "INSPECTION" for more details. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.7.5) guestfs_inspect_get_package_management char * guestfs_inspect_get_package_management (guestfs_h *g, const char *root); "guestfs_inspect_get_package_format" and this function return the package format and package management tool used by the inspected operating system. For example for Fedora these functions would return "rpm" (package format), and "yum" or "dnf" (package management). This returns the string "unknown" if we could not determine the package management tool or if the operating system does not have a real packaging system (eg. Windows). Possible strings include: "yum", "dnf", "up2date", "apt" (for all Debian derivatives), "portage", "pisi", "pacman", "urpmi", "zypper", "apk", "xbps". Future versions of libguestfs may return other strings. Please read "INSPECTION" for more details. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.7.5) guestfs_inspect_get_product_name char * guestfs_inspect_get_product_name (guestfs_h *g, const char *root); This returns the product name of the inspected operating system. The product name is generally some freeform string which can be displayed to the user, but should not be parsed by programs. If the product name could not be determined, then the string "unknown" is returned. Please read "INSPECTION" for more details. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.5.3) guestfs_inspect_get_product_variant char * guestfs_inspect_get_product_variant (guestfs_h *g, const char *root); This returns the product variant of the inspected operating system. For Windows guests, this returns the contents of the Registry key "HKLM\Software\Microsoft\Windows NT\CurrentVersion" "InstallationType" which is usually a string such as "Client" or "Server" (other values are possible). This can be used to distinguish consumer and enterprise versions of Windows that have the same version number (for example, Windows 7 and Windows 2008 Server are both version 6.1, but the former is "Client" and the latter is "Server"). For enterprise Linux guests, in future we intend this to return the product variant such as "Desktop", "Server" and so on. But this is not implemented at present. If the product variant could not be determined, then the string "unknown" is returned. Please read "INSPECTION" for more details. See also "guestfs_inspect_get_product_name", "guestfs_inspect_get_major_version". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.9.13) guestfs_inspect_get_roots char ** guestfs_inspect_get_roots (guestfs_h *g); This function is a convenient way to get the list of root devices, as returned from a previous call to "guestfs_inspect_os", but without redoing the whole inspection process. This returns an empty list if either no root devices were found or the caller has not called "guestfs_inspect_os". Please read "INSPECTION" for more details. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 1.7.3) guestfs_inspect_get_type char * guestfs_inspect_get_type (guestfs_h *g, const char *root); This returns the type of the inspected operating system. Currently defined types are: "linux" Any Linux-based operating system. "windows" Any Microsoft Windows operating system. "freebsd" FreeBSD. "netbsd" NetBSD. "openbsd" OpenBSD. "hurd" GNU/Hurd. "dos" MS-DOS, FreeDOS and others. "minix" MINIX. "unknown" The operating system type could not be determined. Future versions of libguestfs may return other strings here. The caller should be prepared to handle any string. Please read "INSPECTION" for more details. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.5.3) guestfs_inspect_get_windows_current_control_set char * guestfs_inspect_get_windows_current_control_set (guestfs_h *g, const char *root); This returns the Windows CurrentControlSet of the inspected guest. The CurrentControlSet is a registry key name such as "ControlSet001". This call assumes that the guest is Windows and that the Registry could be examined by inspection. If this is not the case then an error is returned. Please read "INSPECTION" for more details. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.9.17) guestfs_inspect_get_windows_software_hive char * guestfs_inspect_get_windows_software_hive (guestfs_h *g, const char *root); This returns the path to the hive (binary Windows Registry file) corresponding to HKLM\SOFTWARE. This call assumes that the guest is Windows and that the guest has a software hive file with the right name. If this is not the case then an error is returned. This call does not check that the hive is a valid Windows Registry hive. You can use "guestfs_hivex_open" to read or write to the hive. Please read "INSPECTION" for more details. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.35.26) guestfs_inspect_get_windows_system_hive char * guestfs_inspect_get_windows_system_hive (guestfs_h *g, const char *root); This returns the path to the hive (binary Windows Registry file) corresponding to HKLM\SYSTEM. This call assumes that the guest is Windows and that the guest has a system hive file with the right name. If this is not the case then an error is returned. This call does not check that the hive is a valid Windows Registry hive. You can use "guestfs_hivex_open" to read or write to the hive. Please read "INSPECTION" for more details. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.35.26) guestfs_inspect_get_windows_systemroot char * guestfs_inspect_get_windows_systemroot (guestfs_h *g, const char *root); This returns the Windows systemroot of the inspected guest. The systemroot is a directory path such as /WINDOWS. This call assumes that the guest is Windows and that the systemroot could be determined by inspection. If this is not the case then an error is returned. Please read "INSPECTION" for more details. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.5.25) guestfs_inspect_is_live int guestfs_inspect_is_live (guestfs_h *g, const char *root); If "guestfs_inspect_get_format" returns "installer" (this is an install disk), then this returns true if a live image was detected on the disk. Please read "INSPECTION" for more details. This function returns a C truth value on success or -1 on error. (Added in 1.9.4) guestfs_inspect_is_multipart int guestfs_inspect_is_multipart (guestfs_h *g, const char *root); If "guestfs_inspect_get_format" returns "installer" (this is an install disk), then this returns true if the disk is part of a set. Please read "INSPECTION" for more details. This function returns a C truth value on success or -1 on error. (Added in 1.9.4) guestfs_inspect_is_netinst int guestfs_inspect_is_netinst (guestfs_h *g, const char *root); If "guestfs_inspect_get_format" returns "installer" (this is an install disk), then this returns true if the disk is a network installer, ie. not a self-contained install CD but one which is likely to require network access to complete the install. Please read "INSPECTION" for more details. This function returns a C truth value on success or -1 on error. (Added in 1.9.4) guestfs_inspect_list_applications struct guestfs_application_list * guestfs_inspect_list_applications (guestfs_h *g, const char *root); This function is deprecated. In new code, use the "guestfs_inspect_list_applications2" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. Return the list of applications installed in the operating system. Note: This call works differently from other parts of the inspection API. You have to call "guestfs_inspect_os", then "guestfs_inspect_get_mountpoints", then mount up the disks, before calling this. Listing applications is a significantly more difficult operation which requires access to the full filesystem. Also note that unlike the other "guestfs_inspect_get_*" calls which are just returning data cached in the libguestfs handle, this call actually reads parts of the mounted filesystems during the call. This returns an empty list if the inspection code was not able to determine the list of applications. The application structure contains the following fields: "app_name" The name of the application. For Red Hat-derived and Debian-derived Linux guests, this is the package name. "app_display_name" The display name of the application, sometimes localized to the install language of the guest operating system. If unavailable this is returned as an empty string "". Callers needing to display something can use "app_name" instead. "app_epoch" For package managers which use epochs, this contains the epoch of the package (an integer). If unavailable, this is returned as 0. "app_version" The version string of the application or package. If unavailable this is returned as an empty string "". "app_release" The release string of the application or package, for package managers that use this. If unavailable this is returned as an empty string "". "app_install_path" The installation path of the application (on operating systems such as Windows which use installation paths). This path is in the format used by the guest operating system, it is not a libguestfs path. If unavailable this is returned as an empty string "". "app_trans_path" The install path translated into a libguestfs path. If unavailable this is returned as an empty string "". "app_publisher" The name of the publisher of the application, for package managers that use this. If unavailable this is returned as an empty string "". "app_url" The URL (eg. upstream URL) of the application. If unavailable this is returned as an empty string "". "app_source_package" For packaging systems which support this, the name of the source package. If unavailable this is returned as an empty string "". "app_summary" A short (usually one line) description of the application or package. If unavailable this is returned as an empty string "". "app_description" A longer description of the application or package. If unavailable this is returned as an empty string "". Please read "INSPECTION" for more details. This function returns a "struct guestfs_application_list *", or NULL if there was an error. The caller must call "guestfs_free_application_list" after use. (Added in 1.7.8) guestfs_inspect_list_applications2 struct guestfs_application2_list * guestfs_inspect_list_applications2 (guestfs_h *g, const char *root); Return the list of applications installed in the operating system. Note: This call works differently from other parts of the inspection API. You have to call "guestfs_inspect_os", then "guestfs_inspect_get_mountpoints", then mount up the disks, before calling this. Listing applications is a significantly more difficult operation which requires access to the full filesystem. Also note that unlike the other "guestfs_inspect_get_*" calls which are just returning data cached in the libguestfs handle, this call actually reads parts of the mounted filesystems during the call. This returns an empty list if the inspection code was not able to determine the list of applications. The application structure contains the following fields: "app2_name" The name of the application. For Red Hat-derived and Debian-derived Linux guests, this is the package name. "app2_display_name" The display name of the application, sometimes localized to the install language of the guest operating system. If unavailable this is returned as an empty string "". Callers needing to display something can use "app2_name" instead. "app2_epoch" For package managers which use epochs, this contains the epoch of the package (an integer). If unavailable, this is returned as 0. "app2_version" The version string of the application or package. If unavailable this is returned as an empty string "". "app2_release" The release string of the application or package, for package managers that use this. If unavailable this is returned as an empty string "". "app2_arch" The architecture string of the application or package, for package managers that use this. If unavailable this is returned as an empty string "". "app2_install_path" The installation path of the application (on operating systems such as Windows which use installation paths). This path is in the format used by the guest operating system, it is not a libguestfs path. If unavailable this is returned as an empty string "". "app2_trans_path" The install path translated into a libguestfs path. If unavailable this is returned as an empty string "". "app2_publisher" The name of the publisher of the application, for package managers that use this. If unavailable this is returned as an empty string "". "app2_url" The URL (eg. upstream URL) of the application. If unavailable this is returned as an empty string "". "app2_source_package" For packaging systems which support this, the name of the source package. If unavailable this is returned as an empty string "". "app2_summary" A short (usually one line) description of the application or package. If unavailable this is returned as an empty string "". "app2_description" A longer description of the application or package. If unavailable this is returned as an empty string "". Please read "INSPECTION" for more details. This function returns a "struct guestfs_application2_list *", or NULL if there was an error. The caller must call "guestfs_free_application2_list" after use. (Added in 1.19.56) guestfs_inspect_os char ** guestfs_inspect_os (guestfs_h *g); This function uses other libguestfs functions and certain heuristics to inspect the disk(s) (usually disks belonging to a virtual machine), looking for operating systems. The list returned is empty if no operating systems were found. If one operating system was found, then this returns a list with a single element, which is the name of the root filesystem of this operating system. It is also possible for this function to return a list containing more than one element, indicating a dual-boot or multi-boot virtual machine, with each element being the root filesystem of one of the operating systems. You can pass the root string(s) returned to other "guestfs_inspect_get_*" functions in order to query further information about each operating system, such as the name and version. This function uses other libguestfs features such as "guestfs_mount_ro" and "guestfs_umount_all" in order to mount and unmount filesystems and look at the contents. This should be called with no disks currently mounted. The function may also use Augeas, so any existing Augeas handle will be closed. This function cannot decrypt encrypted disks. The caller must do that first (supplying the necessary keys) if the disk is encrypted. Please read "INSPECTION" for more details. See also "guestfs_list_filesystems". This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 1.5.3) guestfs_is_blockdev int guestfs_is_blockdev (guestfs_h *g, const char *path); This function is provided for backwards compatibility with earlier versions of libguestfs. It simply calls "guestfs_is_blockdev_opts" with no optional arguments. (Added in 1.5.10) guestfs_is_blockdev_opts int guestfs_is_blockdev_opts (guestfs_h *g, const char *path, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_IS_BLOCKDEV_OPTS_FOLLOWSYMLINKS, int followsymlinks, This returns "true" if and only if there is a block device with the given "path" name. If the optional flag "followsymlinks" is true, then a symlink (or chain of symlinks) that ends with a block device also causes the function to return true. This call only looks at files within the guest filesystem. Libguestfs partitions and block devices (eg. /dev/sda) cannot be used as the "path" parameter of this call. See also "guestfs_stat". This function returns a C truth value on success or -1 on error. (Added in 1.5.10) guestfs_is_blockdev_opts_va int guestfs_is_blockdev_opts_va (guestfs_h *g, const char *path, va_list args); This is the "va_list variant" of "guestfs_is_blockdev_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_is_blockdev_opts_argv int guestfs_is_blockdev_opts_argv (guestfs_h *g, const char *path, const struct guestfs_is_blockdev_opts_argv *optargs); This is the "argv variant" of "guestfs_is_blockdev_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_is_busy int guestfs_is_busy (guestfs_h *g); This always returns false. This function is deprecated with no replacement. Do not use this function. For more information on states, see guestfs(3). This function returns a C truth value on success or -1 on error. (Added in 1.0.2) guestfs_is_chardev int guestfs_is_chardev (guestfs_h *g, const char *path); This function is provided for backwards compatibility with earlier versions of libguestfs. It simply calls "guestfs_is_chardev_opts" with no optional arguments. (Added in 1.5.10) guestfs_is_chardev_opts int guestfs_is_chardev_opts (guestfs_h *g, const char *path, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_IS_CHARDEV_OPTS_FOLLOWSYMLINKS, int followsymlinks, This returns "true" if and only if there is a character device with the given "path" name. If the optional flag "followsymlinks" is true, then a symlink (or chain of symlinks) that ends with a chardev also causes the function to return true. See also "guestfs_stat". This function returns a C truth value on success or -1 on error. (Added in 1.5.10) guestfs_is_chardev_opts_va int guestfs_is_chardev_opts_va (guestfs_h *g, const char *path, va_list args); This is the "va_list variant" of "guestfs_is_chardev_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_is_chardev_opts_argv int guestfs_is_chardev_opts_argv (guestfs_h *g, const char *path, const struct guestfs_is_chardev_opts_argv *optargs); This is the "argv variant" of "guestfs_is_chardev_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_is_config int guestfs_is_config (guestfs_h *g); This returns true iff this handle is being configured (in the "CONFIG" state). For more information on states, see guestfs(3). This function returns a C truth value on success or -1 on error. (Added in 1.0.2) guestfs_is_dir int guestfs_is_dir (guestfs_h *g, const char *path); This function is provided for backwards compatibility with earlier versions of libguestfs. It simply calls "guestfs_is_dir_opts" with no optional arguments. (Added in 0.8) guestfs_is_dir_opts int guestfs_is_dir_opts (guestfs_h *g, const char *path, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_IS_DIR_OPTS_FOLLOWSYMLINKS, int followsymlinks, This returns "true" if and only if there is a directory with the given "path" name. Note that it returns false for other objects like files. If the optional flag "followsymlinks" is true, then a symlink (or chain of symlinks) that ends with a directory also causes the function to return true. See also "guestfs_stat". This function returns a C truth value on success or -1 on error. (Added in 0.8) guestfs_is_dir_opts_va int guestfs_is_dir_opts_va (guestfs_h *g, const char *path, va_list args); This is the "va_list variant" of "guestfs_is_dir_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_is_dir_opts_argv int guestfs_is_dir_opts_argv (guestfs_h *g, const char *path, const struct guestfs_is_dir_opts_argv *optargs); This is the "argv variant" of "guestfs_is_dir_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_is_fifo int guestfs_is_fifo (guestfs_h *g, const char *path); This function is provided for backwards compatibility with earlier versions of libguestfs. It simply calls "guestfs_is_fifo_opts" with no optional arguments. (Added in 1.5.10) guestfs_is_fifo_opts int guestfs_is_fifo_opts (guestfs_h *g, const char *path, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_IS_FIFO_OPTS_FOLLOWSYMLINKS, int followsymlinks, This returns "true" if and only if there is a FIFO (named pipe) with the given "path" name. If the optional flag "followsymlinks" is true, then a symlink (or chain of symlinks) that ends with a FIFO also causes the function to return true. See also "guestfs_stat". This function returns a C truth value on success or -1 on error. (Added in 1.5.10) guestfs_is_fifo_opts_va int guestfs_is_fifo_opts_va (guestfs_h *g, const char *path, va_list args); This is the "va_list variant" of "guestfs_is_fifo_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_is_fifo_opts_argv int guestfs_is_fifo_opts_argv (guestfs_h *g, const char *path, const struct guestfs_is_fifo_opts_argv *optargs); This is the "argv variant" of "guestfs_is_fifo_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_is_file int guestfs_is_file (guestfs_h *g, const char *path); This function is provided for backwards compatibility with earlier versions of libguestfs. It simply calls "guestfs_is_file_opts" with no optional arguments. (Added in 0.8) guestfs_is_file_opts int guestfs_is_file_opts (guestfs_h *g, const char *path, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_IS_FILE_OPTS_FOLLOWSYMLINKS, int followsymlinks, This returns "true" if and only if there is a regular file with the given "path" name. Note that it returns false for other objects like directories. If the optional flag "followsymlinks" is true, then a symlink (or chain of symlinks) that ends with a file also causes the function to return true. See also "guestfs_stat". This function returns a C truth value on success or -1 on error. (Added in 0.8) guestfs_is_file_opts_va int guestfs_is_file_opts_va (guestfs_h *g, const char *path, va_list args); This is the "va_list variant" of "guestfs_is_file_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_is_file_opts_argv int guestfs_is_file_opts_argv (guestfs_h *g, const char *path, const struct guestfs_is_file_opts_argv *optargs); This is the "argv variant" of "guestfs_is_file_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_is_launching int guestfs_is_launching (guestfs_h *g); This returns true iff this handle is launching the subprocess (in the "LAUNCHING" state). For more information on states, see guestfs(3). This function returns a C truth value on success or -1 on error. (Added in 1.0.2) guestfs_is_lv int guestfs_is_lv (guestfs_h *g, const char *mountable); This command tests whether "mountable" is a logical volume, and returns true iff this is the case. This function returns a C truth value on success or -1 on error. (Added in 1.5.3) guestfs_is_ready int guestfs_is_ready (guestfs_h *g); This returns true iff this handle is ready to accept commands (in the "READY" state). For more information on states, see guestfs(3). This function returns a C truth value on success or -1 on error. (Added in 1.0.2) guestfs_is_socket int guestfs_is_socket (guestfs_h *g, const char *path); This function is provided for backwards compatibility with earlier versions of libguestfs. It simply calls "guestfs_is_socket_opts" with no optional arguments. (Added in 1.5.10) guestfs_is_socket_opts int guestfs_is_socket_opts (guestfs_h *g, const char *path, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_IS_SOCKET_OPTS_FOLLOWSYMLINKS, int followsymlinks, This returns "true" if and only if there is a Unix domain socket with the given "path" name. If the optional flag "followsymlinks" is true, then a symlink (or chain of symlinks) that ends with a socket also causes the function to return true. See also "guestfs_stat". This function returns a C truth value on success or -1 on error. (Added in 1.5.10) guestfs_is_socket_opts_va int guestfs_is_socket_opts_va (guestfs_h *g, const char *path, va_list args); This is the "va_list variant" of "guestfs_is_socket_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_is_socket_opts_argv int guestfs_is_socket_opts_argv (guestfs_h *g, const char *path, const struct guestfs_is_socket_opts_argv *optargs); This is the "argv variant" of "guestfs_is_socket_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_is_symlink int guestfs_is_symlink (guestfs_h *g, const char *path); This returns "true" if and only if there is a symbolic link with the given "path" name. See also "guestfs_stat". This function returns a C truth value on success or -1 on error. (Added in 1.5.10) guestfs_is_whole_device int guestfs_is_whole_device (guestfs_h *g, const char *device); This returns "true" if and only if "device" refers to a whole block device. That is, not a partition or a logical device. This function returns a C truth value on success or -1 on error. (Added in 1.21.9) guestfs_is_zero int guestfs_is_zero (guestfs_h *g, const char *path); This returns true iff the file exists and the file is empty or it contains all zero bytes. This function returns a C truth value on success or -1 on error. (Added in 1.11.8) guestfs_is_zero_device int guestfs_is_zero_device (guestfs_h *g, const char *device); This returns true iff the device exists and contains all zero bytes. Note that for large devices this can take a long time to run. This function returns a C truth value on success or -1 on error. (Added in 1.11.8) guestfs_isoinfo struct guestfs_isoinfo * guestfs_isoinfo (guestfs_h *g, const char *isofile); This is the same as "guestfs_isoinfo_device" except that it works for an ISO file located inside some other mounted filesystem. Note that in the common case where you have added an ISO file as a libguestfs device, you would not call this. Instead you would call "guestfs_isoinfo_device". This function returns a "struct guestfs_isoinfo *", or NULL if there was an error. The caller must call "guestfs_free_isoinfo" after use. (Added in 1.17.19) guestfs_isoinfo_device struct guestfs_isoinfo * guestfs_isoinfo_device (guestfs_h *g, const char *device); "device" is an ISO device. This returns a struct of information read from the primary volume descriptor (the ISO equivalent of the superblock) of the device. Usually it is more efficient to use the isoinfo(1) command with the -d option on the host to analyze ISO files, instead of going through libguestfs. For information on the primary volume descriptor fields, see http://wiki.osdev.org/ISO_9660#The_Primary_Volume_Descriptor This function returns a "struct guestfs_isoinfo *", or NULL if there was an error. The caller must call "guestfs_free_isoinfo" after use. (Added in 1.17.19) guestfs_journal_close int guestfs_journal_close (guestfs_h *g); Close the journal handle. This function returns 0 on success or -1 on error. This function depends on the feature "journal". See also "guestfs_feature_available". (Added in 1.23.11) guestfs_journal_get struct guestfs_xattr_list * guestfs_journal_get (guestfs_h *g); Read the current journal entry. This returns all the fields in the journal as a set of "(attrname, attrval)" pairs. The "attrname" is the field name (a string). The "attrval" is the field value (a binary blob, often but not always a string). Please note that "attrval" is a byte array, not a \0-terminated C string. The length of data may be truncated to the data threshold (see: "guestfs_journal_set_data_threshold", "guestfs_journal_get_data_threshold"). If you set the data threshold to unlimited (0) then this call can read a journal entry of any size, ie. it is not limited by the libguestfs protocol. This function returns a "struct guestfs_xattr_list *", or NULL if there was an error. The caller must call "guestfs_free_xattr_list" after use. This function depends on the feature "journal". See also "guestfs_feature_available". (Added in 1.23.11) guestfs_journal_get_data_threshold int64_t guestfs_journal_get_data_threshold (guestfs_h *g); Get the current data threshold for reading journal entries. This is a hint to the journal that it may truncate data fields to this size when reading them (note also that it may not truncate them). If this returns 0, then the threshold is unlimited. See also "guestfs_journal_set_data_threshold". On error this function returns -1. This function depends on the feature "journal". See also "guestfs_feature_available". (Added in 1.23.11) guestfs_journal_get_realtime_usec int64_t guestfs_journal_get_realtime_usec (guestfs_h *g); Get the realtime (wallclock) timestamp of the current journal entry. On error this function returns -1. This function depends on the feature "journal". See also "guestfs_feature_available". (Added in 1.27.18) guestfs_journal_next int guestfs_journal_next (guestfs_h *g); Move to the next journal entry. You have to call this at least once after opening the handle before you are able to read data. The returned boolean tells you if there are any more journal records to read. "true" means you can read the next record (eg. using "guestfs_journal_get"), and "false" means you have reached the end of the journal. This function returns a C truth value on success or -1 on error. This function depends on the feature "journal". See also "guestfs_feature_available". (Added in 1.23.11) guestfs_journal_open int guestfs_journal_open (guestfs_h *g, const char *directory); Open the systemd journal located in directory. Any previously opened journal handle is closed. The contents of the journal can be read using "guestfs_journal_next" and "guestfs_journal_get". After you have finished using the journal, you should close the handle by calling "guestfs_journal_close". This function returns 0 on success or -1 on error. This function depends on the feature "journal". See also "guestfs_feature_available". (Added in 1.23.11) guestfs_journal_set_data_threshold int guestfs_journal_set_data_threshold (guestfs_h *g, int64_t threshold); Set the data threshold for reading journal entries. This is a hint to the journal that it may truncate data fields to this size when reading them (note also that it may not truncate them). If you set this to 0, then the threshold is unlimited. See also "guestfs_journal_get_data_threshold". This function returns 0 on success or -1 on error. This function depends on the feature "journal". See also "guestfs_feature_available". (Added in 1.23.11) guestfs_journal_skip int64_t guestfs_journal_skip (guestfs_h *g, int64_t skip); Skip forwards ("skip ≥ 0") or backwards ("skip < 0") in the journal. The number of entries actually skipped is returned (note "rskip ≥ 0"). If this is not the same as the absolute value of the skip parameter ("|skip|") you passed in then it means you have reached the end or the start of the journal. On error this function returns -1. This function depends on the feature "journal". See also "guestfs_feature_available". (Added in 1.23.11) guestfs_kill_subprocess int guestfs_kill_subprocess (guestfs_h *g); This function is deprecated. In new code, use the "guestfs_shutdown" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This kills the hypervisor. Do not call this. See: "guestfs_shutdown" instead. This function returns 0 on success or -1 on error. (Added in 0.3) guestfs_launch int guestfs_launch (guestfs_h *g); You should call this after configuring the handle (eg. adding drives) but before performing any actions. Do not call "guestfs_launch" twice on the same handle. Although it will not give an error (for historical reasons), the precise behaviour when you do this is not well defined. Handles are very cheap to create, so create a new one for each launch. This function returns 0 on success or -1 on error. This long-running command can generate progress notification messages so that the caller can display a progress bar or indicator. To receive these messages, the caller must register a progress event callback. See "GUESTFS_EVENT_PROGRESS". (Added in 0.3) guestfs_lchown int guestfs_lchown (guestfs_h *g, int owner, int group, const char *path); Change the file owner to "owner" and group to "group". This is like "guestfs_chown" but if "path" is a symlink then the link itself is changed, not the target. Only numeric uid and gid are supported. If you want to use names, you will need to locate and parse the password file yourself (Augeas support makes this relatively easy). This function returns 0 on success or -1 on error. (Added in 1.0.77) guestfs_ldmtool_create_all int guestfs_ldmtool_create_all (guestfs_h *g); This function scans all block devices looking for Windows dynamic disk volumes and partitions, and creates devices for any that were found. Call "guestfs_list_ldm_volumes" and "guestfs_list_ldm_partitions" to return all devices. Note that you don't normally need to call this explicitly, since it is done automatically at "guestfs_launch" time. However you might want to call this function if you have hotplugged disks or have just created a Windows dynamic disk. This function returns 0 on success or -1 on error. This function depends on the feature "ldm". See also "guestfs_feature_available". (Added in 1.20.0) guestfs_ldmtool_diskgroup_disks char ** guestfs_ldmtool_diskgroup_disks (guestfs_h *g, const char *diskgroup); Return the disks in a Windows dynamic disk group. The "diskgroup" parameter should be the GUID of a disk group, one element from the list returned by "guestfs_ldmtool_scan". This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. This function depends on the feature "ldm". See also "guestfs_feature_available". (Added in 1.20.0) guestfs_ldmtool_diskgroup_name char * guestfs_ldmtool_diskgroup_name (guestfs_h *g, const char *diskgroup); Return the name of a Windows dynamic disk group. The "diskgroup" parameter should be the GUID of a disk group, one element from the list returned by "guestfs_ldmtool_scan". This function returns a string, or NULL on error. The caller must free the returned string after use. This function depends on the feature "ldm". See also "guestfs_feature_available". (Added in 1.20.0) guestfs_ldmtool_diskgroup_volumes char ** guestfs_ldmtool_diskgroup_volumes (guestfs_h *g, const char *diskgroup); Return the volumes in a Windows dynamic disk group. The "diskgroup" parameter should be the GUID of a disk group, one element from the list returned by "guestfs_ldmtool_scan". This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. This function depends on the feature "ldm". See also "guestfs_feature_available". (Added in 1.20.0) guestfs_ldmtool_remove_all int guestfs_ldmtool_remove_all (guestfs_h *g); This is essentially the opposite of "guestfs_ldmtool_create_all". It removes the device mapper mappings for all Windows dynamic disk volumes This function returns 0 on success or -1 on error. This function depends on the feature "ldm". See also "guestfs_feature_available". (Added in 1.20.0) guestfs_ldmtool_scan char ** guestfs_ldmtool_scan (guestfs_h *g); This function scans for Windows dynamic disks. It returns a list of identifiers (GUIDs) for all disk groups that were found. These identifiers can be passed to other "guestfs_ldmtool_*" functions. This function scans all block devices. To scan a subset of block devices, call "guestfs_ldmtool_scan_devices" instead. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. This function depends on the feature "ldm". See also "guestfs_feature_available". (Added in 1.20.0) guestfs_ldmtool_scan_devices char ** guestfs_ldmtool_scan_devices (guestfs_h *g, char *const *devices); This function scans for Windows dynamic disks. It returns a list of identifiers (GUIDs) for all disk groups that were found. These identifiers can be passed to other "guestfs_ldmtool_*" functions. The parameter "devices" is a list of block devices which are scanned. If this list is empty, all block devices are scanned. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. This function depends on the feature "ldm". See also "guestfs_feature_available". (Added in 1.20.0) guestfs_ldmtool_volume_hint char * guestfs_ldmtool_volume_hint (guestfs_h *g, const char *diskgroup, const char *volume); Return the hint field of the volume named "volume" in the disk group with GUID "diskgroup". This may not be defined, in which case the empty string is returned. The hint field is often, though not always, the name of a Windows drive, eg. "E:". This function returns a string, or NULL on error. The caller must free the returned string after use. This function depends on the feature "ldm". See also "guestfs_feature_available". (Added in 1.20.0) guestfs_ldmtool_volume_partitions char ** guestfs_ldmtool_volume_partitions (guestfs_h *g, const char *diskgroup, const char *volume); Return the list of partitions in the volume named "volume" in the disk group with GUID "diskgroup". This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. This function depends on the feature "ldm". See also "guestfs_feature_available". (Added in 1.20.0) guestfs_ldmtool_volume_type char * guestfs_ldmtool_volume_type (guestfs_h *g, const char *diskgroup, const char *volume); Return the type of the volume named "volume" in the disk group with GUID "diskgroup". Possible volume types that can be returned here include: "simple", "spanned", "striped", "mirrored", "raid5". Other types may also be returned. This function returns a string, or NULL on error. The caller must free the returned string after use. This function depends on the feature "ldm". See also "guestfs_feature_available". (Added in 1.20.0) guestfs_lgetxattr char * guestfs_lgetxattr (guestfs_h *g, const char *path, const char *name, size_t *size_r); Get a single extended attribute from file "path" named "name". If "path" is a symlink, then this call returns an extended attribute from the symlink. Normally it is better to get all extended attributes from a file in one go by calling "guestfs_getxattrs". However some Linux filesystem implementations are buggy and do not provide a way to list out attributes. For these filesystems (notably ntfs-3g) you have to know the names of the extended attributes you want in advance and call this function. Extended attribute values are blobs of binary data. If there is no extended attribute named "name", this returns an error. See also: "guestfs_lgetxattrs", "guestfs_getxattr", attr(5). This function returns a buffer, or NULL on error. The size of the returned buffer is written to *size_r. The caller must free the returned buffer after use. This function depends on the feature "linuxxattrs". See also "guestfs_feature_available". (Added in 1.7.24) guestfs_lgetxattrs struct guestfs_xattr_list * guestfs_lgetxattrs (guestfs_h *g, const char *path); This is the same as "guestfs_getxattrs", but if "path" is a symbolic link, then it returns the extended attributes of the link itself. This function returns a "struct guestfs_xattr_list *", or NULL if there was an error. The caller must call "guestfs_free_xattr_list" after use. This function depends on the feature "linuxxattrs". See also "guestfs_feature_available". (Added in 1.0.59) guestfs_list_9p char ** guestfs_list_9p (guestfs_h *g); List all 9p filesystems attached to the guest. A list of mount tags is returned. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 1.11.12) guestfs_list_devices char ** guestfs_list_devices (guestfs_h *g); List all the block devices. The full block device names are returned, eg. /dev/sda. See also "guestfs_list_filesystems". This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 0.4) guestfs_list_disk_labels char ** guestfs_list_disk_labels (guestfs_h *g); If you add drives using the optional "label" parameter of "guestfs_add_drive_opts", you can use this call to map between disk labels, and raw block device and partition names (like /dev/sda and /dev/sda1). This returns a hashtable, where keys are the disk labels (without the /dev/disk/guestfs prefix), and the values are the full raw block device and partition names (eg. /dev/sda and /dev/sda1). This function returns a NULL-terminated array of strings, or NULL if there was an error. The array of strings will always have length "2n+1", where "n" keys and values alternate, followed by the trailing NULL entry. The caller must free the strings and the array after use. (Added in 1.19.49) guestfs_list_dm_devices char ** guestfs_list_dm_devices (guestfs_h *g); List all device mapper devices. The returned list contains /dev/mapper/* devices, eg. ones created by a previous call to "guestfs_luks_open". Device mapper devices which correspond to logical volumes are not returned in this list. Call "guestfs_lvs" if you want to list logical volumes. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 1.11.15) guestfs_list_filesystems char ** guestfs_list_filesystems (guestfs_h *g); This inspection command looks for filesystems on partitions, block devices and logical volumes, returning a list of "mountables" containing filesystems and their type. The return value is a hash, where the keys are the devices containing filesystems, and the values are the filesystem types. For example: "/dev/sda1" => "ntfs" "/dev/sda2" => "ext2" "/dev/vg_guest/lv_root" => "ext4" "/dev/vg_guest/lv_swap" => "swap" The key is not necessarily a block device. It may also be an opaque 'mountable' string which can be passed to "guestfs_mount". The value can have the special value "unknown", meaning the content of the device is undetermined or empty. "swap" means a Linux swap partition. This command runs other libguestfs commands, which might include "guestfs_mount" and "guestfs_umount", and therefore you should use this soon after launch and only when nothing is mounted. Not all of the filesystems returned will be mountable. In particular, swap partitions are returned in the list. Also this command does not check that each filesystem found is valid and mountable, and some filesystems might be mountable but require special options. Filesystems may not all belong to a single logical operating system (use "guestfs_inspect_os" to look for OSes). This function returns a NULL-terminated array of strings, or NULL if there was an error. The array of strings will always have length "2n+1", where "n" keys and values alternate, followed by the trailing NULL entry. The caller must free the strings and the array after use. (Added in 1.5.15) guestfs_list_ldm_partitions char ** guestfs_list_ldm_partitions (guestfs_h *g); This function returns all Windows dynamic disk partitions that were found at launch time. It returns a list of device names. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. This function depends on the feature "ldm". See also "guestfs_feature_available". (Added in 1.20.0) guestfs_list_ldm_volumes char ** guestfs_list_ldm_volumes (guestfs_h *g); This function returns all Windows dynamic disk volumes that were found at launch time. It returns a list of device names. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. This function depends on the feature "ldm". See also "guestfs_feature_available". (Added in 1.20.0) guestfs_list_md_devices char ** guestfs_list_md_devices (guestfs_h *g); List all Linux md devices. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 1.15.4) guestfs_list_partitions char ** guestfs_list_partitions (guestfs_h *g); List all the partitions detected on all block devices. The full partition device names are returned, eg. /dev/sda1 This does not return logical volumes. For that you will need to call "guestfs_lvs". See also "guestfs_list_filesystems". This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 0.4) guestfs_ll char * guestfs_ll (guestfs_h *g, const char *directory); List the files in directory (relative to the root directory, there is no cwd) in the format of 'ls -la'. This command is mostly useful for interactive sessions. It is not intended that you try to parse the output string. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 0.4) guestfs_llz char * guestfs_llz (guestfs_h *g, const char *directory); This function is deprecated. In new code, use the "guestfs_lgetxattrs" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. List the files in directory in the format of 'ls -laZ'. This command is mostly useful for interactive sessions. It is not intended that you try to parse the output string. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.17.6) guestfs_ln int guestfs_ln (guestfs_h *g, const char *target, const char *linkname); This command creates a hard link using the "ln" command. This function returns 0 on success or -1 on error. (Added in 1.0.66) guestfs_ln_f int guestfs_ln_f (guestfs_h *g, const char *target, const char *linkname); This command creates a hard link using the "ln -f" command. The -f option removes the link ("linkname") if it exists already. This function returns 0 on success or -1 on error. (Added in 1.0.66) guestfs_ln_s int guestfs_ln_s (guestfs_h *g, const char *target, const char *linkname); This command creates a symbolic link using the "ln -s" command. This function returns 0 on success or -1 on error. (Added in 1.0.66) guestfs_ln_sf int guestfs_ln_sf (guestfs_h *g, const char *target, const char *linkname); This command creates a symbolic link using the "ln -sf" command, The -f option removes the link ("linkname") if it exists already. This function returns 0 on success or -1 on error. (Added in 1.0.66) guestfs_lremovexattr int guestfs_lremovexattr (guestfs_h *g, const char *xattr, const char *path); This is the same as "guestfs_removexattr", but if "path" is a symbolic link, then it removes an extended attribute of the link itself. This function returns 0 on success or -1 on error. This function depends on the feature "linuxxattrs". See also "guestfs_feature_available". (Added in 1.0.59) guestfs_ls char ** guestfs_ls (guestfs_h *g, const char *directory); List the files in directory (relative to the root directory, there is no cwd). The '.' and '..' entries are not returned, but hidden files are shown. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 0.4) guestfs_ls0 int guestfs_ls0 (guestfs_h *g, const char *dir, const char *filenames); This specialized command is used to get a listing of the filenames in the directory "dir". The list of filenames is written to the local file filenames (on the host). In the output file, the filenames are separated by "\0" characters. "." and ".." are not returned. The filenames are not sorted. This function returns 0 on success or -1 on error. (Added in 1.19.32) guestfs_lsetxattr int guestfs_lsetxattr (guestfs_h *g, const char *xattr, const char *val, int vallen, const char *path); This is the same as "guestfs_setxattr", but if "path" is a symbolic link, then it sets an extended attribute of the link itself. This function returns 0 on success or -1 on error. This function depends on the feature "linuxxattrs". See also "guestfs_feature_available". (Added in 1.0.59) guestfs_lstat struct guestfs_stat * guestfs_lstat (guestfs_h *g, const char *path); This function is deprecated. In new code, use the "guestfs_lstatns" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. Returns file information for the given "path". This is the same as "guestfs_stat" except that if "path" is a symbolic link, then the link is stat-ed, not the file it refers to. This is the same as the lstat(2) system call. This function returns a "struct guestfs_stat *", or NULL if there was an error. The caller must call "guestfs_free_stat" after use. (Added in 1.9.2) guestfs_lstatlist struct guestfs_stat_list * guestfs_lstatlist (guestfs_h *g, const char *path, char *const *names); This function is deprecated. In new code, use the "guestfs_lstatnslist" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This call allows you to perform the "guestfs_lstat" operation on multiple files, where all files are in the directory "path". "names" is the list of files from this directory. On return you get a list of stat structs, with a one-to-one correspondence to the "names" list. If any name did not exist or could not be lstat'd, then the "st_ino" field of that structure is set to "-1". This call is intended for programs that want to efficiently list a directory contents without making many round-trips. See also "guestfs_lxattrlist" for a similarly efficient call for getting extended attributes. This function returns a "struct guestfs_stat_list *", or NULL if there was an error. The caller must call "guestfs_free_stat_list" after use. (Added in 1.0.77) guestfs_lstatns struct guestfs_statns * guestfs_lstatns (guestfs_h *g, const char *path); Returns file information for the given "path". This is the same as "guestfs_statns" except that if "path" is a symbolic link, then the link is stat-ed, not the file it refers to. This is the same as the lstat(2) system call. This function returns a "struct guestfs_statns *", or NULL if there was an error. The caller must call "guestfs_free_statns" after use. (Added in 1.27.53) guestfs_lstatnslist struct guestfs_statns_list * guestfs_lstatnslist (guestfs_h *g, const char *path, char *const *names); This call allows you to perform the "guestfs_lstatns" operation on multiple files, where all files are in the directory "path". "names" is the list of files from this directory. On return you get a list of stat structs, with a one-to-one correspondence to the "names" list. If any name did not exist or could not be lstat'd, then the "st_ino" field of that structure is set to "-1". This call is intended for programs that want to efficiently list a directory contents without making many round-trips. See also "guestfs_lxattrlist" for a similarly efficient call for getting extended attributes. This function returns a "struct guestfs_statns_list *", or NULL if there was an error. The caller must call "guestfs_free_statns_list" after use. (Added in 1.27.53) guestfs_luks_add_key int guestfs_luks_add_key (guestfs_h *g, const char *device, const char *key, const char *newkey, int keyslot); This command adds a new key on LUKS device "device". "key" is any existing key, and is used to access the device. "newkey" is the new key to add. "keyslot" is the key slot that will be replaced. Note that if "keyslot" already contains a key, then this command will fail. You have to use "guestfs_luks_kill_slot" first to remove that key. This function returns 0 on success or -1 on error. This function takes a key or passphrase parameter which could contain sensitive material. Read the section "KEYS AND PASSPHRASES" for more information. This function depends on the feature "luks". See also "guestfs_feature_available". (Added in 1.5.2) guestfs_luks_close int guestfs_luks_close (guestfs_h *g, const char *device); This closes a LUKS device that was created earlier by "guestfs_luks_open" or "guestfs_luks_open_ro". The "device" parameter must be the name of the LUKS mapping device (ie. /dev/mapper/mapname) and not the name of the underlying block device. This function returns 0 on success or -1 on error. This function depends on the feature "luks". See also "guestfs_feature_available". (Added in 1.5.1) guestfs_luks_format int guestfs_luks_format (guestfs_h *g, const char *device, const char *key, int keyslot); This command erases existing data on "device" and formats the device as a LUKS encrypted device. "key" is the initial key, which is added to key slot "slot". (LUKS supports 8 key slots, numbered 0-7). This function returns 0 on success or -1 on error. This function takes a key or passphrase parameter which could contain sensitive material. Read the section "KEYS AND PASSPHRASES" for more information. This function depends on the feature "luks". See also "guestfs_feature_available". (Added in 1.5.2) guestfs_luks_format_cipher int guestfs_luks_format_cipher (guestfs_h *g, const char *device, const char *key, int keyslot, const char *cipher); This command is the same as "guestfs_luks_format" but it also allows you to set the "cipher" used. This function returns 0 on success or -1 on error. This function takes a key or passphrase parameter which could contain sensitive material. Read the section "KEYS AND PASSPHRASES" for more information. This function depends on the feature "luks". See also "guestfs_feature_available". (Added in 1.5.2) guestfs_luks_kill_slot int guestfs_luks_kill_slot (guestfs_h *g, const char *device, const char *key, int keyslot); This command deletes the key in key slot "keyslot" from the encrypted LUKS device "device". "key" must be one of the other keys. This function returns 0 on success or -1 on error. This function takes a key or passphrase parameter which could contain sensitive material. Read the section "KEYS AND PASSPHRASES" for more information. This function depends on the feature "luks". See also "guestfs_feature_available". (Added in 1.5.2) guestfs_luks_open int guestfs_luks_open (guestfs_h *g, const char *device, const char *key, const char *mapname); This command opens a block device which has been encrypted according to the Linux Unified Key Setup (LUKS) standard. "device" is the encrypted block device or partition. The caller must supply one of the keys associated with the LUKS block device, in the "key" parameter. This creates a new block device called /dev/mapper/mapname. Reads and writes to this block device are decrypted from and encrypted to the underlying "device" respectively. If this block device contains LVM volume groups, then calling "guestfs_vgscan" followed by "guestfs_vg_activate_all" will make them visible. Use "guestfs_list_dm_devices" to list all device mapper devices. This function returns 0 on success or -1 on error. This function takes a key or passphrase parameter which could contain sensitive material. Read the section "KEYS AND PASSPHRASES" for more information. This function depends on the feature "luks". See also "guestfs_feature_available". (Added in 1.5.1) guestfs_luks_open_ro int guestfs_luks_open_ro (guestfs_h *g, const char *device, const char *key, const char *mapname); This is the same as "guestfs_luks_open" except that a read-only mapping is created. This function returns 0 on success or -1 on error. This function takes a key or passphrase parameter which could contain sensitive material. Read the section "KEYS AND PASSPHRASES" for more information. This function depends on the feature "luks". See also "guestfs_feature_available". (Added in 1.5.1) guestfs_lvcreate int guestfs_lvcreate (guestfs_h *g, const char *logvol, const char *volgroup, int mbytes); This creates an LVM logical volume called "logvol" on the volume group "volgroup", with "size" megabytes. This function returns 0 on success or -1 on error. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 0.8) guestfs_lvcreate_free int guestfs_lvcreate_free (guestfs_h *g, const char *logvol, const char *volgroup, int percent); Create an LVM logical volume called /dev/volgroup/logvol, using approximately "percent" % of the free space remaining in the volume group. Most usefully, when "percent" is 100 this will create the largest possible LV. This function returns 0 on success or -1 on error. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 1.17.18) guestfs_lvm_canonical_lv_name char * guestfs_lvm_canonical_lv_name (guestfs_h *g, const char *lvname); This converts alternative naming schemes for LVs that you might find to the canonical name. For example, /dev/mapper/VG-LV is converted to /dev/VG/LV. This command returns an error if the "lvname" parameter does not refer to a logical volume. See also "guestfs_is_lv", "guestfs_canonical_device_name". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.5.24) guestfs_lvm_clear_filter int guestfs_lvm_clear_filter (guestfs_h *g); This undoes the effect of "guestfs_lvm_set_filter". LVM will be able to see every block device. This command also clears the LVM cache and performs a volume group scan. This function returns 0 on success or -1 on error. (Added in 1.5.1) guestfs_lvm_remove_all int guestfs_lvm_remove_all (guestfs_h *g); This command removes all LVM logical volumes, volume groups and physical volumes. This function returns 0 on success or -1 on error. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 0.8) guestfs_lvm_set_filter int guestfs_lvm_set_filter (guestfs_h *g, char *const *devices); This sets the LVM device filter so that LVM will only be able to "see" the block devices in the list "devices", and will ignore all other attached block devices. Where disk image(s) contain duplicate PVs or VGs, this command is useful to get LVM to ignore the duplicates, otherwise LVM can get confused. Note also there are two types of duplication possible: either cloned PVs/VGs which have identical UUIDs; or VGs that are not cloned but just happen to have the same name. In normal operation you cannot create this situation, but you can do it outside LVM, eg. by cloning disk images or by bit twiddling inside the LVM metadata. This command also clears the LVM cache and performs a volume group scan. You can filter whole block devices or individual partitions. You cannot use this if any VG is currently in use (eg. contains a mounted filesystem), even if you are not filtering out that VG. This function returns 0 on success or -1 on error. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 1.5.1) guestfs_lvremove int guestfs_lvremove (guestfs_h *g, const char *device); Remove an LVM logical volume "device", where "device" is the path to the LV, such as /dev/VG/LV. You can also remove all LVs in a volume group by specifying the VG name, /dev/VG. This function returns 0 on success or -1 on error. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 1.0.13) guestfs_lvrename int guestfs_lvrename (guestfs_h *g, const char *logvol, const char *newlogvol); Rename a logical volume "logvol" with the new name "newlogvol". This function returns 0 on success or -1 on error. (Added in 1.0.83) guestfs_lvresize int guestfs_lvresize (guestfs_h *g, const char *device, int mbytes); This resizes (expands or shrinks) an existing LVM logical volume to "mbytes". When reducing, data in the reduced part is lost. This function returns 0 on success or -1 on error. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 1.0.27) guestfs_lvresize_free int guestfs_lvresize_free (guestfs_h *g, const char *lv, int percent); This expands an existing logical volume "lv" so that it fills "pc"% of the remaining free space in the volume group. Commonly you would call this with pc = 100 which expands the logical volume as much as possible, using all remaining free space in the volume group. This function returns 0 on success or -1 on error. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 1.3.3) guestfs_lvs char ** guestfs_lvs (guestfs_h *g); List all the logical volumes detected. This is the equivalent of the lvs(8) command. This returns a list of the logical volume device names (eg. /dev/VolGroup00/LogVol00). See also "guestfs_lvs_full", "guestfs_list_filesystems". This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 0.4) guestfs_lvs_full struct guestfs_lvm_lv_list * guestfs_lvs_full (guestfs_h *g); List all the logical volumes detected. This is the equivalent of the lvs(8) command. The "full" version includes all fields. This function returns a "struct guestfs_lvm_lv_list *", or NULL if there was an error. The caller must call "guestfs_free_lvm_lv_list" after use. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 0.4) guestfs_lvuuid char * guestfs_lvuuid (guestfs_h *g, const char *device); This command returns the UUID of the LVM LV "device". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.0.87) guestfs_lxattrlist struct guestfs_xattr_list * guestfs_lxattrlist (guestfs_h *g, const char *path, char *const *names); This call allows you to get the extended attributes of multiple files, where all files are in the directory "path". "names" is the list of files from this directory. On return you get a flat list of xattr structs which must be interpreted sequentially. The first xattr struct always has a zero-length "attrname". "attrval" in this struct is zero-length to indicate there was an error doing "lgetxattr" for this file, or is a C string which is a decimal number (the number of following attributes for this file, which could be "0"). Then after the first xattr struct are the zero or more attributes for the first named file. This repeats for the second and subsequent files. This call is intended for programs that want to efficiently list a directory contents without making many round-trips. See also "guestfs_lstatlist" for a similarly efficient call for getting standard stats. This function returns a "struct guestfs_xattr_list *", or NULL if there was an error. The caller must call "guestfs_free_xattr_list" after use. This function depends on the feature "linuxxattrs". See also "guestfs_feature_available". (Added in 1.0.77) guestfs_max_disks int guestfs_max_disks (guestfs_h *g); Return the maximum number of disks that may be added to a handle (eg. by "guestfs_add_drive_opts" and similar calls). This function was added in libguestfs 1.19.7. In previous versions of libguestfs the limit was 25. See "MAXIMUM NUMBER OF DISKS" for additional information on this topic. On error this function returns -1. (Added in 1.19.7) guestfs_md_create int guestfs_md_create (guestfs_h *g, const char *name, char *const *devices, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_MD_CREATE_MISSINGBITMAP, int64_t missingbitmap, GUESTFS_MD_CREATE_NRDEVICES, int nrdevices, GUESTFS_MD_CREATE_SPARE, int spare, GUESTFS_MD_CREATE_CHUNK, int64_t chunk, GUESTFS_MD_CREATE_LEVEL, const char *level, Create a Linux md (RAID) device named "name" on the devices in the list "devices". The optional parameters are: "missingbitmap" A bitmap of missing devices. If a bit is set it means that a missing device is added to the array. The least significant bit corresponds to the first device in the array. As examples: If "devices = ["/dev/sda"]" and "missingbitmap = 0x1" then the resulting array would be "[<missing>, "/dev/sda"]". If "devices = ["/dev/sda"]" and "missingbitmap = 0x2" then the resulting array would be "["/dev/sda", <missing>]". This defaults to 0 (no missing devices). The length of "devices" + the number of bits set in "missingbitmap" must equal "nrdevices" + "spare". "nrdevices" The number of active RAID devices. If not set, this defaults to the length of "devices" plus the number of bits set in "missingbitmap". "spare" The number of spare devices. If not set, this defaults to 0. "chunk" The chunk size in bytes. "level" The RAID level, which can be one of: linear, raid0, 0, stripe, raid1, 1, mirror, raid4, 4, raid5, 5, raid6, 6, raid10, 10. Some of these are synonymous, and more levels may be added in future. If not set, this defaults to "raid1". This function returns 0 on success or -1 on error. This function depends on the feature "mdadm". See also "guestfs_feature_available". (Added in 1.15.6) guestfs_md_create_va int guestfs_md_create_va (guestfs_h *g, const char *name, char *const *devices, va_list args); This is the "va_list variant" of "guestfs_md_create". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_md_create_argv int guestfs_md_create_argv (guestfs_h *g, const char *name, char *const *devices, const struct guestfs_md_create_argv *optargs); This is the "argv variant" of "guestfs_md_create". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_md_detail char ** guestfs_md_detail (guestfs_h *g, const char *md); This command exposes the output of 'mdadm -DY <md>'. The following fields are usually present in the returned hash. Other fields may also be present. "level" The raid level of the MD device. "devices" The number of underlying devices in the MD device. "metadata" The metadata version used. "uuid" The UUID of the MD device. "name" The name of the MD device. This function returns a NULL-terminated array of strings, or NULL if there was an error. The array of strings will always have length "2n+1", where "n" keys and values alternate, followed by the trailing NULL entry. The caller must free the strings and the array after use. This function depends on the feature "mdadm". See also "guestfs_feature_available". (Added in 1.15.6) guestfs_md_stat struct guestfs_mdstat_list * guestfs_md_stat (guestfs_h *g, const char *md); This call returns a list of the underlying devices which make up the single software RAID array device "md". To get a list of software RAID devices, call "guestfs_list_md_devices". Each structure returned corresponds to one device along with additional status information: "mdstat_device" The name of the underlying device. "mdstat_index" The index of this device within the array. "mdstat_flags" Flags associated with this device. This is a string containing (in no specific order) zero or more of the following flags: "W" write-mostly "F" device is faulty "S" device is a RAID spare "R" replacement This function returns a "struct guestfs_mdstat_list *", or NULL if there was an error. The caller must call "guestfs_free_mdstat_list" after use. This function depends on the feature "mdadm". See also "guestfs_feature_available". (Added in 1.17.21) guestfs_md_stop int guestfs_md_stop (guestfs_h *g, const char *md); This command deactivates the MD array named "md". The device is stopped, but it is not destroyed or zeroed. This function returns 0 on success or -1 on error. This function depends on the feature "mdadm". See also "guestfs_feature_available". (Added in 1.15.6) guestfs_mkdir int guestfs_mkdir (guestfs_h *g, const char *path); Create a directory named "path". This function returns 0 on success or -1 on error. (Added in 0.8) guestfs_mkdir_mode int guestfs_mkdir_mode (guestfs_h *g, const char *path, int mode); This command creates a directory, setting the initial permissions of the directory to "mode". For common Linux filesystems, the actual mode which is set will be "mode & ~umask & 01777". Non-native-Linux filesystems may interpret the mode in other ways. See also "guestfs_mkdir", "guestfs_umask" This function returns 0 on success or -1 on error. (Added in 1.0.77) guestfs_mkdir_p int guestfs_mkdir_p (guestfs_h *g, const char *path); Create a directory named "path", creating any parent directories as necessary. This is like the "mkdir -p" shell command. This function returns 0 on success or -1 on error. (Added in 0.8) guestfs_mkdtemp char * guestfs_mkdtemp (guestfs_h *g, const char *tmpl); This command creates a temporary directory. The "tmpl" parameter should be a full pathname for the temporary directory name with the final six characters being "XXXXXX". For example: "/tmp/myprogXXXXXX" or "/Temp/myprogXXXXXX", the second one being suitable for Windows filesystems. The name of the temporary directory that was created is returned. The temporary directory is created with mode 0700 and is owned by root. The caller is responsible for deleting the temporary directory and its contents after use. See also: mkdtemp(3) This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.0.54) guestfs_mke2fs int guestfs_mke2fs (guestfs_h *g, const char *device, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_MKE2FS_BLOCKSCOUNT, int64_t blockscount, GUESTFS_MKE2FS_BLOCKSIZE, int64_t blocksize, GUESTFS_MKE2FS_FRAGSIZE, int64_t fragsize, GUESTFS_MKE2FS_BLOCKSPERGROUP, int64_t blockspergroup, GUESTFS_MKE2FS_NUMBEROFGROUPS, int64_t numberofgroups, GUESTFS_MKE2FS_BYTESPERINODE, int64_t bytesperinode, GUESTFS_MKE2FS_INODESIZE, int64_t inodesize, GUESTFS_MKE2FS_JOURNALSIZE, int64_t journalsize, GUESTFS_MKE2FS_NUMBEROFINODES, int64_t numberofinodes, GUESTFS_MKE2FS_STRIDESIZE, int64_t stridesize, GUESTFS_MKE2FS_STRIPEWIDTH, int64_t stripewidth, GUESTFS_MKE2FS_MAXONLINERESIZE, int64_t maxonlineresize, GUESTFS_MKE2FS_RESERVEDBLOCKSPERCENTAGE, int reservedblockspercentage, GUESTFS_MKE2FS_MMPUPDATEINTERVAL, int mmpupdateinterval, GUESTFS_MKE2FS_JOURNALDEVICE, const char *journaldevice, GUESTFS_MKE2FS_LABEL, const char *label, GUESTFS_MKE2FS_LASTMOUNTEDDIR, const char *lastmounteddir, GUESTFS_MKE2FS_CREATOROS, const char *creatoros, GUESTFS_MKE2FS_FSTYPE, const char *fstype, GUESTFS_MKE2FS_USAGETYPE, const char *usagetype, GUESTFS_MKE2FS_UUID, const char *uuid, GUESTFS_MKE2FS_FORCECREATE, int forcecreate, GUESTFS_MKE2FS_WRITESBANDGROUPONLY, int writesbandgrouponly, GUESTFS_MKE2FS_LAZYITABLEINIT, int lazyitableinit, GUESTFS_MKE2FS_LAZYJOURNALINIT, int lazyjournalinit, GUESTFS_MKE2FS_TESTFS, int testfs, GUESTFS_MKE2FS_DISCARD, int discard, GUESTFS_MKE2FS_QUOTATYPE, int quotatype, GUESTFS_MKE2FS_EXTENT, int extent, GUESTFS_MKE2FS_FILETYPE, int filetype, GUESTFS_MKE2FS_FLEXBG, int flexbg, GUESTFS_MKE2FS_HASJOURNAL, int hasjournal, GUESTFS_MKE2FS_JOURNALDEV, int journaldev, GUESTFS_MKE2FS_LARGEFILE, int largefile, GUESTFS_MKE2FS_QUOTA, int quota, GUESTFS_MKE2FS_RESIZEINODE, int resizeinode, GUESTFS_MKE2FS_SPARSESUPER, int sparsesuper, GUESTFS_MKE2FS_UNINITBG, int uninitbg, "mke2fs" is used to create an ext2, ext3, or ext4 filesystem on "device". The optional "blockscount" is the size of the filesystem in blocks. If omitted it defaults to the size of "device". Note if the filesystem is too small to contain a journal, "mke2fs" will silently create an ext2 filesystem instead. This function returns 0 on success or -1 on error. (Added in 1.19.44) guestfs_mke2fs_va int guestfs_mke2fs_va (guestfs_h *g, const char *device, va_list args); This is the "va_list variant" of "guestfs_mke2fs". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_mke2fs_argv int guestfs_mke2fs_argv (guestfs_h *g, const char *device, const struct guestfs_mke2fs_argv *optargs); This is the "argv variant" of "guestfs_mke2fs". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_mke2fs_J int guestfs_mke2fs_J (guestfs_h *g, const char *fstype, int blocksize, const char *device, const char *journal); This function is deprecated. In new code, use the "guestfs_mke2fs" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This creates an ext2/3/4 filesystem on "device" with an external journal on "journal". It is equivalent to the command: mke2fs -t fstype -b blocksize -J device=<journal> <device> See also "guestfs_mke2journal". This function returns 0 on success or -1 on error. (Added in 1.0.68) guestfs_mke2fs_JL int guestfs_mke2fs_JL (guestfs_h *g, const char *fstype, int blocksize, const char *device, const char *label); This function is deprecated. In new code, use the "guestfs_mke2fs" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This creates an ext2/3/4 filesystem on "device" with an external journal on the journal labeled "label". See also "guestfs_mke2journal_L". This function returns 0 on success or -1 on error. (Added in 1.0.68) guestfs_mke2fs_JU int guestfs_mke2fs_JU (guestfs_h *g, const char *fstype, int blocksize, const char *device, const char *uuid); This function is deprecated. In new code, use the "guestfs_mke2fs" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This creates an ext2/3/4 filesystem on "device" with an external journal on the journal with UUID "uuid". See also "guestfs_mke2journal_U". This function returns 0 on success or -1 on error. This function depends on the feature "linuxfsuuid". See also "guestfs_feature_available". (Added in 1.0.68) guestfs_mke2journal int guestfs_mke2journal (guestfs_h *g, int blocksize, const char *device); This function is deprecated. In new code, use the "guestfs_mke2fs" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This creates an ext2 external journal on "device". It is equivalent to the command: mke2fs -O journal_dev -b blocksize device This function returns 0 on success or -1 on error. (Added in 1.0.68) guestfs_mke2journal_L int guestfs_mke2journal_L (guestfs_h *g, int blocksize, const char *label, const char *device); This function is deprecated. In new code, use the "guestfs_mke2fs" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This creates an ext2 external journal on "device" with label "label". This function returns 0 on success or -1 on error. (Added in 1.0.68) guestfs_mke2journal_U int guestfs_mke2journal_U (guestfs_h *g, int blocksize, const char *uuid, const char *device); This function is deprecated. In new code, use the "guestfs_mke2fs" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This creates an ext2 external journal on "device" with UUID "uuid". This function returns 0 on success or -1 on error. This function depends on the feature "linuxfsuuid". See also "guestfs_feature_available". (Added in 1.0.68) guestfs_mkfifo int guestfs_mkfifo (guestfs_h *g, int mode, const char *path); This call creates a FIFO (named pipe) called "path" with mode "mode". It is just a convenient wrapper around "guestfs_mknod". Unlike with "guestfs_mknod", "mode" must contain only permissions bits. The mode actually set is affected by the umask. This function returns 0 on success or -1 on error. This function depends on the feature "mknod". See also "guestfs_feature_available". (Added in 1.0.55) guestfs_mkfs int guestfs_mkfs (guestfs_h *g, const char *fstype, const char *device); This function is provided for backwards compatibility with earlier versions of libguestfs. It simply calls "guestfs_mkfs_opts" with no optional arguments. (Added in 0.8) guestfs_mkfs_opts int guestfs_mkfs_opts (guestfs_h *g, const char *fstype, const char *device, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_MKFS_OPTS_BLOCKSIZE, int blocksize, GUESTFS_MKFS_OPTS_FEATURES, const char *features, GUESTFS_MKFS_OPTS_INODE, int inode, GUESTFS_MKFS_OPTS_SECTORSIZE, int sectorsize, GUESTFS_MKFS_OPTS_LABEL, const char *label, This function creates a filesystem on "device". The filesystem type is "fstype", for example "ext3". The optional arguments are: "blocksize" The filesystem block size. Supported block sizes depend on the filesystem type, but typically they are 1024, 2048 or 4096 for Linux ext2/3 filesystems. For VFAT and NTFS the "blocksize" parameter is treated as the requested cluster size. For UFS block sizes, please see mkfs.ufs(8). "features" This passes the -O parameter to the external mkfs program. For certain filesystem types, this allows extra filesystem features to be selected. See mke2fs(8) and mkfs.ufs(8) for more details. You cannot use this optional parameter with the "gfs" or "gfs2" filesystem type. "inode" This passes the -I parameter to the external mke2fs(8) program which sets the inode size (only for ext2/3/4 filesystems at present). "sectorsize" This passes the -S parameter to external mkfs.ufs(8) program, which sets sector size for ufs filesystem. This function returns 0 on success or -1 on error. (Added in 0.8) guestfs_mkfs_opts_va int guestfs_mkfs_opts_va (guestfs_h *g, const char *fstype, const char *device, va_list args); This is the "va_list variant" of "guestfs_mkfs_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_mkfs_opts_argv int guestfs_mkfs_opts_argv (guestfs_h *g, const char *fstype, const char *device, const struct guestfs_mkfs_opts_argv *optargs); This is the "argv variant" of "guestfs_mkfs_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_mkfs_b int guestfs_mkfs_b (guestfs_h *g, const char *fstype, int blocksize, const char *device); This function is deprecated. In new code, use the "guestfs_mkfs" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This call is similar to "guestfs_mkfs", but it allows you to control the block size of the resulting filesystem. Supported block sizes depend on the filesystem type, but typically they are 1024, 2048 or 4096 only. For VFAT and NTFS the "blocksize" parameter is treated as the requested cluster size. This function returns 0 on success or -1 on error. (Added in 1.0.68) guestfs_mkfs_btrfs int guestfs_mkfs_btrfs (guestfs_h *g, char *const *devices, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_MKFS_BTRFS_ALLOCSTART, int64_t allocstart, GUESTFS_MKFS_BTRFS_BYTECOUNT, int64_t bytecount, GUESTFS_MKFS_BTRFS_DATATYPE, const char *datatype, GUESTFS_MKFS_BTRFS_LEAFSIZE, int leafsize, GUESTFS_MKFS_BTRFS_LABEL, const char *label, GUESTFS_MKFS_BTRFS_METADATA, const char *metadata, GUESTFS_MKFS_BTRFS_NODESIZE, int nodesize, GUESTFS_MKFS_BTRFS_SECTORSIZE, int sectorsize, Create a btrfs filesystem, allowing all configurables to be set. For more information on the optional arguments, see mkfs.btrfs(8). Since btrfs filesystems can span multiple devices, this takes a non-empty list of devices. To create general filesystems, use "guestfs_mkfs". This function returns 0 on success or -1 on error. This function depends on the feature "btrfs". See also "guestfs_feature_available". (Added in 1.17.25) guestfs_mkfs_btrfs_va int guestfs_mkfs_btrfs_va (guestfs_h *g, char *const *devices, va_list args); This is the "va_list variant" of "guestfs_mkfs_btrfs". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_mkfs_btrfs_argv int guestfs_mkfs_btrfs_argv (guestfs_h *g, char *const *devices, const struct guestfs_mkfs_btrfs_argv *optargs); This is the "argv variant" of "guestfs_mkfs_btrfs". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_mklost_and_found int guestfs_mklost_and_found (guestfs_h *g, const char *mountpoint); Make the "lost+found" directory, normally in the root directory of an ext2/3/4 filesystem. "mountpoint" is the directory under which we try to create the "lost+found" directory. This function returns 0 on success or -1 on error. (Added in 1.19.56) guestfs_mkmountpoint int guestfs_mkmountpoint (guestfs_h *g, const char *exemptpath); "guestfs_mkmountpoint" and "guestfs_rmmountpoint" are specialized calls that can be used to create extra mountpoints before mounting the first filesystem. These calls are only necessary in some very limited circumstances, mainly the case where you want to mount a mix of unrelated and/or read-only filesystems together. For example, live CDs often contain a "Russian doll" nest of filesystems, an ISO outer layer, with a squashfs image inside, with an ext2/3 image inside that. You can unpack this as follows in guestfish: add-ro Fedora-11-i686-Live.iso run mkmountpoint /cd mkmountpoint /sqsh mkmountpoint /ext3fs mount /dev/sda /cd mount-loop /cd/LiveOS/squashfs.img /sqsh mount-loop /sqsh/LiveOS/ext3fs.img /ext3fs The inner filesystem is now unpacked under the /ext3fs mountpoint. "guestfs_mkmountpoint" is not compatible with "guestfs_umount_all". You may get unexpected errors if you try to mix these calls. It is safest to manually unmount filesystems and remove mountpoints after use. "guestfs_umount_all" unmounts filesystems by sorting the paths longest first, so for this to work for manual mountpoints, you must ensure that the innermost mountpoints have the longest pathnames, as in the example code above. For more details see https://bugzilla.redhat.com/show_bug.cgi?id=599503 Autosync [see "guestfs_set_autosync", this is set by default on handles] can cause "guestfs_umount_all" to be called when the handle is closed which can also trigger these issues. This function returns 0 on success or -1 on error. (Added in 1.0.62) guestfs_mknod int guestfs_mknod (guestfs_h *g, int mode, int devmajor, int devminor, const char *path); This call creates block or character special devices, or named pipes (FIFOs). The "mode" parameter should be the mode, using the standard constants. "devmajor" and "devminor" are the device major and minor numbers, only used when creating block and character special devices. Note that, just like mknod(2), the mode must be bitwise OR'd with S_IFBLK, S_IFCHR, S_IFIFO or S_IFSOCK (otherwise this call just creates a regular file). These constants are available in the standard Linux header files, or you can use "guestfs_mknod_b", "guestfs_mknod_c" or "guestfs_mkfifo" which are wrappers around this command which bitwise OR in the appropriate constant for you. The mode actually set is affected by the umask. This function returns 0 on success or -1 on error. This function depends on the feature "mknod". See also "guestfs_feature_available". (Added in 1.0.55) guestfs_mknod_b int guestfs_mknod_b (guestfs_h *g, int mode, int devmajor, int devminor, const char *path); This call creates a block device node called "path" with mode "mode" and device major/minor "devmajor" and "devminor". It is just a convenient wrapper around "guestfs_mknod". Unlike with "guestfs_mknod", "mode" must contain only permissions bits. The mode actually set is affected by the umask. This function returns 0 on success or -1 on error. This function depends on the feature "mknod". See also "guestfs_feature_available". (Added in 1.0.55) guestfs_mknod_c int guestfs_mknod_c (guestfs_h *g, int mode, int devmajor, int devminor, const char *path); This call creates a char device node called "path" with mode "mode" and device major/minor "devmajor" and "devminor". It is just a convenient wrapper around "guestfs_mknod". Unlike with "guestfs_mknod", "mode" must contain only permissions bits. The mode actually set is affected by the umask. This function returns 0 on success or -1 on error. This function depends on the feature "mknod". See also "guestfs_feature_available". (Added in 1.0.55) guestfs_mksquashfs int guestfs_mksquashfs (guestfs_h *g, const char *path, const char *filename, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_MKSQUASHFS_COMPRESS, const char *compress, GUESTFS_MKSQUASHFS_EXCLUDES, char *const *excludes, Create a squashfs filesystem for the specified "path". The optional "compress" flag controls compression. If not given, then the output compressed using "gzip". Otherwise one of the following strings may be given to select the compression type of the squashfs: "gzip", "lzma", "lzo", "lz4", "xz". The other optional arguments are: "excludes" A list of wildcards. Files are excluded if they match any of the wildcards. Please note that this API may fail when used to compress directories with large files, such as the resulting squashfs will be over 3GB big. This function returns 0 on success or -1 on error. This function depends on the feature "squashfs". See also "guestfs_feature_available". (Added in 1.35.25) guestfs_mksquashfs_va int guestfs_mksquashfs_va (guestfs_h *g, const char *path, const char *filename, va_list args); This is the "va_list variant" of "guestfs_mksquashfs". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_mksquashfs_argv int guestfs_mksquashfs_argv (guestfs_h *g, const char *path, const char *filename, const struct guestfs_mksquashfs_argv *optargs); This is the "argv variant" of "guestfs_mksquashfs". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_mkswap int guestfs_mkswap (guestfs_h *g, const char *device); This function is provided for backwards compatibility with earlier versions of libguestfs. It simply calls "guestfs_mkswap_opts" with no optional arguments. (Added in 1.0.55) guestfs_mkswap_opts int guestfs_mkswap_opts (guestfs_h *g, const char *device, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_MKSWAP_OPTS_LABEL, const char *label, GUESTFS_MKSWAP_OPTS_UUID, const char *uuid, Create a Linux swap partition on "device". The option arguments "label" and "uuid" allow you to set the label and/or UUID of the new swap partition. This function returns 0 on success or -1 on error. (Added in 1.0.55) guestfs_mkswap_opts_va int guestfs_mkswap_opts_va (guestfs_h *g, const char *device, va_list args); This is the "va_list variant" of "guestfs_mkswap_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_mkswap_opts_argv int guestfs_mkswap_opts_argv (guestfs_h *g, const char *device, const struct guestfs_mkswap_opts_argv *optargs); This is the "argv variant" of "guestfs_mkswap_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_mkswap_L int guestfs_mkswap_L (guestfs_h *g, const char *label, const char *device); This function is deprecated. In new code, use the "guestfs_mkswap" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. Create a swap partition on "device" with label "label". Note that you cannot attach a swap label to a block device (eg. /dev/sda), just to a partition. This appears to be a limitation of the kernel or swap tools. This function returns 0 on success or -1 on error. (Added in 1.0.55) guestfs_mkswap_U int guestfs_mkswap_U (guestfs_h *g, const char *uuid, const char *device); This function is deprecated. In new code, use the "guestfs_mkswap" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. Create a swap partition on "device" with UUID "uuid". This function returns 0 on success or -1 on error. This function depends on the feature "linuxfsuuid". See also "guestfs_feature_available". (Added in 1.0.55) guestfs_mkswap_file int guestfs_mkswap_file (guestfs_h *g, const char *path); Create a swap file. This command just writes a swap file signature to an existing file. To create the file itself, use something like "guestfs_fallocate". This function returns 0 on success or -1 on error. (Added in 1.0.66) guestfs_mktemp char * guestfs_mktemp (guestfs_h *g, const char *tmpl, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_MKTEMP_SUFFIX, const char *suffix, This command creates a temporary file. The "tmpl" parameter should be a full pathname for the temporary directory name with the final six characters being "XXXXXX". For example: "/tmp/myprogXXXXXX" or "/Temp/myprogXXXXXX", the second one being suitable for Windows filesystems. The name of the temporary file that was created is returned. The temporary file is created with mode 0600 and is owned by root. The caller is responsible for deleting the temporary file after use. If the optional "suffix" parameter is given, then the suffix (eg. ".txt") is appended to the temporary name. See also: "guestfs_mkdtemp". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.19.53) guestfs_mktemp_va char * guestfs_mktemp_va (guestfs_h *g, const char *tmpl, va_list args); This is the "va_list variant" of "guestfs_mktemp". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_mktemp_argv char * guestfs_mktemp_argv (guestfs_h *g, const char *tmpl, const struct guestfs_mktemp_argv *optargs); This is the "argv variant" of "guestfs_mktemp". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_modprobe int guestfs_modprobe (guestfs_h *g, const char *modulename); This loads a kernel module in the appliance. This function returns 0 on success or -1 on error. This function depends on the feature "linuxmodules". See also "guestfs_feature_available". (Added in 1.0.68) guestfs_mount int guestfs_mount (guestfs_h *g, const char *mountable, const char *mountpoint); Mount a guest disk at a position in the filesystem. Block devices are named /dev/sda, /dev/sdb and so on, as they were added to the guest. If those block devices contain partitions, they will have the usual names (eg. /dev/sda1). Also LVM /dev/VG/LV-style names can be used, or 'mountable' strings returned by "guestfs_list_filesystems" or "guestfs_inspect_get_mountpoints". The rules are the same as for mount(2): A filesystem must first be mounted on / before others can be mounted. Other filesystems can only be mounted on directories which already exist. The mounted filesystem is writable, if we have sufficient permissions on the underlying device. Before libguestfs 1.13.16, this call implicitly added the options "sync" and "noatime". The "sync" option greatly slowed writes and caused many problems for users. If your program might need to work with older versions of libguestfs, use "guestfs_mount_options" instead (using an empty string for the first parameter if you don't want any options). This function returns 0 on success or -1 on error. (Added in 0.3) guestfs_mount_9p int guestfs_mount_9p (guestfs_h *g, const char *mounttag, const char *mountpoint, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_MOUNT_9P_OPTIONS, const char *options, Mount the virtio-9p filesystem with the tag "mounttag" on the directory "mountpoint". If required, "trans=virtio" will be automatically added to the options. Any other options required can be passed in the optional "options" parameter. This function returns 0 on success or -1 on error. (Added in 1.11.12) guestfs_mount_9p_va int guestfs_mount_9p_va (guestfs_h *g, const char *mounttag, const char *mountpoint, va_list args); This is the "va_list variant" of "guestfs_mount_9p". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_mount_9p_argv int guestfs_mount_9p_argv (guestfs_h *g, const char *mounttag, const char *mountpoint, const struct guestfs_mount_9p_argv *optargs); This is the "argv variant" of "guestfs_mount_9p". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_mount_local int guestfs_mount_local (guestfs_h *g, const char *localmountpoint, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_MOUNT_LOCAL_READONLY, int readonly, GUESTFS_MOUNT_LOCAL_OPTIONS, const char *options, GUESTFS_MOUNT_LOCAL_CACHETIMEOUT, int cachetimeout, GUESTFS_MOUNT_LOCAL_DEBUGCALLS, int debugcalls, This call exports the libguestfs-accessible filesystem to a local mountpoint (directory) called "localmountpoint". Ordinary reads and writes to files and directories under "localmountpoint" are redirected through libguestfs. If the optional "readonly" flag is set to true, then writes to the filesystem return error "EROFS". "options" is a comma-separated list of mount options. See guestmount(1) for some useful options. "cachetimeout" sets the timeout (in seconds) for cached directory entries. The default is 60 seconds. See guestmount(1) for further information. If "debugcalls" is set to true, then additional debugging information is generated for every FUSE call. When "guestfs_mount_local" returns, the filesystem is ready, but is not processing requests (access to it will block). You have to call "guestfs_mount_local_run" to run the main loop. See "MOUNT LOCAL" for full documentation. This function returns 0 on success or -1 on error. (Added in 1.17.22) guestfs_mount_local_va int guestfs_mount_local_va (guestfs_h *g, const char *localmountpoint, va_list args); This is the "va_list variant" of "guestfs_mount_local". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_mount_local_argv int guestfs_mount_local_argv (guestfs_h *g, const char *localmountpoint, const struct guestfs_mount_local_argv *optargs); This is the "argv variant" of "guestfs_mount_local". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_mount_local_run int guestfs_mount_local_run (guestfs_h *g); Run the main loop which translates kernel calls to libguestfs calls. This should only be called after "guestfs_mount_local" returns successfully. The call will not return until the filesystem is unmounted. Note you must not make concurrent libguestfs calls on the same handle from another thread. You may call this from a different thread than the one which called "guestfs_mount_local", subject to the usual rules for threads and libguestfs (see "MULTIPLE HANDLES AND MULTIPLE THREADS"). See "MOUNT LOCAL" for full documentation. This function returns 0 on success or -1 on error. (Added in 1.17.22) guestfs_mount_loop int guestfs_mount_loop (guestfs_h *g, const char *file, const char *mountpoint); This command lets you mount file (a filesystem image in a file) on a mount point. It is entirely equivalent to the command "mount -o loop file mountpoint". This function returns 0 on success or -1 on error. (Added in 1.0.54) guestfs_mount_options int guestfs_mount_options (guestfs_h *g, const char *options, const char *mountable, const char *mountpoint); This is the same as the "guestfs_mount" command, but it allows you to set the mount options as for the mount(8) -o flag. If the "options" parameter is an empty string, then no options are passed (all options default to whatever the filesystem uses). This function returns 0 on success or -1 on error. (Added in 1.0.10) guestfs_mount_ro int guestfs_mount_ro (guestfs_h *g, const char *mountable, const char *mountpoint); This is the same as the "guestfs_mount" command, but it mounts the filesystem with the read-only (-o ro) flag. This function returns 0 on success or -1 on error. (Added in 1.0.10) guestfs_mount_vfs int guestfs_mount_vfs (guestfs_h *g, const char *options, const char *vfstype, const char *mountable, const char *mountpoint); This is the same as the "guestfs_mount" command, but it allows you to set both the mount options and the vfstype as for the mount(8) -o and -t flags. This function returns 0 on success or -1 on error. (Added in 1.0.10) guestfs_mountable_device char * guestfs_mountable_device (guestfs_h *g, const char *mountable); Returns the device name of a mountable. In quite a lot of cases, the mountable is the device name. However this doesn't apply for btrfs subvolumes, where the mountable is a combination of both the device name and the subvolume path (see also "guestfs_mountable_subvolume" to extract the subvolume path of the mountable if any). This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.33.15) guestfs_mountable_subvolume char * guestfs_mountable_subvolume (guestfs_h *g, const char *mountable); Returns the subvolume path of a mountable. Btrfs subvolumes mountables are a combination of both the device name and the subvolume path (see also "guestfs_mountable_device" to extract the device of the mountable). If the mountable does not represent a btrfs subvolume, then this function fails and the "errno" is set to "EINVAL". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.33.15) guestfs_mountpoints char ** guestfs_mountpoints (guestfs_h *g); This call is similar to "guestfs_mounts". That call returns a list of devices. This one returns a hash table (map) of device name to directory where the device is mounted. This function returns a NULL-terminated array of strings, or NULL if there was an error. The array of strings will always have length "2n+1", where "n" keys and values alternate, followed by the trailing NULL entry. The caller must free the strings and the array after use. (Added in 1.0.62) guestfs_mounts char ** guestfs_mounts (guestfs_h *g); This returns the list of currently mounted filesystems. It returns the list of devices (eg. /dev/sda1, /dev/VG/LV). Some internal mounts are not shown. See also: "guestfs_mountpoints" This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 0.8) guestfs_mv int guestfs_mv (guestfs_h *g, const char *src, const char *dest); This moves a file from "src" to "dest" where "dest" is either a destination filename or destination directory. See also: "guestfs_rename". This function returns 0 on success or -1 on error. (Added in 1.0.18) guestfs_nr_devices int guestfs_nr_devices (guestfs_h *g); This returns the number of whole block devices that were added. This is the same as the number of devices that would be returned if you called "guestfs_list_devices". To find out the maximum number of devices that could be added, call "guestfs_max_disks". On error this function returns -1. (Added in 1.19.15) guestfs_ntfs_3g_probe int guestfs_ntfs_3g_probe (guestfs_h *g, int rw, const char *device); This command runs the ntfs-3g.probe(8) command which probes an NTFS "device" for mountability. (Not all NTFS volumes can be mounted read-write, and some cannot be mounted at all). "rw" is a boolean flag. Set it to true if you want to test if the volume can be mounted read-write. Set it to false if you want to test if the volume can be mounted read-only. The return value is an integer which 0 if the operation would succeed, or some non-zero value documented in the ntfs-3g.probe(8) manual page. On error this function returns -1. This function depends on the feature "ntfs3g". See also "guestfs_feature_available". (Added in 1.0.43) guestfs_ntfscat_i int guestfs_ntfscat_i (guestfs_h *g, const char *device, int64_t inode, const char *filename); Download a file given its inode from a NTFS filesystem and save it as filename on the local machine. This allows to download some otherwise inaccessible files such as the ones within the $Extend folder. The filesystem from which to extract the file must be unmounted, otherwise the call will fail. This function returns 0 on success or -1 on error. This long-running command can generate progress notification messages so that the caller can display a progress bar or indicator. To receive these messages, the caller must register a progress event callback. See "GUESTFS_EVENT_PROGRESS". (Added in 1.33.14) guestfs_ntfsclone_in int guestfs_ntfsclone_in (guestfs_h *g, const char *backupfile, const char *device); Restore the "backupfile" (from a previous call to "guestfs_ntfsclone_out") to "device", overwriting any existing contents of this device. This function returns 0 on success or -1 on error. This function depends on the feature "ntfs3g". See also "guestfs_feature_available". (Added in 1.17.9) guestfs_ntfsclone_out int guestfs_ntfsclone_out (guestfs_h *g, const char *device, const char *backupfile, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_NTFSCLONE_OUT_METADATAONLY, int metadataonly, GUESTFS_NTFSCLONE_OUT_RESCUE, int rescue, GUESTFS_NTFSCLONE_OUT_IGNOREFSCHECK, int ignorefscheck, GUESTFS_NTFSCLONE_OUT_PRESERVETIMESTAMPS, int preservetimestamps, GUESTFS_NTFSCLONE_OUT_FORCE, int force, Stream the NTFS filesystem "device" to the local file "backupfile". The format used for the backup file is a special format used by the ntfsclone(8) tool. If the optional "metadataonly" flag is true, then only the metadata is saved, losing all the user data (this is useful for diagnosing some filesystem problems). The optional "rescue", "ignorefscheck", "preservetimestamps" and "force" flags have precise meanings detailed in the ntfsclone(8) man page. Use "guestfs_ntfsclone_in" to restore the file back to a libguestfs device. This function returns 0 on success or -1 on error. This function depends on the feature "ntfs3g". See also "guestfs_feature_available". (Added in 1.17.9) guestfs_ntfsclone_out_va int guestfs_ntfsclone_out_va (guestfs_h *g, const char *device, const char *backupfile, va_list args); This is the "va_list variant" of "guestfs_ntfsclone_out". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_ntfsclone_out_argv int guestfs_ntfsclone_out_argv (guestfs_h *g, const char *device, const char *backupfile, const struct guestfs_ntfsclone_out_argv *optargs); This is the "argv variant" of "guestfs_ntfsclone_out". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_ntfsfix int guestfs_ntfsfix (guestfs_h *g, const char *device, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_NTFSFIX_CLEARBADSECTORS, int clearbadsectors, This command repairs some fundamental NTFS inconsistencies, resets the NTFS journal file, and schedules an NTFS consistency check for the first boot into Windows. This is not an equivalent of Windows "chkdsk". It does not scan the filesystem for inconsistencies. The optional "clearbadsectors" flag clears the list of bad sectors. This is useful after cloning a disk with bad sectors to a new disk. This function returns 0 on success or -1 on error. This function depends on the feature "ntfs3g". See also "guestfs_feature_available". (Added in 1.17.9) guestfs_ntfsfix_va int guestfs_ntfsfix_va (guestfs_h *g, const char *device, va_list args); This is the "va_list variant" of "guestfs_ntfsfix". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_ntfsfix_argv int guestfs_ntfsfix_argv (guestfs_h *g, const char *device, const struct guestfs_ntfsfix_argv *optargs); This is the "argv variant" of "guestfs_ntfsfix". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_ntfsresize int guestfs_ntfsresize (guestfs_h *g, const char *device); This function is provided for backwards compatibility with earlier versions of libguestfs. It simply calls "guestfs_ntfsresize_opts" with no optional arguments. (Added in 1.3.2) guestfs_ntfsresize_opts int guestfs_ntfsresize_opts (guestfs_h *g, const char *device, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_NTFSRESIZE_OPTS_SIZE, int64_t size, GUESTFS_NTFSRESIZE_OPTS_FORCE, int force, This command resizes an NTFS filesystem, expanding or shrinking it to the size of the underlying device. The optional parameters are: "size" The new size (in bytes) of the filesystem. If omitted, the filesystem is resized to fit the container (eg. partition). "force" If this option is true, then force the resize of the filesystem even if the filesystem is marked as requiring a consistency check. After the resize operation, the filesystem is always marked as requiring a consistency check (for safety). You have to boot into Windows to perform this check and clear this condition. If you don't set the "force" option then it is not possible to call "guestfs_ntfsresize" multiple times on a single filesystem without booting into Windows between each resize. See also ntfsresize(8). This function returns 0 on success or -1 on error. This function depends on the feature "ntfsprogs". See also "guestfs_feature_available". (Added in 1.3.2) guestfs_ntfsresize_opts_va int guestfs_ntfsresize_opts_va (guestfs_h *g, const char *device, va_list args); This is the "va_list variant" of "guestfs_ntfsresize_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_ntfsresize_opts_argv int guestfs_ntfsresize_opts_argv (guestfs_h *g, const char *device, const struct guestfs_ntfsresize_opts_argv *optargs); This is the "argv variant" of "guestfs_ntfsresize_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_ntfsresize_size int guestfs_ntfsresize_size (guestfs_h *g, const char *device, int64_t size); This function is deprecated. In new code, use the "guestfs_ntfsresize" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This command is the same as "guestfs_ntfsresize" except that it allows you to specify the new size (in bytes) explicitly. This function returns 0 on success or -1 on error. This function depends on the feature "ntfsprogs". See also "guestfs_feature_available". (Added in 1.3.14) guestfs_parse_environment int guestfs_parse_environment (guestfs_h *g); Parse the program's environment and set flags in the handle accordingly. For example if "LIBGUESTFS_DEBUG=1" then the 'verbose' flag is set in the handle. Most programs do not need to call this. It is done implicitly when you call "guestfs_create". See "ENVIRONMENT VARIABLES" for a list of environment variables that can affect libguestfs handles. See also "guestfs_create_flags", and "guestfs_parse_environment_list". This function returns 0 on success or -1 on error. (Added in 1.19.53) guestfs_parse_environment_list int guestfs_parse_environment_list (guestfs_h *g, char *const *environment); Parse the list of strings in the argument "environment" and set flags in the handle accordingly. For example if "LIBGUESTFS_DEBUG=1" is a string in the list, then the 'verbose' flag is set in the handle. This is the same as "guestfs_parse_environment" except that it parses an explicit list of strings instead of the program's environment. This function returns 0 on success or -1 on error. (Added in 1.19.53) guestfs_part_add int guestfs_part_add (guestfs_h *g, const char *device, const char *prlogex, int64_t startsect, int64_t endsect); This command adds a partition to "device". If there is no partition table on the device, call "guestfs_part_init" first. The "prlogex" parameter is the type of partition. Normally you should pass "p" or "primary" here, but MBR partition tables also support "l" (or "logical") and "e" (or "extended") partition types. "startsect" and "endsect" are the start and end of the partition in sectors. "endsect" may be negative, which means it counts backwards from the end of the disk ("-1" is the last sector). Creating a partition which covers the whole disk is not so easy. Use "guestfs_part_disk" to do that. This function returns 0 on success or -1 on error. (Added in 1.0.78) guestfs_part_del int guestfs_part_del (guestfs_h *g, const char *device, int partnum); This command deletes the partition numbered "partnum" on "device". Note that in the case of MBR partitioning, deleting an extended partition also deletes any logical partitions it contains. This function returns 0 on success or -1 on error. (Added in 1.3.2) guestfs_part_disk int guestfs_part_disk (guestfs_h *g, const char *device, const char *parttype); This command is simply a combination of "guestfs_part_init" followed by "guestfs_part_add" to create a single primary partition covering the whole disk. "parttype" is the partition table type, usually "mbr" or "gpt", but other possible values are described in "guestfs_part_init". This function returns 0 on success or -1 on error. (Added in 1.0.78) guestfs_part_expand_gpt int guestfs_part_expand_gpt (guestfs_h *g, const char *device); Move backup GPT data structures to the end of the disk. This is useful in case of in- place image expand since disk space after backup GPT header is not usable. This is equivalent to "sgdisk -e". See also sgdisk(8). This function returns 0 on success or -1 on error. This function depends on the feature "gdisk". See also "guestfs_feature_available". (Added in 1.33.2) guestfs_part_get_bootable int guestfs_part_get_bootable (guestfs_h *g, const char *device, int partnum); This command returns true if the partition "partnum" on "device" has the bootable flag set. See also "guestfs_part_set_bootable". This function returns a C truth value on success or -1 on error. (Added in 1.3.2) guestfs_part_get_disk_guid char * guestfs_part_get_disk_guid (guestfs_h *g, const char *device); Return the disk identifier (GUID) of a GPT-partitioned "device". Behaviour is undefined for other partition types. This function returns a string, or NULL on error. The caller must free the returned string after use. This function depends on the feature "gdisk". See also "guestfs_feature_available". (Added in 1.33.2) guestfs_part_get_gpt_guid char * guestfs_part_get_gpt_guid (guestfs_h *g, const char *device, int partnum); Return the GUID of numbered GPT partition "partnum". This function returns a string, or NULL on error. The caller must free the returned string after use. This function depends on the feature "gdisk". See also "guestfs_feature_available". (Added in 1.29.25) guestfs_part_get_gpt_type char * guestfs_part_get_gpt_type (guestfs_h *g, const char *device, int partnum); Return the type GUID of numbered GPT partition "partnum". For MBR partitions, return an appropriate GUID corresponding to the MBR type. Behaviour is undefined for other partition types. This function returns a string, or NULL on error. The caller must free the returned string after use. This function depends on the feature "gdisk". See also "guestfs_feature_available". (Added in 1.21.1) guestfs_part_get_mbr_id int guestfs_part_get_mbr_id (guestfs_h *g, const char *device, int partnum); Returns the MBR type byte (also known as the ID byte) from the numbered partition "partnum". Note that only MBR (old DOS-style) partitions have type bytes. You will get undefined results for other partition table types (see "guestfs_part_get_parttype"). On error this function returns -1. (Added in 1.3.2) guestfs_part_get_mbr_part_type char * guestfs_part_get_mbr_part_type (guestfs_h *g, const char *device, int partnum); This returns the partition type of an MBR partition numbered "partnum" on device "device". It returns "primary", "logical", or "extended". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.29.32) guestfs_part_get_name char * guestfs_part_get_name (guestfs_h *g, const char *device, int partnum); This gets the partition name on partition numbered "partnum" on device "device". Note that partitions are numbered from 1. The partition name can only be read on certain types of partition table. This works on "gpt" but not on "mbr" partitions. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.25.33) guestfs_part_get_parttype char * guestfs_part_get_parttype (guestfs_h *g, const char *device); This command examines the partition table on "device" and returns the partition table type (format) being used. Common return values include: "msdos" (a DOS/Windows style MBR partition table), "gpt" (a GPT/EFI-style partition table). Other values are possible, although unusual. See "guestfs_part_init" for a full list. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.0.78) guestfs_part_init int guestfs_part_init (guestfs_h *g, const char *device, const char *parttype); This creates an empty partition table on "device" of one of the partition types listed below. Usually "parttype" should be either "msdos" or "gpt" (for large disks). Initially there are no partitions. Following this, you should call "guestfs_part_add" for each partition required. Possible values for "parttype" are: efi gpt Intel EFI / GPT partition table. This is recommended for >= 2 TB partitions that will be accessed from Linux and Intel- based Mac OS X. It also has limited backwards compatibility with the "mbr" format. mbr msdos The standard PC "Master Boot Record" (MBR) format used by MS-DOS and Windows. This partition type will only work for device sizes up to 2 TB. For large disks we recommend using "gpt". Other partition table types that may work but are not supported include: aix AIX disk labels. amiga rdb Amiga "Rigid Disk Block" format. bsd BSD disk labels. dasd DASD, used on IBM mainframes. dvh MIPS/SGI volumes. mac Old Mac partition format. Modern Macs use "gpt". pc98 NEC PC-98 format, common in Japan apparently. sun Sun disk labels. This function returns 0 on success or -1 on error. (Added in 1.0.78) guestfs_part_list struct guestfs_partition_list * guestfs_part_list (guestfs_h *g, const char *device); This command parses the partition table on "device" and returns the list of partitions found. The fields in the returned structure are: part_num Partition number, counting from 1. part_start Start of the partition in bytes. To get sectors you have to divide by the device's sector size, see "guestfs_blockdev_getss". part_end End of the partition in bytes. part_size Size of the partition in bytes. This function returns a "struct guestfs_partition_list *", or NULL if there was an error. The caller must call "guestfs_free_partition_list" after use. (Added in 1.0.78) guestfs_part_set_bootable int guestfs_part_set_bootable (guestfs_h *g, const char *device, int partnum, int bootable); This sets the bootable flag on partition numbered "partnum" on device "device". Note that partitions are numbered from 1. The bootable flag is used by some operating systems (notably Windows) to determine which partition to boot from. It is by no means universally recognized. This function returns 0 on success or -1 on error. (Added in 1.0.78) guestfs_part_set_disk_guid int guestfs_part_set_disk_guid (guestfs_h *g, const char *device, const char *guid); Set the disk identifier (GUID) of a GPT-partitioned "device" to "guid". Return an error if the partition table of "device" isn't GPT, or if "guid" is not a valid GUID. This function returns 0 on success or -1 on error. This function depends on the feature "gdisk". See also "guestfs_feature_available". (Added in 1.33.2) guestfs_part_set_disk_guid_random int guestfs_part_set_disk_guid_random (guestfs_h *g, const char *device); Set the disk identifier (GUID) of a GPT-partitioned "device" to a randomly generated value. Return an error if the partition table of "device" isn't GPT. This function returns 0 on success or -1 on error. This function depends on the feature "gdisk". See also "guestfs_feature_available". (Added in 1.33.2) guestfs_part_set_gpt_guid int guestfs_part_set_gpt_guid (guestfs_h *g, const char *device, int partnum, const char *guid); Set the GUID of numbered GPT partition "partnum" to "guid". Return an error if the partition table of "device" isn't GPT, or if "guid" is not a valid GUID. This function returns 0 on success or -1 on error. This function depends on the feature "gdisk". See also "guestfs_feature_available". (Added in 1.29.25) guestfs_part_set_gpt_type int guestfs_part_set_gpt_type (guestfs_h *g, const char *device, int partnum, const char *guid); Set the type GUID of numbered GPT partition "partnum" to "guid". Return an error if the partition table of "device" isn't GPT, or if "guid" is not a valid GUID. See http://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_type_GUIDs for a useful list of type GUIDs. This function returns 0 on success or -1 on error. This function depends on the feature "gdisk". See also "guestfs_feature_available". (Added in 1.21.1) guestfs_part_set_mbr_id int guestfs_part_set_mbr_id (guestfs_h *g, const char *device, int partnum, int idbyte); Sets the MBR type byte (also known as the ID byte) of the numbered partition "partnum" to "idbyte". Note that the type bytes quoted in most documentation are in fact hexadecimal numbers, but usually documented without any leading "0x" which might be confusing. Note that only MBR (old DOS-style) partitions have type bytes. You will get undefined results for other partition table types (see "guestfs_part_get_parttype"). This function returns 0 on success or -1 on error. (Added in 1.3.2) guestfs_part_set_name int guestfs_part_set_name (guestfs_h *g, const char *device, int partnum, const char *name); This sets the partition name on partition numbered "partnum" on device "device". Note that partitions are numbered from 1. The partition name can only be set on certain types of partition table. This works on "gpt" but not on "mbr" partitions. This function returns 0 on success or -1 on error. (Added in 1.0.78) guestfs_part_to_dev char * guestfs_part_to_dev (guestfs_h *g, const char *partition); This function takes a partition name (eg. "/dev/sdb1") and removes the partition number, returning the device name (eg. "/dev/sdb"). The named partition must exist, for example as a string returned from "guestfs_list_partitions". See also "guestfs_part_to_partnum", "guestfs_device_index". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.5.15) guestfs_part_to_partnum int guestfs_part_to_partnum (guestfs_h *g, const char *partition); This function takes a partition name (eg. "/dev/sdb1") and returns the partition number (eg. 1). The named partition must exist, for example as a string returned from "guestfs_list_partitions". See also "guestfs_part_to_dev". On error this function returns -1. (Added in 1.13.25) guestfs_ping_daemon int guestfs_ping_daemon (guestfs_h *g); This is a test probe into the guestfs daemon running inside the libguestfs appliance. Calling this function checks that the daemon responds to the ping message, without affecting the daemon or attached block device(s) in any other way. This function returns 0 on success or -1 on error. (Added in 1.0.18) guestfs_pread char * guestfs_pread (guestfs_h *g, const char *path, int count, int64_t offset, size_t *size_r); This command lets you read part of a file. It reads "count" bytes of the file, starting at "offset", from file "path". This may read fewer bytes than requested. For further details see the pread(2) system call. See also "guestfs_pwrite", "guestfs_pread_device". This function returns a buffer, or NULL on error. The size of the returned buffer is written to *size_r. The caller must free the returned buffer after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.0.77) guestfs_pread_device char * guestfs_pread_device (guestfs_h *g, const char *device, int count, int64_t offset, size_t *size_r); This command lets you read part of a block device. It reads "count" bytes of "device", starting at "offset". This may read fewer bytes than requested. For further details see the pread(2) system call. See also "guestfs_pread". This function returns a buffer, or NULL on error. The size of the returned buffer is written to *size_r. The caller must free the returned buffer after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.5.21) guestfs_pvchange_uuid int guestfs_pvchange_uuid (guestfs_h *g, const char *device); Generate a new random UUID for the physical volume "device". This function returns 0 on success or -1 on error. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 1.19.26) guestfs_pvchange_uuid_all int guestfs_pvchange_uuid_all (guestfs_h *g); Generate new random UUIDs for all physical volumes. This function returns 0 on success or -1 on error. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 1.19.26) guestfs_pvcreate int guestfs_pvcreate (guestfs_h *g, const char *device); This creates an LVM physical volume on the named "device", where "device" should usually be a partition name such as /dev/sda1. This function returns 0 on success or -1 on error. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 0.8) guestfs_pvremove int guestfs_pvremove (guestfs_h *g, const char *device); This wipes a physical volume "device" so that LVM will no longer recognise it. The implementation uses the "pvremove" command which refuses to wipe physical volumes that contain any volume groups, so you have to remove those first. This function returns 0 on success or -1 on error. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 1.0.13) guestfs_pvresize int guestfs_pvresize (guestfs_h *g, const char *device); This resizes (expands or shrinks) an existing LVM physical volume to match the new size of the underlying device. This function returns 0 on success or -1 on error. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 1.0.26) guestfs_pvresize_size int guestfs_pvresize_size (guestfs_h *g, const char *device, int64_t size); This command is the same as "guestfs_pvresize" except that it allows you to specify the new size (in bytes) explicitly. This function returns 0 on success or -1 on error. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 1.3.14) guestfs_pvs char ** guestfs_pvs (guestfs_h *g); List all the physical volumes detected. This is the equivalent of the pvs(8) command. This returns a list of just the device names that contain PVs (eg. /dev/sda2). See also "guestfs_pvs_full". This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 0.4) guestfs_pvs_full struct guestfs_lvm_pv_list * guestfs_pvs_full (guestfs_h *g); List all the physical volumes detected. This is the equivalent of the pvs(8) command. The "full" version includes all fields. This function returns a "struct guestfs_lvm_pv_list *", or NULL if there was an error. The caller must call "guestfs_free_lvm_pv_list" after use. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 0.4) guestfs_pvuuid char * guestfs_pvuuid (guestfs_h *g, const char *device); This command returns the UUID of the LVM PV "device". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.0.87) guestfs_pwrite int guestfs_pwrite (guestfs_h *g, const char *path, const char *content, size_t content_size, int64_t offset); This command writes to part of a file. It writes the data buffer "content" to the file "path" starting at offset "offset". This command implements the pwrite(2) system call, and like that system call it may not write the full data requested. The return value is the number of bytes that were actually written to the file. This could even be 0, although short writes are unlikely for regular files in ordinary circumstances. See also "guestfs_pread", "guestfs_pwrite_device". On error this function returns -1. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.3.14) guestfs_pwrite_device int guestfs_pwrite_device (guestfs_h *g, const char *device, const char *content, size_t content_size, int64_t offset); This command writes to part of a device. It writes the data buffer "content" to "device" starting at offset "offset". This command implements the pwrite(2) system call, and like that system call it may not write the full data requested (although short writes to disk devices and partitions are probably impossible with standard Linux kernels). See also "guestfs_pwrite". On error this function returns -1. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.5.20) guestfs_read_file char * guestfs_read_file (guestfs_h *g, const char *path, size_t *size_r); This calls returns the contents of the file "path" as a buffer. Unlike "guestfs_cat", this function can correctly handle files that contain embedded ASCII NUL characters. This function returns a buffer, or NULL on error. The size of the returned buffer is written to *size_r. The caller must free the returned buffer after use. (Added in 1.0.63) guestfs_read_lines char ** guestfs_read_lines (guestfs_h *g, const char *path); Return the contents of the file named "path". The file contents are returned as a list of lines. Trailing "LF" and "CRLF" character sequences are not returned. Note that this function cannot correctly handle binary files (specifically, files containing "\0" character which is treated as end of string). For those you need to use the "guestfs_read_file" function and split the buffer into lines yourself. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 0.7) guestfs_readdir struct guestfs_dirent_list * guestfs_readdir (guestfs_h *g, const char *dir); This returns the list of directory entries in directory "dir". All entries in the directory are returned, including "." and "..". The entries are not sorted, but returned in the same order as the underlying filesystem. Also this call returns basic file type information about each file. The "ftyp" field will contain one of the following characters: 'b' Block special 'c' Char special 'd' Directory 'f' FIFO (named pipe) 'l' Symbolic link 'r' Regular file 's' Socket 'u' Unknown file type '?' The readdir(3) call returned a "d_type" field with an unexpected value This function is primarily intended for use by programs. To get a simple list of names, use "guestfs_ls". To get a printable directory for human consumption, use "guestfs_ll". This function returns a "struct guestfs_dirent_list *", or NULL if there was an error. The caller must call "guestfs_free_dirent_list" after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.0.55) guestfs_readlink char * guestfs_readlink (guestfs_h *g, const char *path); This command reads the target of a symbolic link. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.0.66) guestfs_readlinklist char ** guestfs_readlinklist (guestfs_h *g, const char *path, char *const *names); This call allows you to do a "readlink" operation on multiple files, where all files are in the directory "path". "names" is the list of files from this directory. On return you get a list of strings, with a one-to-one correspondence to the "names" list. Each string is the value of the symbolic link. If the readlink(2) operation fails on any name, then the corresponding result string is the empty string "". However the whole operation is completed even if there were readlink(2) errors, and so you can call this function with names where you don't know if they are symbolic links already (albeit slightly less efficient). This call is intended for programs that want to efficiently list a directory contents without making many round-trips. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 1.0.77) guestfs_realpath char * guestfs_realpath (guestfs_h *g, const char *path); Return the canonicalized absolute pathname of "path". The returned path has no ".", ".." or symbolic link path elements. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.0.66) guestfs_remount int guestfs_remount (guestfs_h *g, const char *mountpoint, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_REMOUNT_RW, int rw, This call allows you to change the "rw" (readonly/read-write) flag on an already mounted filesystem at "mountpoint", converting a readonly filesystem to be read-write, or vice- versa. Note that at the moment you must supply the "optional" "rw" parameter. In future we may allow other flags to be adjusted. This function returns 0 on success or -1 on error. (Added in 1.23.2) guestfs_remount_va int guestfs_remount_va (guestfs_h *g, const char *mountpoint, va_list args); This is the "va_list variant" of "guestfs_remount". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_remount_argv int guestfs_remount_argv (guestfs_h *g, const char *mountpoint, const struct guestfs_remount_argv *optargs); This is the "argv variant" of "guestfs_remount". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_remove_drive int guestfs_remove_drive (guestfs_h *g, const char *label); This function is conceptually the opposite of "guestfs_add_drive_opts". It removes the drive that was previously added with label "label". Note that in order to remove drives, you have to add them with labels (see the optional "label" argument to "guestfs_add_drive_opts"). If you didn't use a label, then they cannot be removed. You can call this function before or after launching the handle. If called after launch, if the backend supports it, we try to hot unplug the drive: see "HOTPLUGGING". The disk must not be in use (eg. mounted) when you do this. We try to detect if the disk is in use and stop you from doing this. This function returns 0 on success or -1 on error. (Added in 1.19.49) guestfs_removexattr int guestfs_removexattr (guestfs_h *g, const char *xattr, const char *path); This call removes the extended attribute named "xattr" of the file "path". See also: "guestfs_lremovexattr", attr(5). This function returns 0 on success or -1 on error. This function depends on the feature "linuxxattrs". See also "guestfs_feature_available". (Added in 1.0.59) guestfs_rename int guestfs_rename (guestfs_h *g, const char *oldpath, const char *newpath); Rename a file to a new place on the same filesystem. This is the same as the Linux rename(2) system call. In most cases you are better to use "guestfs_mv" instead. This function returns 0 on success or -1 on error. (Added in 1.21.5) guestfs_resize2fs int guestfs_resize2fs (guestfs_h *g, const char *device); This resizes an ext2, ext3 or ext4 filesystem to match the size of the underlying device. See also "RESIZE2FS ERRORS". This function returns 0 on success or -1 on error. (Added in 1.0.27) guestfs_resize2fs_M int guestfs_resize2fs_M (guestfs_h *g, const char *device); This command is the same as "guestfs_resize2fs", but the filesystem is resized to its minimum size. This works like the -M option to the "resize2fs" command. To get the resulting size of the filesystem you should call "guestfs_tune2fs_l" and read the "Block size" and "Block count" values. These two numbers, multiplied together, give the resulting size of the minimal filesystem in bytes. See also "RESIZE2FS ERRORS". This function returns 0 on success or -1 on error. (Added in 1.9.4) guestfs_resize2fs_size int guestfs_resize2fs_size (guestfs_h *g, const char *device, int64_t size); This command is the same as "guestfs_resize2fs" except that it allows you to specify the new size (in bytes) explicitly. See also "RESIZE2FS ERRORS". This function returns 0 on success or -1 on error. (Added in 1.3.14) guestfs_rm int guestfs_rm (guestfs_h *g, const char *path); Remove the single file "path". This function returns 0 on success or -1 on error. (Added in 0.8) guestfs_rm_f int guestfs_rm_f (guestfs_h *g, const char *path); Remove the file "path". If the file doesn't exist, that error is ignored. (Other errors, eg. I/O errors or bad paths, are not ignored) This call cannot remove directories. Use "guestfs_rmdir" to remove an empty directory, or "guestfs_rm_rf" to remove directories recursively. This function returns 0 on success or -1 on error. (Added in 1.19.42) guestfs_rm_rf int guestfs_rm_rf (guestfs_h *g, const char *path); Remove the file or directory "path", recursively removing the contents if its a directory. This is like the "rm -rf" shell command. This function returns 0 on success or -1 on error. (Added in 0.8) guestfs_rmdir int guestfs_rmdir (guestfs_h *g, const char *path); Remove the single directory "path". This function returns 0 on success or -1 on error. (Added in 0.8) guestfs_rmmountpoint int guestfs_rmmountpoint (guestfs_h *g, const char *exemptpath); This calls removes a mountpoint that was previously created with "guestfs_mkmountpoint". See "guestfs_mkmountpoint" for full details. This function returns 0 on success or -1 on error. (Added in 1.0.62) guestfs_rsync int guestfs_rsync (guestfs_h *g, const char *src, const char *dest, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_RSYNC_ARCHIVE, int archive, GUESTFS_RSYNC_DELETEDEST, int deletedest, This call may be used to copy or synchronize two directories under the same libguestfs handle. This uses the rsync(1) program which uses a fast algorithm that avoids copying files unnecessarily. "src" and "dest" are the source and destination directories. Files are copied from "src" to "dest". The optional arguments are: "archive" Turns on archive mode. This is the same as passing the --archive flag to "rsync". "deletedest" Delete files at the destination that do not exist at the source. This function returns 0 on success or -1 on error. This function depends on the feature "rsync". See also "guestfs_feature_available". (Added in 1.19.29) guestfs_rsync_va int guestfs_rsync_va (guestfs_h *g, const char *src, const char *dest, va_list args); This is the "va_list variant" of "guestfs_rsync". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_rsync_argv int guestfs_rsync_argv (guestfs_h *g, const char *src, const char *dest, const struct guestfs_rsync_argv *optargs); This is the "argv variant" of "guestfs_rsync". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_rsync_in int guestfs_rsync_in (guestfs_h *g, const char *remote, const char *dest, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_RSYNC_IN_ARCHIVE, int archive, GUESTFS_RSYNC_IN_DELETEDEST, int deletedest, This call may be used to copy or synchronize the filesystem on the host or on a remote computer with the filesystem within libguestfs. This uses the rsync(1) program which uses a fast algorithm that avoids copying files unnecessarily. This call only works if the network is enabled. See "guestfs_set_network" or the --network option to various tools like guestfish(1). Files are copied from the remote server and directory specified by "remote" to the destination directory "dest". The format of the remote server string is defined by rsync(1). Note that there is no way to supply a password or passphrase so the target must be set up not to require one. The optional arguments are the same as those of "guestfs_rsync". This function returns 0 on success or -1 on error. This function depends on the feature "rsync". See also "guestfs_feature_available". (Added in 1.19.29) guestfs_rsync_in_va int guestfs_rsync_in_va (guestfs_h *g, const char *remote, const char *dest, va_list args); This is the "va_list variant" of "guestfs_rsync_in". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_rsync_in_argv int guestfs_rsync_in_argv (guestfs_h *g, const char *remote, const char *dest, const struct guestfs_rsync_in_argv *optargs); This is the "argv variant" of "guestfs_rsync_in". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_rsync_out int guestfs_rsync_out (guestfs_h *g, const char *src, const char *remote, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_RSYNC_OUT_ARCHIVE, int archive, GUESTFS_RSYNC_OUT_DELETEDEST, int deletedest, This call may be used to copy or synchronize the filesystem within libguestfs with a filesystem on the host or on a remote computer. This uses the rsync(1) program which uses a fast algorithm that avoids copying files unnecessarily. This call only works if the network is enabled. See "guestfs_set_network" or the --network option to various tools like guestfish(1). Files are copied from the source directory "src" to the remote server and directory specified by "remote". The format of the remote server string is defined by rsync(1). Note that there is no way to supply a password or passphrase so the target must be set up not to require one. The optional arguments are the same as those of "guestfs_rsync". Globbing does not happen on the "src" parameter. In programs which use the API directly you have to expand wildcards yourself (see "guestfs_glob_expand"). In guestfish you can use the "glob" command (see "glob" in guestfish(1)), for example: ><fs> glob rsync-out /* rsync://remote/ This function returns 0 on success or -1 on error. This function depends on the feature "rsync". See also "guestfs_feature_available". (Added in 1.19.29) guestfs_rsync_out_va int guestfs_rsync_out_va (guestfs_h *g, const char *src, const char *remote, va_list args); This is the "va_list variant" of "guestfs_rsync_out". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_rsync_out_argv int guestfs_rsync_out_argv (guestfs_h *g, const char *src, const char *remote, const struct guestfs_rsync_out_argv *optargs); This is the "argv variant" of "guestfs_rsync_out". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_scrub_device int guestfs_scrub_device (guestfs_h *g, const char *device); This command writes patterns over "device" to make data retrieval more difficult. It is an interface to the scrub(1) program. See that manual page for more details. This function returns 0 on success or -1 on error. This function depends on the feature "scrub". See also "guestfs_feature_available". (Added in 1.0.52) guestfs_scrub_file int guestfs_scrub_file (guestfs_h *g, const char *file); This command writes patterns over a file to make data retrieval more difficult. The file is removed after scrubbing. It is an interface to the scrub(1) program. See that manual page for more details. This function returns 0 on success or -1 on error. This function depends on the feature "scrub". See also "guestfs_feature_available". (Added in 1.0.52) guestfs_scrub_freespace int guestfs_scrub_freespace (guestfs_h *g, const char *dir); This command creates the directory "dir" and then fills it with files until the filesystem is full, and scrubs the files as for "guestfs_scrub_file", and deletes them. The intention is to scrub any free space on the partition containing "dir". It is an interface to the scrub(1) program. See that manual page for more details. This function returns 0 on success or -1 on error. This function depends on the feature "scrub". See also "guestfs_feature_available". (Added in 1.0.52) guestfs_selinux_relabel int guestfs_selinux_relabel (guestfs_h *g, const char *specfile, const char *path, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_SELINUX_RELABEL_FORCE, int force, SELinux relabel parts of the filesystem. The "specfile" parameter controls the policy spec file used. You have to parse "/etc/selinux/config" to find the correct SELinux policy and then pass the spec file, usually: "/etc/selinux/" + selinuxtype + "/contexts/files/file_contexts". The required "path" parameter is the top level directory where relabelling starts. Normally you should pass "path" as "/" to relabel the whole guest filesystem. The optional "force" boolean controls whether the context is reset for customizable files, and also whether the user, role and range parts of the file context is changed. This function returns 0 on success or -1 on error. This function depends on the feature "selinuxrelabel". See also "guestfs_feature_available". (Added in 1.33.43) guestfs_selinux_relabel_va int guestfs_selinux_relabel_va (guestfs_h *g, const char *specfile, const char *path, va_list args); This is the "va_list variant" of "guestfs_selinux_relabel". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_selinux_relabel_argv int guestfs_selinux_relabel_argv (guestfs_h *g, const char *specfile, const char *path, const struct guestfs_selinux_relabel_argv *optargs); This is the "argv variant" of "guestfs_selinux_relabel". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_set_append int guestfs_set_append (guestfs_h *g, const char *append); This function is used to add additional options to the libguestfs appliance kernel command line. The default is "NULL" unless overridden by setting "LIBGUESTFS_APPEND" environment variable. Setting "append" to "NULL" means no additional options are passed (libguestfs always adds a few of its own). This function returns 0 on success or -1 on error. (Added in 1.0.26) guestfs_set_attach_method int guestfs_set_attach_method (guestfs_h *g, const char *backend); This function is deprecated. In new code, use the "guestfs_set_backend" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. Set the method that libguestfs uses to connect to the backend guestfsd daemon. See "BACKEND". This function returns 0 on success or -1 on error. (Added in 1.9.8) guestfs_set_autosync int guestfs_set_autosync (guestfs_h *g, int autosync); If "autosync" is true, this enables autosync. Libguestfs will make a best effort attempt to make filesystems consistent and synchronized when the handle is closed (also if the program exits without closing handles). This is enabled by default (since libguestfs 1.5.24, previously it was disabled by default). This function returns 0 on success or -1 on error. (Added in 0.3) guestfs_set_backend int guestfs_set_backend (guestfs_h *g, const char *backend); Set the method that libguestfs uses to connect to the backend guestfsd daemon. This handle property was previously called the "attach method". See "BACKEND". This function returns 0 on success or -1 on error. (Added in 1.21.26) guestfs_set_backend_setting int guestfs_set_backend_setting (guestfs_h *g, const char *name, const char *val); Append "name=value" to the backend settings string list. However if a string already exists matching "name" or beginning with "name=", then that setting is replaced. See "BACKEND", "BACKEND SETTINGS". This function returns 0 on success or -1 on error. (Added in 1.27.2) guestfs_set_backend_settings int guestfs_set_backend_settings (guestfs_h *g, char *const *settings); Set a list of zero or more settings which are passed through to the current backend. Each setting is a string which is interpreted in a backend-specific way, or ignored if not understood by the backend. The default value is an empty list, unless the environment variable "LIBGUESTFS_BACKEND_SETTINGS" was set when the handle was created. This environment variable contains a colon-separated list of settings. This call replaces all backend settings. If you want to replace a single backend setting, see "guestfs_set_backend_setting". If you want to clear a single backend setting, see "guestfs_clear_backend_setting". See "BACKEND", "BACKEND SETTINGS". This function returns 0 on success or -1 on error. (Added in 1.25.24) guestfs_set_cachedir int guestfs_set_cachedir (guestfs_h *g, const char *cachedir); Set the directory used by the handle to store the appliance cache, when using a supermin appliance. The appliance is cached and shared between all handles which have the same effective user ID. The environment variables "LIBGUESTFS_CACHEDIR" and "TMPDIR" control the default value: If "LIBGUESTFS_CACHEDIR" is set, then that is the default. Else if "TMPDIR" is set, then that is the default. Else /var/tmp is the default. This function returns 0 on success or -1 on error. (Added in 1.19.58) guestfs_set_direct int guestfs_set_direct (guestfs_h *g, int direct); If the direct appliance mode flag is enabled, then stdin and stdout are passed directly through to the appliance once it is launched. One consequence of this is that log messages aren't caught by the library and handled by "guestfs_set_log_message_callback", but go straight to stdout. You probably don't want to use this unless you know what you are doing. The default is disabled. This function returns 0 on success or -1 on error. (Added in 1.0.72) guestfs_set_e2attrs int guestfs_set_e2attrs (guestfs_h *g, const char *file, const char *attrs, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_SET_E2ATTRS_CLEAR, int clear, This sets or clears the file attributes "attrs" associated with the inode file. "attrs" is a string of characters representing file attributes. See "guestfs_get_e2attrs" for a list of possible attributes. Not all attributes can be changed. If optional boolean "clear" is not present or false, then the "attrs" listed are set in the inode. If "clear" is true, then the "attrs" listed are cleared in the inode. In both cases, other attributes not present in the "attrs" string are left unchanged. These attributes are only present when the file is located on an ext2/3/4 filesystem. Using this call on other filesystem types will result in an error. This function returns 0 on success or -1 on error. (Added in 1.17.31) guestfs_set_e2attrs_va int guestfs_set_e2attrs_va (guestfs_h *g, const char *file, const char *attrs, va_list args); This is the "va_list variant" of "guestfs_set_e2attrs". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_set_e2attrs_argv int guestfs_set_e2attrs_argv (guestfs_h *g, const char *file, const char *attrs, const struct guestfs_set_e2attrs_argv *optargs); This is the "argv variant" of "guestfs_set_e2attrs". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_set_e2generation int guestfs_set_e2generation (guestfs_h *g, const char *file, int64_t generation); This sets the ext2 file generation of a file. See "guestfs_get_e2generation". This function returns 0 on success or -1 on error. (Added in 1.17.31) guestfs_set_e2label int guestfs_set_e2label (guestfs_h *g, const char *device, const char *label); This function is deprecated. In new code, use the "guestfs_set_label" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This sets the ext2/3/4 filesystem label of the filesystem on "device" to "label". Filesystem labels are limited to 16 characters. You can use either "guestfs_tune2fs_l" or "guestfs_get_e2label" to return the existing label on a filesystem. This function returns 0 on success or -1 on error. (Added in 1.0.15) guestfs_set_e2uuid int guestfs_set_e2uuid (guestfs_h *g, const char *device, const char *uuid); This function is deprecated. In new code, use the "guestfs_set_uuid" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This sets the ext2/3/4 filesystem UUID of the filesystem on "device" to "uuid". The format of the UUID and alternatives such as "clear", "random" and "time" are described in the tune2fs(8) manpage. You can use "guestfs_vfs_uuid" to return the existing UUID of a filesystem. This function returns 0 on success or -1 on error. (Added in 1.0.15) guestfs_set_hv int guestfs_set_hv (guestfs_h *g, const char *hv); Set the hypervisor binary that we will use. The hypervisor depends on the backend, but is usually the location of the qemu/KVM hypervisor. For the uml backend, it is the location of the "linux" or "vmlinux" binary. The default is chosen when the library was compiled by the configure script. You can also override this by setting the "LIBGUESTFS_HV" environment variable. Note that you should call this function as early as possible after creating the handle. This is because some pre-launch operations depend on testing qemu features (by running "qemu -help"). If the qemu binary changes, we don't retest features, and so you might see inconsistent results. Using the environment variable "LIBGUESTFS_HV" is safest of all since that picks the qemu binary at the same time as the handle is created. This function returns 0 on success or -1 on error. (Added in 1.23.17) guestfs_set_identifier int guestfs_set_identifier (guestfs_h *g, const char *identifier); This is an informative string which the caller may optionally set in the handle. It is printed in various places, allowing the current handle to be identified in debugging output. One important place is when tracing is enabled. If the identifier string is not an empty string, then trace messages change from this: libguestfs: trace: get_tmpdir libguestfs: trace: get_tmpdir = "/tmp" to this: libguestfs: trace: ID: get_tmpdir libguestfs: trace: ID: get_tmpdir = "/tmp" where "ID" is the identifier string set by this call. The identifier must only contain alphanumeric ASCII characters, underscore and minus sign. The default is the empty string. See also "guestfs_set_program", "guestfs_set_trace", "guestfs_get_identifier". This function returns 0 on success or -1 on error. (Added in 1.31.14) guestfs_set_label int guestfs_set_label (guestfs_h *g, const char *mountable, const char *label); Set the filesystem label on "mountable" to "label". Only some filesystem types support labels, and libguestfs supports setting labels on only a subset of these. ext2, ext3, ext4 Labels are limited to 16 bytes. NTFS Labels are limited to 128 unicode characters. XFS The label is limited to 12 bytes. The filesystem must not be mounted when trying to set the label. btrfs The label is limited to 255 bytes and some characters are not allowed. Setting the label on a btrfs subvolume will set the label on its parent filesystem. The filesystem must not be mounted when trying to set the label. fat The label is limited to 11 bytes. swap The label is limited to 16 bytes. If there is no support for changing the label for the type of the specified filesystem, set_label will fail and set errno as ENOTSUP. To read the label on a filesystem, call "guestfs_vfs_label". This function returns 0 on success or -1 on error. (Added in 1.17.9) guestfs_set_libvirt_requested_credential int guestfs_set_libvirt_requested_credential (guestfs_h *g, int index, const char *cred, size_t cred_size); After requesting the "index"'th credential from the user, call this function to pass the answer back to libvirt. See "LIBVIRT AUTHENTICATION" for documentation and example code. This function returns 0 on success or -1 on error. (Added in 1.19.52) guestfs_set_libvirt_supported_credentials int guestfs_set_libvirt_supported_credentials (guestfs_h *g, char *const *creds); Call this function before setting an event handler for "GUESTFS_EVENT_LIBVIRT_AUTH", to supply the list of credential types that the program knows how to process. The "creds" list must be a non-empty list of strings. Possible strings are: "username" "authname" "language" "cnonce" "passphrase" "echoprompt" "noechoprompt" "realm" "external" See libvirt documentation for the meaning of these credential types. See "LIBVIRT AUTHENTICATION" for documentation and example code. This function returns 0 on success or -1 on error. (Added in 1.19.52) guestfs_set_memsize int guestfs_set_memsize (guestfs_h *g, int memsize); This sets the memory size in megabytes allocated to the hypervisor. This only has any effect if called before "guestfs_launch". You can also change this by setting the environment variable "LIBGUESTFS_MEMSIZE" before the handle is created. For more information on the architecture of libguestfs, see guestfs(3). This function returns 0 on success or -1 on error. (Added in 1.0.55) guestfs_set_network int guestfs_set_network (guestfs_h *g, int network); If "network" is true, then the network is enabled in the libguestfs appliance. The default is false. This affects whether commands are able to access the network (see "RUNNING COMMANDS"). You must call this before calling "guestfs_launch", otherwise it has no effect. This function returns 0 on success or -1 on error. (Added in 1.5.4) guestfs_set_path int guestfs_set_path (guestfs_h *g, const char *searchpath); Set the path that libguestfs searches for kernel and initrd.img. The default is "$libdir/guestfs" unless overridden by setting "LIBGUESTFS_PATH" environment variable. Setting "path" to "NULL" restores the default path. This function returns 0 on success or -1 on error. (Added in 0.3) guestfs_set_pgroup int guestfs_set_pgroup (guestfs_h *g, int pgroup); If "pgroup" is true, child processes are placed into their own process group. The practical upshot of this is that signals like "SIGINT" (from users pressing "^C") won't be received by the child process. The default for this flag is false, because usually you want "^C" to kill the subprocess. Guestfish sets this flag to true when used interactively, so that "^C" can cancel long- running commands gracefully (see "guestfs_user_cancel"). This function returns 0 on success or -1 on error. (Added in 1.11.18) guestfs_set_program int guestfs_set_program (guestfs_h *g, const char *program); Set the program name. This is an informative string which the main program may optionally set in the handle. When the handle is created, the program name in the handle is set to the basename from "argv[0]". The program name can never be "NULL". This function returns 0 on success or -1 on error. (Added in 1.21.29) guestfs_set_qemu int guestfs_set_qemu (guestfs_h *g, const char *hv); This function is deprecated. In new code, use the "guestfs_set_hv" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. Set the hypervisor binary (usually qemu) that we will use. The default is chosen when the library was compiled by the configure script. You can also override this by setting the "LIBGUESTFS_HV" environment variable. Setting "hv" to "NULL" restores the default qemu binary. Note that you should call this function as early as possible after creating the handle. This is because some pre-launch operations depend on testing qemu features (by running "qemu -help"). If the qemu binary changes, we don't retest features, and so you might see inconsistent results. Using the environment variable "LIBGUESTFS_HV" is safest of all since that picks the qemu binary at the same time as the handle is created. This function returns 0 on success or -1 on error. (Added in 1.0.6) guestfs_set_recovery_proc int guestfs_set_recovery_proc (guestfs_h *g, int recoveryproc); If this is called with the parameter "false" then "guestfs_launch" does not create a recovery process. The purpose of the recovery process is to stop runaway hypervisor processes in the case where the main program aborts abruptly. This only has any effect if called before "guestfs_launch", and the default is true. About the only time when you would want to disable this is if the main process will fork itself into the background ("daemonize" itself). In this case the recovery process thinks that the main program has disappeared and so kills the hypervisor, which is not very helpful. This function returns 0 on success or -1 on error. (Added in 1.0.77) guestfs_set_selinux int guestfs_set_selinux (guestfs_h *g, int selinux); This function is deprecated. In new code, use the "guestfs_selinux_relabel" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This sets the selinux flag that is passed to the appliance at boot time. The default is "selinux=0" (disabled). Note that if SELinux is enabled, it is always in Permissive mode ("enforcing=0"). For more information on the architecture of libguestfs, see guestfs(3). This function returns 0 on success or -1 on error. (Added in 1.0.67) guestfs_set_smp int guestfs_set_smp (guestfs_h *g, int smp); Change the number of virtual CPUs assigned to the appliance. The default is 1. Increasing this may improve performance, though often it has no effect. This function must be called before "guestfs_launch". This function returns 0 on success or -1 on error. (Added in 1.13.15) guestfs_set_tmpdir int guestfs_set_tmpdir (guestfs_h *g, const char *tmpdir); Set the directory used by the handle to store temporary files. The environment variables "LIBGUESTFS_TMPDIR" and "TMPDIR" control the default value: If "LIBGUESTFS_TMPDIR" is set, then that is the default. Else if "TMPDIR" is set, then that is the default. Else /tmp is the default. This function returns 0 on success or -1 on error. (Added in 1.19.58) guestfs_set_trace int guestfs_set_trace (guestfs_h *g, int trace); If the command trace flag is set to 1, then libguestfs calls, parameters and return values are traced. If you want to trace C API calls into libguestfs (and other libraries) then possibly a better way is to use the external ltrace(1) command. Command traces are disabled unless the environment variable "LIBGUESTFS_TRACE" is defined and set to 1. Trace messages are normally sent to "stderr", unless you register a callback to send them somewhere else (see "guestfs_set_event_callback"). This function returns 0 on success or -1 on error. (Added in 1.0.69) guestfs_set_uuid int guestfs_set_uuid (guestfs_h *g, const char *device, const char *uuid); Set the filesystem UUID on "device" to "uuid". If this fails and the errno is ENOTSUP, means that there is no support for changing the UUID for the type of the specified filesystem. Only some filesystem types support setting UUIDs. To read the UUID on a filesystem, call "guestfs_vfs_uuid". This function returns 0 on success or -1 on error. (Added in 1.23.10) guestfs_set_uuid_random int guestfs_set_uuid_random (guestfs_h *g, const char *device); Set the filesystem UUID on "device" to a random UUID. If this fails and the errno is ENOTSUP, means that there is no support for changing the UUID for the type of the specified filesystem. Only some filesystem types support setting UUIDs. To read the UUID on a filesystem, call "guestfs_vfs_uuid". This function returns 0 on success or -1 on error. (Added in 1.29.50) guestfs_set_verbose int guestfs_set_verbose (guestfs_h *g, int verbose); If "verbose" is true, this turns on verbose messages. Verbose messages are disabled unless the environment variable "LIBGUESTFS_DEBUG" is defined and set to 1. Verbose messages are normally sent to "stderr", unless you register a callback to send them somewhere else (see "guestfs_set_event_callback"). This function returns 0 on success or -1 on error. (Added in 0.3) guestfs_setcon int guestfs_setcon (guestfs_h *g, const char *context); This function is deprecated. In new code, use the "guestfs_selinux_relabel" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This sets the SELinux security context of the daemon to the string "context". See the documentation about SELINUX in guestfs(3). This function returns 0 on success or -1 on error. This function depends on the feature "selinux". See also "guestfs_feature_available". (Added in 1.0.67) guestfs_setxattr int guestfs_setxattr (guestfs_h *g, const char *xattr, const char *val, int vallen, const char *path); This call sets the extended attribute named "xattr" of the file "path" to the value "val" (of length "vallen"). The value is arbitrary 8 bit data. See also: "guestfs_lsetxattr", attr(5). This function returns 0 on success or -1 on error. This function depends on the feature "linuxxattrs". See also "guestfs_feature_available". (Added in 1.0.59) guestfs_sfdisk int guestfs_sfdisk (guestfs_h *g, const char *device, int cyls, int heads, int sectors, char *const *lines); This function is deprecated. In new code, use the "guestfs_part_add" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This is a direct interface to the sfdisk(8) program for creating partitions on block devices. "device" should be a block device, for example /dev/sda. "cyls", "heads" and "sectors" are the number of cylinders, heads and sectors on the device, which are passed directly to sfdisk as the -C, -H and -S parameters. If you pass 0 for any of these, then the corresponding parameter is omitted. Usually for 'large' disks, you can just pass 0 for these, but for small (floppy-sized) disks, sfdisk (or rather, the kernel) cannot work out the right geometry and you will need to tell it. "lines" is a list of lines that we feed to "sfdisk". For more information refer to the sfdisk(8) manpage. To create a single partition occupying the whole disk, you would pass "lines" as a single element list, when the single element being the string "," (comma). See also: "guestfs_sfdisk_l", "guestfs_sfdisk_N", "guestfs_part_init" This function returns 0 on success or -1 on error. (Added in 0.8) guestfs_sfdiskM int guestfs_sfdiskM (guestfs_h *g, const char *device, char *const *lines); This function is deprecated. In new code, use the "guestfs_part_add" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This is a simplified interface to the "guestfs_sfdisk" command, where partition sizes are specified in megabytes only (rounded to the nearest cylinder) and you don't need to specify the cyls, heads and sectors parameters which were rarely if ever used anyway. See also: "guestfs_sfdisk", the sfdisk(8) manpage and "guestfs_part_disk" This function returns 0 on success or -1 on error. (Added in 1.0.55) guestfs_sfdisk_N int guestfs_sfdisk_N (guestfs_h *g, const char *device, int partnum, int cyls, int heads, int sectors, const char *line); This function is deprecated. In new code, use the "guestfs_part_add" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This runs sfdisk(8) option to modify just the single partition "n" (note: "n" counts from 1). For other parameters, see "guestfs_sfdisk". You should usually pass 0 for the cyls/heads/sectors parameters. See also: "guestfs_part_add" This function returns 0 on success or -1 on error. (Added in 1.0.26) guestfs_sfdisk_disk_geometry char * guestfs_sfdisk_disk_geometry (guestfs_h *g, const char *device); This displays the disk geometry of "device" read from the partition table. Especially in the case where the underlying block device has been resized, this can be different from the kernel's idea of the geometry (see "guestfs_sfdisk_kernel_geometry"). The result is in human-readable format, and not designed to be parsed. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.0.26) guestfs_sfdisk_kernel_geometry char * guestfs_sfdisk_kernel_geometry (guestfs_h *g, const char *device); This displays the kernel's idea of the geometry of "device". The result is in human-readable format, and not designed to be parsed. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.0.26) guestfs_sfdisk_l char * guestfs_sfdisk_l (guestfs_h *g, const char *device); This function is deprecated. In new code, use the "guestfs_part_list" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This displays the partition table on "device", in the human-readable output of the sfdisk(8) command. It is not intended to be parsed. See also: "guestfs_part_list" This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.0.26) guestfs_sh char * guestfs_sh (guestfs_h *g, const char *command); This call runs a command from the guest filesystem via the guest's /bin/sh. This is like "guestfs_command", but passes the command to: /bin/sh -c "command" Depending on the guest's shell, this usually results in wildcards being expanded, shell expressions being interpolated and so on. All the provisos about "guestfs_command" apply to this call. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.0.50) guestfs_sh_lines char ** guestfs_sh_lines (guestfs_h *g, const char *command); This is the same as "guestfs_sh", but splits the result into a list of lines. See also: "guestfs_command_lines" This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 1.0.50) guestfs_shutdown int guestfs_shutdown (guestfs_h *g); This is the opposite of "guestfs_launch". It performs an orderly shutdown of the backend process(es). If the autosync flag is set (which is the default) then the disk image is synchronized. If the subprocess exits with an error then this function will return an error, which should not be ignored (it may indicate that the disk image could not be written out properly). It is safe to call this multiple times. Extra calls are ignored. This call does not close or free up the handle. You still need to call "guestfs_close" afterwards. "guestfs_close" will call this if you don't do it explicitly, but note that any errors are ignored in that case. This function returns 0 on success or -1 on error. (Added in 1.19.16) guestfs_sleep int guestfs_sleep (guestfs_h *g, int secs); Sleep for "secs" seconds. This function returns 0 on success or -1 on error. (Added in 1.0.41) guestfs_stat struct guestfs_stat * guestfs_stat (guestfs_h *g, const char *path); This function is deprecated. In new code, use the "guestfs_statns" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. Returns file information for the given "path". This is the same as the stat(2) system call. This function returns a "struct guestfs_stat *", or NULL if there was an error. The caller must call "guestfs_free_stat" after use. (Added in 1.9.2) guestfs_statns struct guestfs_statns * guestfs_statns (guestfs_h *g, const char *path); Returns file information for the given "path". This is the same as the stat(2) system call. This function returns a "struct guestfs_statns *", or NULL if there was an error. The caller must call "guestfs_free_statns" after use. (Added in 1.27.53) guestfs_statvfs struct guestfs_statvfs * guestfs_statvfs (guestfs_h *g, const char *path); Returns file system statistics for any mounted file system. "path" should be a file or directory in the mounted file system (typically it is the mount point itself, but it doesn't need to be). This is the same as the statvfs(2) system call. This function returns a "struct guestfs_statvfs *", or NULL if there was an error. The caller must call "guestfs_free_statvfs" after use. (Added in 1.9.2) guestfs_strings char ** guestfs_strings (guestfs_h *g, const char *path); This runs the strings(1) command on a file and returns the list of printable strings found. The "strings" command has, in the past, had problems with parsing untrusted files. These are mitigated in the current version of libguestfs, but see "CVE-2014-8484". This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.0.22) guestfs_strings_e char ** guestfs_strings_e (guestfs_h *g, const char *encoding, const char *path); This is like the "guestfs_strings" command, but allows you to specify the encoding of strings that are looked for in the source file "path". Allowed encodings are: s Single 7-bit-byte characters like ASCII and the ASCII-compatible parts of ISO-8859-X (this is what "guestfs_strings" uses). S Single 8-bit-byte characters. b 16-bit big endian strings such as those encoded in UTF-16BE or UCS-2BE. l (lower case letter L) 16-bit little endian such as UTF-16LE and UCS-2LE. This is useful for examining binaries in Windows guests. B 32-bit big endian such as UCS-4BE. L 32-bit little endian such as UCS-4LE. The returned strings are transcoded to UTF-8. The "strings" command has, in the past, had problems with parsing untrusted files. These are mitigated in the current version of libguestfs, but see "CVE-2014-8484". This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.0.22) guestfs_swapoff_device int guestfs_swapoff_device (guestfs_h *g, const char *device); This command disables the libguestfs appliance swap device or partition named "device". See "guestfs_swapon_device". This function returns 0 on success or -1 on error. (Added in 1.0.66) guestfs_swapoff_file int guestfs_swapoff_file (guestfs_h *g, const char *file); This command disables the libguestfs appliance swap on file. This function returns 0 on success or -1 on error. (Added in 1.0.66) guestfs_swapoff_label int guestfs_swapoff_label (guestfs_h *g, const char *label); This command disables the libguestfs appliance swap on labeled swap partition. This function returns 0 on success or -1 on error. (Added in 1.0.66) guestfs_swapoff_uuid int guestfs_swapoff_uuid (guestfs_h *g, const char *uuid); This command disables the libguestfs appliance swap partition with the given UUID. This function returns 0 on success or -1 on error. This function depends on the feature "linuxfsuuid". See also "guestfs_feature_available". (Added in 1.0.66) guestfs_swapon_device int guestfs_swapon_device (guestfs_h *g, const char *device); This command enables the libguestfs appliance to use the swap device or partition named "device". The increased memory is made available for all commands, for example those run using "guestfs_command" or "guestfs_sh". Note that you should not swap to existing guest swap partitions unless you know what you are doing. They may contain hibernation information, or other information that the guest doesn't want you to trash. You also risk leaking information about the host to the guest this way. Instead, attach a new host device to the guest and swap on that. This function returns 0 on success or -1 on error. (Added in 1.0.66) guestfs_swapon_file int guestfs_swapon_file (guestfs_h *g, const char *file); This command enables swap to a file. See "guestfs_swapon_device" for other notes. This function returns 0 on success or -1 on error. (Added in 1.0.66) guestfs_swapon_label int guestfs_swapon_label (guestfs_h *g, const char *label); This command enables swap to a labeled swap partition. See "guestfs_swapon_device" for other notes. This function returns 0 on success or -1 on error. (Added in 1.0.66) guestfs_swapon_uuid int guestfs_swapon_uuid (guestfs_h *g, const char *uuid); This command enables swap to a swap partition with the given UUID. See "guestfs_swapon_device" for other notes. This function returns 0 on success or -1 on error. This function depends on the feature "linuxfsuuid". See also "guestfs_feature_available". (Added in 1.0.66) guestfs_sync int guestfs_sync (guestfs_h *g); This syncs the disk, so that any writes are flushed through to the underlying disk image. You should always call this if you have modified a disk image, before closing the handle. This function returns 0 on success or -1 on error. (Added in 0.3) guestfs_syslinux int guestfs_syslinux (guestfs_h *g, const char *device, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_SYSLINUX_DIRECTORY, const char *directory, Install the SYSLINUX bootloader on "device". The device parameter must be either a whole disk formatted as a FAT filesystem, or a partition formatted as a FAT filesystem. In the latter case, the partition should be marked as "active" ("guestfs_part_set_bootable") and a Master Boot Record must be installed (eg. using "guestfs_pwrite_device") on the first sector of the whole disk. The SYSLINUX package comes with some suitable Master Boot Records. See the syslinux(1) man page for further information. The optional arguments are: directory Install SYSLINUX in the named subdirectory, instead of in the root directory of the FAT filesystem. Additional configuration can be supplied to SYSLINUX by placing a file called syslinux.cfg on the FAT filesystem, either in the root directory, or under directory if that optional argument is being used. For further information about the contents of this file, see syslinux(1). See also "guestfs_extlinux". This function returns 0 on success or -1 on error. This function depends on the feature "syslinux". See also "guestfs_feature_available". (Added in 1.21.27) guestfs_syslinux_va int guestfs_syslinux_va (guestfs_h *g, const char *device, va_list args); This is the "va_list variant" of "guestfs_syslinux". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_syslinux_argv int guestfs_syslinux_argv (guestfs_h *g, const char *device, const struct guestfs_syslinux_argv *optargs); This is the "argv variant" of "guestfs_syslinux". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_tail char ** guestfs_tail (guestfs_h *g, const char *path); This command returns up to the last 10 lines of a file as a list of strings. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.0.54) guestfs_tail_n char ** guestfs_tail_n (guestfs_h *g, int nrlines, const char *path); If the parameter "nrlines" is a positive number, this returns the last "nrlines" lines of the file "path". If the parameter "nrlines" is a negative number, this returns lines from the file "path", starting with the "-nrlines"th line. If the parameter "nrlines" is zero, this returns an empty list. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.0.54) guestfs_tar_in int guestfs_tar_in (guestfs_h *g, const char *tarfile, const char *directory); This function is provided for backwards compatibility with earlier versions of libguestfs. It simply calls "guestfs_tar_in_opts" with no optional arguments. (Added in 1.0.3) guestfs_tar_in_opts int guestfs_tar_in_opts (guestfs_h *g, const char *tarfile, const char *directory, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_TAR_IN_OPTS_COMPRESS, const char *compress, GUESTFS_TAR_IN_OPTS_XATTRS, int xattrs, GUESTFS_TAR_IN_OPTS_SELINUX, int selinux, GUESTFS_TAR_IN_OPTS_ACLS, int acls, This command uploads and unpacks local file "tarfile" into directory. The optional "compress" flag controls compression. If not given, then the input should be an uncompressed tar file. Otherwise one of the following strings may be given to select the compression type of the input file: "compress", "gzip", "bzip2", "xz", "lzop". (Note that not all builds of libguestfs will support all of these compression types). The other optional arguments are: "xattrs" If set to true, extended attributes are restored from the tar file. "selinux" If set to true, SELinux contexts are restored from the tar file. "acls" If set to true, POSIX ACLs are restored from the tar file. This function returns 0 on success or -1 on error. (Added in 1.0.3) guestfs_tar_in_opts_va int guestfs_tar_in_opts_va (guestfs_h *g, const char *tarfile, const char *directory, va_list args); This is the "va_list variant" of "guestfs_tar_in_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_tar_in_opts_argv int guestfs_tar_in_opts_argv (guestfs_h *g, const char *tarfile, const char *directory, const struct guestfs_tar_in_opts_argv *optargs); This is the "argv variant" of "guestfs_tar_in_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_tar_out int guestfs_tar_out (guestfs_h *g, const char *directory, const char *tarfile); This function is provided for backwards compatibility with earlier versions of libguestfs. It simply calls "guestfs_tar_out_opts" with no optional arguments. (Added in 1.0.3) guestfs_tar_out_opts int guestfs_tar_out_opts (guestfs_h *g, const char *directory, const char *tarfile, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_TAR_OUT_OPTS_COMPRESS, const char *compress, GUESTFS_TAR_OUT_OPTS_NUMERICOWNER, int numericowner, GUESTFS_TAR_OUT_OPTS_EXCLUDES, char *const *excludes, GUESTFS_TAR_OUT_OPTS_XATTRS, int xattrs, GUESTFS_TAR_OUT_OPTS_SELINUX, int selinux, GUESTFS_TAR_OUT_OPTS_ACLS, int acls, This command packs the contents of directory and downloads it to local file "tarfile". The optional "compress" flag controls compression. If not given, then the output will be an uncompressed tar file. Otherwise one of the following strings may be given to select the compression type of the output file: "compress", "gzip", "bzip2", "xz", "lzop". (Note that not all builds of libguestfs will support all of these compression types). The other optional arguments are: "excludes" A list of wildcards. Files are excluded if they match any of the wildcards. "numericowner" If set to true, the output tar file will contain UID/GID numbers instead of user/group names. "xattrs" If set to true, extended attributes are saved in the output tar. "selinux" If set to true, SELinux contexts are saved in the output tar. "acls" If set to true, POSIX ACLs are saved in the output tar. This function returns 0 on success or -1 on error. (Added in 1.0.3) guestfs_tar_out_opts_va int guestfs_tar_out_opts_va (guestfs_h *g, const char *directory, const char *tarfile, va_list args); This is the "va_list variant" of "guestfs_tar_out_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_tar_out_opts_argv int guestfs_tar_out_opts_argv (guestfs_h *g, const char *directory, const char *tarfile, const struct guestfs_tar_out_opts_argv *optargs); This is the "argv variant" of "guestfs_tar_out_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_tgz_in int guestfs_tgz_in (guestfs_h *g, const char *tarball, const char *directory); This function is deprecated. In new code, use the "guestfs_tar_in" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This command uploads and unpacks local file "tarball" (a gzip compressed tar file) into directory. This function returns 0 on success or -1 on error. (Added in 1.0.3) guestfs_tgz_out int guestfs_tgz_out (guestfs_h *g, const char *directory, const char *tarball); This function is deprecated. In new code, use the "guestfs_tar_out" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This command packs the contents of directory and downloads it to local file "tarball". This function returns 0 on success or -1 on error. (Added in 1.0.3) guestfs_touch int guestfs_touch (guestfs_h *g, const char *path); Touch acts like the touch(1) command. It can be used to update the timestamps on a file, or, if the file does not exist, to create a new zero-length file. This command only works on regular files, and will fail on other file types such as directories, symbolic links, block special etc. This function returns 0 on success or -1 on error. (Added in 0.3) guestfs_truncate int guestfs_truncate (guestfs_h *g, const char *path); This command truncates "path" to a zero-length file. The file must exist already. This function returns 0 on success or -1 on error. (Added in 1.0.77) guestfs_truncate_size int guestfs_truncate_size (guestfs_h *g, const char *path, int64_t size); This command truncates "path" to size "size" bytes. The file must exist already. If the current file size is less than "size" then the file is extended to the required size with zero bytes. This creates a sparse file (ie. disk blocks are not allocated for the file until you write to it). To create a non-sparse file of zeroes, use "guestfs_fallocate64" instead. This function returns 0 on success or -1 on error. (Added in 1.0.77) guestfs_tune2fs int guestfs_tune2fs (guestfs_h *g, const char *device, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_TUNE2FS_FORCE, int force, GUESTFS_TUNE2FS_MAXMOUNTCOUNT, int maxmountcount, GUESTFS_TUNE2FS_MOUNTCOUNT, int mountcount, GUESTFS_TUNE2FS_ERRORBEHAVIOR, const char *errorbehavior, GUESTFS_TUNE2FS_GROUP, int64_t group, GUESTFS_TUNE2FS_INTERVALBETWEENCHECKS, int intervalbetweenchecks, GUESTFS_TUNE2FS_RESERVEDBLOCKSPERCENTAGE, int reservedblockspercentage, GUESTFS_TUNE2FS_LASTMOUNTEDDIRECTORY, const char *lastmounteddirectory, GUESTFS_TUNE2FS_RESERVEDBLOCKSCOUNT, int64_t reservedblockscount, GUESTFS_TUNE2FS_USER, int64_t user, This call allows you to adjust various filesystem parameters of an ext2/ext3/ext4 filesystem called "device". The optional parameters are: "force" Force tune2fs to complete the operation even in the face of errors. This is the same as the tune2fs "-f" option. "maxmountcount" Set the number of mounts after which the filesystem is checked by e2fsck(8). If this is 0 then the number of mounts is disregarded. This is the same as the tune2fs "-c" option. "mountcount" Set the number of times the filesystem has been mounted. This is the same as the tune2fs "-C" option. "errorbehavior" Change the behavior of the kernel code when errors are detected. Possible values currently are: "continue", "remount-ro", "panic". In practice these options don't really make any difference, particularly for write errors. This is the same as the tune2fs "-e" option. "group" Set the group which can use reserved filesystem blocks. This is the same as the tune2fs "-g" option except that it can only be specified as a number. "intervalbetweenchecks" Adjust the maximal time between two filesystem checks (in seconds). If the option is passed as 0 then time-dependent checking is disabled. This is the same as the tune2fs "-i" option. "reservedblockspercentage" Set the percentage of the filesystem which may only be allocated by privileged processes. This is the same as the tune2fs "-m" option. "lastmounteddirectory" Set the last mounted directory. This is the same as the tune2fs "-M" option. "reservedblockscount" Set the number of reserved filesystem blocks. This is the same as the tune2fs "-r" option. "user" Set the user who can use the reserved filesystem blocks. This is the same as the tune2fs "-u" option except that it can only be specified as a number. To get the current values of filesystem parameters, see "guestfs_tune2fs_l". For precise details of how tune2fs works, see the tune2fs(8) man page. This function returns 0 on success or -1 on error. (Added in 1.15.4) guestfs_tune2fs_va int guestfs_tune2fs_va (guestfs_h *g, const char *device, va_list args); This is the "va_list variant" of "guestfs_tune2fs". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_tune2fs_argv int guestfs_tune2fs_argv (guestfs_h *g, const char *device, const struct guestfs_tune2fs_argv *optargs); This is the "argv variant" of "guestfs_tune2fs". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_tune2fs_l char ** guestfs_tune2fs_l (guestfs_h *g, const char *device); This returns the contents of the ext2, ext3 or ext4 filesystem superblock on "device". It is the same as running "tune2fs -l device". See tune2fs(8) manpage for more details. The list of fields returned isn't clearly defined, and depends on both the version of "tune2fs" that libguestfs was built against, and the filesystem itself. This function returns a NULL-terminated array of strings, or NULL if there was an error. The array of strings will always have length "2n+1", where "n" keys and values alternate, followed by the trailing NULL entry. The caller must free the strings and the array after use. (Added in 1.9.2) guestfs_txz_in int guestfs_txz_in (guestfs_h *g, const char *tarball, const char *directory); This function is deprecated. In new code, use the "guestfs_tar_in" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This command uploads and unpacks local file "tarball" (an xz compressed tar file) into directory. This function returns 0 on success or -1 on error. This function depends on the feature "xz". See also "guestfs_feature_available". (Added in 1.3.2) guestfs_txz_out int guestfs_txz_out (guestfs_h *g, const char *directory, const char *tarball); This function is deprecated. In new code, use the "guestfs_tar_out" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This command packs the contents of directory and downloads it to local file "tarball" (as an xz compressed tar archive). This function returns 0 on success or -1 on error. This function depends on the feature "xz". See also "guestfs_feature_available". (Added in 1.3.2) guestfs_umask int guestfs_umask (guestfs_h *g, int mask); This function sets the mask used for creating new files and device nodes to "mask & 0777". Typical umask values would be 022 which creates new files with permissions like "-rw-r--r--" or "-rwxr-xr-x", and 002 which creates new files with permissions like "-rw-rw-r--" or "-rwxrwxr-x". The default umask is 022. This is important because it means that directories and device nodes will be created with 0644 or 0755 mode even if you specify 0777. See also "guestfs_get_umask", umask(2), "guestfs_mknod", "guestfs_mkdir". This call returns the previous umask. On error this function returns -1. (Added in 1.0.55) guestfs_umount int guestfs_umount (guestfs_h *g, const char *pathordevice); This function is provided for backwards compatibility with earlier versions of libguestfs. It simply calls "guestfs_umount_opts" with no optional arguments. (Added in 0.8) guestfs_umount_opts int guestfs_umount_opts (guestfs_h *g, const char *pathordevice, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_UMOUNT_OPTS_FORCE, int force, GUESTFS_UMOUNT_OPTS_LAZYUNMOUNT, int lazyunmount, This unmounts the given filesystem. The filesystem may be specified either by its mountpoint (path) or the device which contains the filesystem. This function returns 0 on success or -1 on error. (Added in 0.8) guestfs_umount_opts_va int guestfs_umount_opts_va (guestfs_h *g, const char *pathordevice, va_list args); This is the "va_list variant" of "guestfs_umount_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_umount_opts_argv int guestfs_umount_opts_argv (guestfs_h *g, const char *pathordevice, const struct guestfs_umount_opts_argv *optargs); This is the "argv variant" of "guestfs_umount_opts". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_umount_all int guestfs_umount_all (guestfs_h *g); This unmounts all mounted filesystems. Some internal mounts are not unmounted by this call. This function returns 0 on success or -1 on error. (Added in 0.8) guestfs_umount_local int guestfs_umount_local (guestfs_h *g, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_UMOUNT_LOCAL_RETRY, int retry, If libguestfs is exporting the filesystem on a local mountpoint, then this unmounts it. See "MOUNT LOCAL" for full documentation. This function returns 0 on success or -1 on error. (Added in 1.17.22) guestfs_umount_local_va int guestfs_umount_local_va (guestfs_h *g, va_list args); This is the "va_list variant" of "guestfs_umount_local". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_umount_local_argv int guestfs_umount_local_argv (guestfs_h *g, const struct guestfs_umount_local_argv *optargs); This is the "argv variant" of "guestfs_umount_local". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_upload int guestfs_upload (guestfs_h *g, const char *filename, const char *remotefilename); Upload local file filename to remotefilename on the filesystem. filename can also be a named pipe. See also "guestfs_download". This function returns 0 on success or -1 on error. This long-running command can generate progress notification messages so that the caller can display a progress bar or indicator. To receive these messages, the caller must register a progress event callback. See "GUESTFS_EVENT_PROGRESS". (Added in 1.0.2) guestfs_upload_offset int guestfs_upload_offset (guestfs_h *g, const char *filename, const char *remotefilename, int64_t offset); Upload local file filename to remotefilename on the filesystem. remotefilename is overwritten starting at the byte "offset" specified. The intention is to overwrite parts of existing files or devices, although if a non-existent file is specified then it is created with a "hole" before "offset". The size of the data written is implicit in the size of the source filename. Note that there is no limit on the amount of data that can be uploaded with this call, unlike with "guestfs_pwrite", and this call always writes the full amount unless an error occurs. See also "guestfs_upload", "guestfs_pwrite". This function returns 0 on success or -1 on error. This long-running command can generate progress notification messages so that the caller can display a progress bar or indicator. To receive these messages, the caller must register a progress event callback. See "GUESTFS_EVENT_PROGRESS". (Added in 1.5.17) guestfs_user_cancel int guestfs_user_cancel (guestfs_h *g); This function cancels the current upload or download operation. Unlike most other libguestfs calls, this function is signal safe and thread safe. You can call it from a signal handler or from another thread, without needing to do any locking. The transfer that was in progress (if there is one) will stop shortly afterwards, and will return an error. The errno (see "guestfs_last_errno") is set to "EINTR", so you can test for this to find out if the operation was cancelled or failed because of another error. No cleanup is performed: for example, if a file was being uploaded then after cancellation there may be a partially uploaded file. It is the caller's responsibility to clean up if necessary. There are two common places that you might call "guestfs_user_cancel": In an interactive text-based program, you might call it from a "SIGINT" signal handler so that pressing "^C" cancels the current operation. (You also need to call "guestfs_set_pgroup" so that child processes don't receive the "^C" signal). In a graphical program, when the main thread is displaying a progress bar with a cancel button, wire up the cancel button to call this function. This function returns 0 on success or -1 on error. (Added in 1.11.18) guestfs_utimens int guestfs_utimens (guestfs_h *g, const char *path, int64_t atsecs, int64_t atnsecs, int64_t mtsecs, int64_t mtnsecs); This command sets the timestamps of a file with nanosecond precision. "atsecs, atnsecs" are the last access time (atime) in secs and nanoseconds from the epoch. "mtsecs, mtnsecs" are the last modification time (mtime) in secs and nanoseconds from the epoch. If the *nsecs field contains the special value "-1" then the corresponding timestamp is set to the current time. (The *secs field is ignored in this case). If the *nsecs field contains the special value "-2" then the corresponding timestamp is left unchanged. (The *secs field is ignored in this case). This function returns 0 on success or -1 on error. (Added in 1.0.77) guestfs_utsname struct guestfs_utsname * guestfs_utsname (guestfs_h *g); This returns the kernel version of the appliance, where this is available. This information is only useful for debugging. Nothing in the returned structure is defined by the API. This function returns a "struct guestfs_utsname *", or NULL if there was an error. The caller must call "guestfs_free_utsname" after use. (Added in 1.19.27) guestfs_version struct guestfs_version * guestfs_version (guestfs_h *g); Return the libguestfs version number that the program is linked against. Note that because of dynamic linking this is not necessarily the version of libguestfs that you compiled against. You can compile the program, and then at runtime dynamically link against a completely different libguestfs.so library. This call was added in version 1.0.58. In previous versions of libguestfs there was no way to get the version number. From C code you can use dynamic linker functions to find out if this symbol exists (if it doesn't, then it's an earlier version). The call returns a structure with four elements. The first three ("major", "minor" and "release") are numbers and correspond to the usual version triplet. The fourth element ("extra") is a string and is normally empty, but may be used for distro-specific information. To construct the original version string: "$major.$minor.$release$extra" See also: "LIBGUESTFS VERSION NUMBERS". Note: Don't use this call to test for availability of features. In enterprise distributions we backport features from later versions into earlier versions, making this an unreliable way to test for features. Use "guestfs_available" or "guestfs_feature_available" instead. This function returns a "struct guestfs_version *", or NULL if there was an error. The caller must call "guestfs_free_version" after use. (Added in 1.0.58) guestfs_vfs_label char * guestfs_vfs_label (guestfs_h *g, const char *mountable); This returns the label of the filesystem on "mountable". If the filesystem is unlabeled, this returns the empty string. To find a filesystem from the label, use "guestfs_findfs_label". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.3.18) guestfs_vfs_minimum_size int64_t guestfs_vfs_minimum_size (guestfs_h *g, const char *mountable); Get the minimum size of filesystem in bytes. This is the minimum possible size for filesystem shrinking. If getting minimum size of specified filesystem is not supported, this will fail and set errno as ENOTSUP. See also ntfsresize(8), resize2fs(8), btrfs(8), xfs_info(8). On error this function returns -1. (Added in 1.31.18) guestfs_vfs_type char * guestfs_vfs_type (guestfs_h *g, const char *mountable); This command gets the filesystem type corresponding to the filesystem on "mountable". For most filesystems, the result is the name of the Linux VFS module which would be used to mount this filesystem if you mounted it without specifying the filesystem type. For example a string such as "ext3" or "ntfs". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.0.75) guestfs_vfs_uuid char * guestfs_vfs_uuid (guestfs_h *g, const char *mountable); This returns the filesystem UUID of the filesystem on "mountable". If the filesystem does not have a UUID, this returns the empty string. To find a filesystem from the UUID, use "guestfs_findfs_uuid". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.3.18) guestfs_vg_activate int guestfs_vg_activate (guestfs_h *g, int activate, char *const *volgroups); This command activates or (if "activate" is false) deactivates all logical volumes in the listed volume groups "volgroups". This command is the same as running "vgchange -a y|n volgroups..." Note that if "volgroups" is an empty list then all volume groups are activated or deactivated. This function returns 0 on success or -1 on error. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 1.0.26) guestfs_vg_activate_all int guestfs_vg_activate_all (guestfs_h *g, int activate); This command activates or (if "activate" is false) deactivates all logical volumes in all volume groups. This command is the same as running "vgchange -a y|n" This function returns 0 on success or -1 on error. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 1.0.26) guestfs_vgchange_uuid int guestfs_vgchange_uuid (guestfs_h *g, const char *vg); Generate a new random UUID for the volume group "vg". This function returns 0 on success or -1 on error. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 1.19.26) guestfs_vgchange_uuid_all int guestfs_vgchange_uuid_all (guestfs_h *g); Generate new random UUIDs for all volume groups. This function returns 0 on success or -1 on error. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 1.19.26) guestfs_vgcreate int guestfs_vgcreate (guestfs_h *g, const char *volgroup, char *const *physvols); This creates an LVM volume group called "volgroup" from the non-empty list of physical volumes "physvols". This function returns 0 on success or -1 on error. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 0.8) guestfs_vglvuuids char ** guestfs_vglvuuids (guestfs_h *g, const char *vgname); Given a VG called "vgname", this returns the UUIDs of all the logical volumes created in this volume group. You can use this along with "guestfs_lvs" and "guestfs_lvuuid" calls to associate logical volumes and volume groups. See also "guestfs_vgpvuuids". This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 1.0.87) guestfs_vgmeta char * guestfs_vgmeta (guestfs_h *g, const char *vgname, size_t *size_r); "vgname" is an LVM volume group. This command examines the volume group and returns its metadata. Note that the metadata is an internal structure used by LVM, subject to change at any time, and is provided for information only. This function returns a buffer, or NULL on error. The size of the returned buffer is written to *size_r. The caller must free the returned buffer after use. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 1.17.20) guestfs_vgpvuuids char ** guestfs_vgpvuuids (guestfs_h *g, const char *vgname); Given a VG called "vgname", this returns the UUIDs of all the physical volumes that this volume group resides on. You can use this along with "guestfs_pvs" and "guestfs_pvuuid" calls to associate physical volumes and volume groups. See also "guestfs_vglvuuids". This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. (Added in 1.0.87) guestfs_vgremove int guestfs_vgremove (guestfs_h *g, const char *vgname); Remove an LVM volume group "vgname", (for example "VG"). This also forcibly removes all logical volumes in the volume group (if any). This function returns 0 on success or -1 on error. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 1.0.13) guestfs_vgrename int guestfs_vgrename (guestfs_h *g, const char *volgroup, const char *newvolgroup); Rename a volume group "volgroup" with the new name "newvolgroup". This function returns 0 on success or -1 on error. (Added in 1.0.83) guestfs_vgs char ** guestfs_vgs (guestfs_h *g); List all the volumes groups detected. This is the equivalent of the vgs(8) command. This returns a list of just the volume group names that were detected (eg. "VolGroup00"). See also "guestfs_vgs_full". This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 0.4) guestfs_vgs_full struct guestfs_lvm_vg_list * guestfs_vgs_full (guestfs_h *g); List all the volumes groups detected. This is the equivalent of the vgs(8) command. The "full" version includes all fields. This function returns a "struct guestfs_lvm_vg_list *", or NULL if there was an error. The caller must call "guestfs_free_lvm_vg_list" after use. This function depends on the feature "lvm2". See also "guestfs_feature_available". (Added in 0.4) guestfs_vgscan int guestfs_vgscan (guestfs_h *g); This rescans all block devices and rebuilds the list of LVM physical volumes, volume groups and logical volumes. This function returns 0 on success or -1 on error. (Added in 1.3.2) guestfs_vguuid char * guestfs_vguuid (guestfs_h *g, const char *vgname); This command returns the UUID of the LVM VG named "vgname". This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.0.87) guestfs_wait_ready int guestfs_wait_ready (guestfs_h *g); This function is deprecated. There is no replacement. Consult the API documentation in guestfs(3) for further information. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This function is a no op. In versions of the API < 1.0.71 you had to call this function just after calling "guestfs_launch" to wait for the launch to complete. However this is no longer necessary because "guestfs_launch" now does the waiting. If you see any calls to this function in code then you can just remove them, unless you want to retain compatibility with older versions of the API. This function returns 0 on success or -1 on error. (Added in 0.3) guestfs_wc_c int guestfs_wc_c (guestfs_h *g, const char *path); This command counts the characters in a file, using the "wc -c" external command. On error this function returns -1. (Added in 1.0.54) guestfs_wc_l int guestfs_wc_l (guestfs_h *g, const char *path); This command counts the lines in a file, using the "wc -l" external command. On error this function returns -1. (Added in 1.0.54) guestfs_wc_w int guestfs_wc_w (guestfs_h *g, const char *path); This command counts the words in a file, using the "wc -w" external command. On error this function returns -1. (Added in 1.0.54) guestfs_wipefs int guestfs_wipefs (guestfs_h *g, const char *device); This command erases filesystem or RAID signatures from the specified "device" to make the filesystem invisible to libblkid. This does not erase the filesystem itself nor any other data from the "device". Compare with "guestfs_zero" which zeroes the first few blocks of a device. This function returns 0 on success or -1 on error. This function depends on the feature "wipefs". See also "guestfs_feature_available". (Added in 1.17.6) guestfs_write int guestfs_write (guestfs_h *g, const char *path, const char *content, size_t content_size); This call creates a file called "path". The content of the file is the string "content" (which can contain any 8 bit data). See also "guestfs_write_append". This function returns 0 on success or -1 on error. (Added in 1.3.14) guestfs_write_append int guestfs_write_append (guestfs_h *g, const char *path, const char *content, size_t content_size); This call appends "content" to the end of file "path". If "path" does not exist, then a new file is created. See also "guestfs_write". This function returns 0 on success or -1 on error. (Added in 1.11.18) guestfs_write_file int guestfs_write_file (guestfs_h *g, const char *path, const char *content, int size); This function is deprecated. In new code, use the "guestfs_write" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This call creates a file called "path". The contents of the file is the string "content" (which can contain any 8 bit data), with length "size". As a special case, if "size" is 0 then the length is calculated using "strlen" (so in this case the content cannot contain embedded ASCII NULs). NB. Owing to a bug, writing content containing ASCII NUL characters does not work, even if the length is specified. This function returns 0 on success or -1 on error. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 0.8) guestfs_xfs_admin int guestfs_xfs_admin (guestfs_h *g, const char *device, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_XFS_ADMIN_EXTUNWRITTEN, int extunwritten, GUESTFS_XFS_ADMIN_IMGFILE, int imgfile, GUESTFS_XFS_ADMIN_V2LOG, int v2log, GUESTFS_XFS_ADMIN_PROJID32BIT, int projid32bit, GUESTFS_XFS_ADMIN_LAZYCOUNTER, int lazycounter, GUESTFS_XFS_ADMIN_LABEL, const char *label, GUESTFS_XFS_ADMIN_UUID, const char *uuid, Change the parameters of the XFS filesystem on "device". Devices that are mounted cannot be modified. Administrators must unmount filesystems before this call can modify parameters. Some of the parameters of a mounted filesystem can be examined and modified using the "guestfs_xfs_info" and "guestfs_xfs_growfs" calls. This function returns 0 on success or -1 on error. This function depends on the feature "xfs". See also "guestfs_feature_available". (Added in 1.19.33) guestfs_xfs_admin_va int guestfs_xfs_admin_va (guestfs_h *g, const char *device, va_list args); This is the "va_list variant" of "guestfs_xfs_admin". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_xfs_admin_argv int guestfs_xfs_admin_argv (guestfs_h *g, const char *device, const struct guestfs_xfs_admin_argv *optargs); This is the "argv variant" of "guestfs_xfs_admin". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_xfs_growfs int guestfs_xfs_growfs (guestfs_h *g, const char *path, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_XFS_GROWFS_DATASEC, int datasec, GUESTFS_XFS_GROWFS_LOGSEC, int logsec, GUESTFS_XFS_GROWFS_RTSEC, int rtsec, GUESTFS_XFS_GROWFS_DATASIZE, int64_t datasize, GUESTFS_XFS_GROWFS_LOGSIZE, int64_t logsize, GUESTFS_XFS_GROWFS_RTSIZE, int64_t rtsize, GUESTFS_XFS_GROWFS_RTEXTSIZE, int64_t rtextsize, GUESTFS_XFS_GROWFS_MAXPCT, int maxpct, Grow the XFS filesystem mounted at "path". The returned struct contains geometry information. Missing fields are returned as "-1" (for numeric fields) or empty string. This function returns 0 on success or -1 on error. This function depends on the feature "xfs". See also "guestfs_feature_available". (Added in 1.19.28) guestfs_xfs_growfs_va int guestfs_xfs_growfs_va (guestfs_h *g, const char *path, va_list args); This is the "va_list variant" of "guestfs_xfs_growfs". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_xfs_growfs_argv int guestfs_xfs_growfs_argv (guestfs_h *g, const char *path, const struct guestfs_xfs_growfs_argv *optargs); This is the "argv variant" of "guestfs_xfs_growfs". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_xfs_info struct guestfs_xfsinfo * guestfs_xfs_info (guestfs_h *g, const char *pathordevice); "pathordevice" is a mounted XFS filesystem or a device containing an XFS filesystem. This command returns the geometry of the filesystem. The returned struct contains geometry information. Missing fields are returned as "-1" (for numeric fields) or empty string. This function returns a "struct guestfs_xfsinfo *", or NULL if there was an error. The caller must call "guestfs_free_xfsinfo" after use. This function depends on the feature "xfs". See also "guestfs_feature_available". (Added in 1.19.21) guestfs_xfs_repair int guestfs_xfs_repair (guestfs_h *g, const char *device, ...); You may supply a list of optional arguments to this call. Use zero or more of the following pairs of parameters, and terminate the list with "-1" on its own. See "CALLS WITH OPTIONAL ARGUMENTS". GUESTFS_XFS_REPAIR_FORCELOGZERO, int forcelogzero, GUESTFS_XFS_REPAIR_NOMODIFY, int nomodify, GUESTFS_XFS_REPAIR_NOPREFETCH, int noprefetch, GUESTFS_XFS_REPAIR_FORCEGEOMETRY, int forcegeometry, GUESTFS_XFS_REPAIR_MAXMEM, int64_t maxmem, GUESTFS_XFS_REPAIR_IHASHSIZE, int64_t ihashsize, GUESTFS_XFS_REPAIR_BHASHSIZE, int64_t bhashsize, GUESTFS_XFS_REPAIR_AGSTRIDE, int64_t agstride, GUESTFS_XFS_REPAIR_LOGDEV, const char *logdev, GUESTFS_XFS_REPAIR_RTDEV, const char *rtdev, Repair corrupt or damaged XFS filesystem on "device". The filesystem is specified using the "device" argument which should be the device name of the disk partition or volume containing the filesystem. If given the name of a block device, "xfs_repair" will attempt to find the raw device associated with the specified block device and will use the raw device instead. Regardless, the filesystem to be repaired must be unmounted, otherwise, the resulting filesystem may be inconsistent or corrupt. The returned status indicates whether filesystem corruption was detected (returns 1) or was not detected (returns 0). On error this function returns -1. This function depends on the feature "xfs". See also "guestfs_feature_available". (Added in 1.19.36) guestfs_xfs_repair_va int guestfs_xfs_repair_va (guestfs_h *g, const char *device, va_list args); This is the "va_list variant" of "guestfs_xfs_repair". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_xfs_repair_argv int guestfs_xfs_repair_argv (guestfs_h *g, const char *device, const struct guestfs_xfs_repair_argv *optargs); This is the "argv variant" of "guestfs_xfs_repair". See "CALLS WITH OPTIONAL ARGUMENTS". guestfs_zegrep char ** guestfs_zegrep (guestfs_h *g, const char *regex, const char *path); This function is deprecated. In new code, use the "guestfs_grep" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This calls the external "zegrep" program and returns the matching lines. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.0.66) guestfs_zegrepi char ** guestfs_zegrepi (guestfs_h *g, const char *regex, const char *path); This function is deprecated. In new code, use the "guestfs_grep" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This calls the external "zegrep -i" program and returns the matching lines. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.0.66) guestfs_zero int guestfs_zero (guestfs_h *g, const char *device); This command writes zeroes over the first few blocks of "device". How many blocks are zeroed isn't specified (but it's not enough to securely wipe the device). It should be sufficient to remove any partition tables, filesystem superblocks and so on. If blocks are already zero, then this command avoids writing zeroes. This prevents the underlying device from becoming non-sparse or growing unnecessarily. See also: "guestfs_zero_device", "guestfs_scrub_device", "guestfs_is_zero_device" This function returns 0 on success or -1 on error. This long-running command can generate progress notification messages so that the caller can display a progress bar or indicator. To receive these messages, the caller must register a progress event callback. See "GUESTFS_EVENT_PROGRESS". (Added in 1.0.16) guestfs_zero_device int guestfs_zero_device (guestfs_h *g, const char *device); This command writes zeroes over the entire "device". Compare with "guestfs_zero" which just zeroes the first few blocks of a device. If blocks are already zero, then this command avoids writing zeroes. This prevents the underlying device from becoming non-sparse or growing unnecessarily. This function returns 0 on success or -1 on error. This long-running command can generate progress notification messages so that the caller can display a progress bar or indicator. To receive these messages, the caller must register a progress event callback. See "GUESTFS_EVENT_PROGRESS". (Added in 1.3.1) guestfs_zero_free_space int guestfs_zero_free_space (guestfs_h *g, const char *directory); Zero the free space in the filesystem mounted on directory. The filesystem must be mounted read-write. The filesystem contents are not affected, but any free space in the filesystem is freed. Free space is not "trimmed". You may want to call "guestfs_fstrim" either as an alternative to this, or after calling this, depending on your requirements. This function returns 0 on success or -1 on error. This long-running command can generate progress notification messages so that the caller can display a progress bar or indicator. To receive these messages, the caller must register a progress event callback. See "GUESTFS_EVENT_PROGRESS". (Added in 1.17.18) guestfs_zerofree int guestfs_zerofree (guestfs_h *g, const char *device); This runs the zerofree program on "device". This program claims to zero unused inodes and disk blocks on an ext2/3 filesystem, thus making it possible to compress the filesystem more effectively. You should not run this program if the filesystem is mounted. It is possible that using this program can damage the filesystem or data on the filesystem. This function returns 0 on success or -1 on error. This function depends on the feature "zerofree". See also "guestfs_feature_available". (Added in 1.0.26) guestfs_zfgrep char ** guestfs_zfgrep (guestfs_h *g, const char *pattern, const char *path); This function is deprecated. In new code, use the "guestfs_grep" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This calls the external "zfgrep" program and returns the matching lines. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.0.66) guestfs_zfgrepi char ** guestfs_zfgrepi (guestfs_h *g, const char *pattern, const char *path); This function is deprecated. In new code, use the "guestfs_grep" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This calls the external "zfgrep -i" program and returns the matching lines. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.0.66) guestfs_zfile char * guestfs_zfile (guestfs_h *g, const char *meth, const char *path); This function is deprecated. In new code, use the "guestfs_file" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This command runs file after first decompressing "path" using "method". "method" must be one of "gzip", "compress" or "bzip2". Since 1.0.63, use "guestfs_file" instead which can now process compressed files. This function returns a string, or NULL on error. The caller must free the returned string after use. (Added in 1.0.59) guestfs_zgrep char ** guestfs_zgrep (guestfs_h *g, const char *regex, const char *path); This function is deprecated. In new code, use the "guestfs_grep" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This calls the external "zgrep" program and returns the matching lines. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.0.66) guestfs_zgrepi char ** guestfs_zgrepi (guestfs_h *g, const char *regex, const char *path); This function is deprecated. In new code, use the "guestfs_grep" call instead. Deprecated functions will not be removed from the API, but the fact that they are deprecated indicates that there are problems with correct use of these functions. This calls the external "zgrep -i" program and returns the matching lines. This function returns a NULL-terminated array of strings (like environ(3)), or NULL if there was an error. The caller must free the strings and the array after use. Because of the message protocol, there is a transfer limit of somewhere between 2MB and 4MB. See "PROTOCOL LIMITS". (Added in 1.0.66)
STRUCTURES
guestfs_int_bool struct guestfs_int_bool { int32_t i; int32_t b; }; struct guestfs_int_bool_list { uint32_t len; /* Number of elements in list. */ struct guestfs_int_bool *val; /* Elements. */ }; int guestfs_compare_int_bool (const struct guestfs_int_bool *, const struct guestfs_int_bool *); int guestfs_compare_int_bool_list (const struct guestfs_int_bool_list *, const struct guestfs_int_bool_list *); struct guestfs_int_bool *guestfs_copy_int_bool (const struct guestfs_int_bool *); struct guestfs_int_bool_list *guestfs_copy_int_bool_list (const struct guestfs_int_bool_list *); void guestfs_free_int_bool (struct guestfs_int_bool *); void guestfs_free_int_bool_list (struct guestfs_int_bool_list *); guestfs_lvm_pv struct guestfs_lvm_pv { char *pv_name; /* The next field is NOT nul-terminated, be careful when printing it: */ char pv_uuid[32]; char *pv_fmt; uint64_t pv_size; uint64_t dev_size; uint64_t pv_free; uint64_t pv_used; char *pv_attr; int64_t pv_pe_count; int64_t pv_pe_alloc_count; char *pv_tags; uint64_t pe_start; int64_t pv_mda_count; uint64_t pv_mda_free; }; struct guestfs_lvm_pv_list { uint32_t len; /* Number of elements in list. */ struct guestfs_lvm_pv *val; /* Elements. */ }; int guestfs_compare_lvm_pv (const struct guestfs_lvm_pv *, const struct guestfs_lvm_pv *); int guestfs_compare_lvm_pv_list (const struct guestfs_lvm_pv_list *, const struct guestfs_lvm_pv_list *); struct guestfs_lvm_pv *guestfs_copy_lvm_pv (const struct guestfs_lvm_pv *); struct guestfs_lvm_pv_list *guestfs_copy_lvm_pv_list (const struct guestfs_lvm_pv_list *); void guestfs_free_lvm_pv (struct guestfs_lvm_pv *); void guestfs_free_lvm_pv_list (struct guestfs_lvm_pv_list *); guestfs_lvm_vg struct guestfs_lvm_vg { char *vg_name; /* The next field is NOT nul-terminated, be careful when printing it: */ char vg_uuid[32]; char *vg_fmt; char *vg_attr; uint64_t vg_size; uint64_t vg_free; char *vg_sysid; uint64_t vg_extent_size; int64_t vg_extent_count; int64_t vg_free_count; int64_t max_lv; int64_t max_pv; int64_t pv_count; int64_t lv_count; int64_t snap_count; int64_t vg_seqno; char *vg_tags; int64_t vg_mda_count; uint64_t vg_mda_free; }; struct guestfs_lvm_vg_list { uint32_t len; /* Number of elements in list. */ struct guestfs_lvm_vg *val; /* Elements. */ }; int guestfs_compare_lvm_vg (const struct guestfs_lvm_vg *, const struct guestfs_lvm_vg *); int guestfs_compare_lvm_vg_list (const struct guestfs_lvm_vg_list *, const struct guestfs_lvm_vg_list *); struct guestfs_lvm_vg *guestfs_copy_lvm_vg (const struct guestfs_lvm_vg *); struct guestfs_lvm_vg_list *guestfs_copy_lvm_vg_list (const struct guestfs_lvm_vg_list *); void guestfs_free_lvm_vg (struct guestfs_lvm_vg *); void guestfs_free_lvm_vg_list (struct guestfs_lvm_vg_list *); guestfs_lvm_lv struct guestfs_lvm_lv { char *lv_name; /* The next field is NOT nul-terminated, be careful when printing it: */ char lv_uuid[32]; char *lv_attr; int64_t lv_major; int64_t lv_minor; int64_t lv_kernel_major; int64_t lv_kernel_minor; uint64_t lv_size; int64_t seg_count; char *origin; /* The next field is [0..100] or -1 meaning 'not present': */ float snap_percent; /* The next field is [0..100] or -1 meaning 'not present': */ float copy_percent; char *move_pv; char *lv_tags; char *mirror_log; char *modules; }; struct guestfs_lvm_lv_list { uint32_t len; /* Number of elements in list. */ struct guestfs_lvm_lv *val; /* Elements. */ }; int guestfs_compare_lvm_lv (const struct guestfs_lvm_lv *, const struct guestfs_lvm_lv *); int guestfs_compare_lvm_lv_list (const struct guestfs_lvm_lv_list *, const struct guestfs_lvm_lv_list *); struct guestfs_lvm_lv *guestfs_copy_lvm_lv (const struct guestfs_lvm_lv *); struct guestfs_lvm_lv_list *guestfs_copy_lvm_lv_list (const struct guestfs_lvm_lv_list *); void guestfs_free_lvm_lv (struct guestfs_lvm_lv *); void guestfs_free_lvm_lv_list (struct guestfs_lvm_lv_list *); guestfs_stat struct guestfs_stat { int64_t dev; int64_t ino; int64_t mode; int64_t nlink; int64_t uid; int64_t gid; int64_t rdev; int64_t size; int64_t blksize; int64_t blocks; int64_t atime; int64_t mtime; int64_t ctime; }; struct guestfs_stat_list { uint32_t len; /* Number of elements in list. */ struct guestfs_stat *val; /* Elements. */ }; int guestfs_compare_stat (const struct guestfs_stat *, const struct guestfs_stat *); int guestfs_compare_stat_list (const struct guestfs_stat_list *, const struct guestfs_stat_list *); struct guestfs_stat *guestfs_copy_stat (const struct guestfs_stat *); struct guestfs_stat_list *guestfs_copy_stat_list (const struct guestfs_stat_list *); void guestfs_free_stat (struct guestfs_stat *); void guestfs_free_stat_list (struct guestfs_stat_list *); guestfs_statns struct guestfs_statns { int64_t st_dev; int64_t st_ino; int64_t st_mode; int64_t st_nlink; int64_t st_uid; int64_t st_gid; int64_t st_rdev; int64_t st_size; int64_t st_blksize; int64_t st_blocks; int64_t st_atime_sec; int64_t st_atime_nsec; int64_t st_mtime_sec; int64_t st_mtime_nsec; int64_t st_ctime_sec; int64_t st_ctime_nsec; int64_t st_spare1; int64_t st_spare2; int64_t st_spare3; int64_t st_spare4; int64_t st_spare5; int64_t st_spare6; }; struct guestfs_statns_list { uint32_t len; /* Number of elements in list. */ struct guestfs_statns *val; /* Elements. */ }; int guestfs_compare_statns (const struct guestfs_statns *, const struct guestfs_statns *); int guestfs_compare_statns_list (const struct guestfs_statns_list *, const struct guestfs_statns_list *); struct guestfs_statns *guestfs_copy_statns (const struct guestfs_statns *); struct guestfs_statns_list *guestfs_copy_statns_list (const struct guestfs_statns_list *); void guestfs_free_statns (struct guestfs_statns *); void guestfs_free_statns_list (struct guestfs_statns_list *); guestfs_statvfs struct guestfs_statvfs { int64_t bsize; int64_t frsize; int64_t blocks; int64_t bfree; int64_t bavail; int64_t files; int64_t ffree; int64_t favail; int64_t fsid; int64_t flag; int64_t namemax; }; struct guestfs_statvfs_list { uint32_t len; /* Number of elements in list. */ struct guestfs_statvfs *val; /* Elements. */ }; int guestfs_compare_statvfs (const struct guestfs_statvfs *, const struct guestfs_statvfs *); int guestfs_compare_statvfs_list (const struct guestfs_statvfs_list *, const struct guestfs_statvfs_list *); struct guestfs_statvfs *guestfs_copy_statvfs (const struct guestfs_statvfs *); struct guestfs_statvfs_list *guestfs_copy_statvfs_list (const struct guestfs_statvfs_list *); void guestfs_free_statvfs (struct guestfs_statvfs *); void guestfs_free_statvfs_list (struct guestfs_statvfs_list *); guestfs_dirent struct guestfs_dirent { int64_t ino; char ftyp; char *name; }; struct guestfs_dirent_list { uint32_t len; /* Number of elements in list. */ struct guestfs_dirent *val; /* Elements. */ }; int guestfs_compare_dirent (const struct guestfs_dirent *, const struct guestfs_dirent *); int guestfs_compare_dirent_list (const struct guestfs_dirent_list *, const struct guestfs_dirent_list *); struct guestfs_dirent *guestfs_copy_dirent (const struct guestfs_dirent *); struct guestfs_dirent_list *guestfs_copy_dirent_list (const struct guestfs_dirent_list *); void guestfs_free_dirent (struct guestfs_dirent *); void guestfs_free_dirent_list (struct guestfs_dirent_list *); guestfs_version struct guestfs_version { int64_t major; int64_t minor; int64_t release; char *extra; }; struct guestfs_version_list { uint32_t len; /* Number of elements in list. */ struct guestfs_version *val; /* Elements. */ }; int guestfs_compare_version (const struct guestfs_version *, const struct guestfs_version *); int guestfs_compare_version_list (const struct guestfs_version_list *, const struct guestfs_version_list *); struct guestfs_version *guestfs_copy_version (const struct guestfs_version *); struct guestfs_version_list *guestfs_copy_version_list (const struct guestfs_version_list *); void guestfs_free_version (struct guestfs_version *); void guestfs_free_version_list (struct guestfs_version_list *); guestfs_xattr struct guestfs_xattr { char *attrname; /* The next two fields describe a byte array. */ uint32_t attrval_len; char *attrval; }; struct guestfs_xattr_list { uint32_t len; /* Number of elements in list. */ struct guestfs_xattr *val; /* Elements. */ }; int guestfs_compare_xattr (const struct guestfs_xattr *, const struct guestfs_xattr *); int guestfs_compare_xattr_list (const struct guestfs_xattr_list *, const struct guestfs_xattr_list *); struct guestfs_xattr *guestfs_copy_xattr (const struct guestfs_xattr *); struct guestfs_xattr_list *guestfs_copy_xattr_list (const struct guestfs_xattr_list *); void guestfs_free_xattr (struct guestfs_xattr *); void guestfs_free_xattr_list (struct guestfs_xattr_list *); guestfs_inotify_event struct guestfs_inotify_event { int64_t in_wd; uint32_t in_mask; uint32_t in_cookie; char *in_name; }; struct guestfs_inotify_event_list { uint32_t len; /* Number of elements in list. */ struct guestfs_inotify_event *val; /* Elements. */ }; int guestfs_compare_inotify_event (const struct guestfs_inotify_event *, const struct guestfs_inotify_event *); int guestfs_compare_inotify_event_list (const struct guestfs_inotify_event_list *, const struct guestfs_inotify_event_list *); struct guestfs_inotify_event *guestfs_copy_inotify_event (const struct guestfs_inotify_event *); struct guestfs_inotify_event_list *guestfs_copy_inotify_event_list (const struct guestfs_inotify_event_list *); void guestfs_free_inotify_event (struct guestfs_inotify_event *); void guestfs_free_inotify_event_list (struct guestfs_inotify_event_list *); guestfs_partition struct guestfs_partition { int32_t part_num; uint64_t part_start; uint64_t part_end; uint64_t part_size; }; struct guestfs_partition_list { uint32_t len; /* Number of elements in list. */ struct guestfs_partition *val; /* Elements. */ }; int guestfs_compare_partition (const struct guestfs_partition *, const struct guestfs_partition *); int guestfs_compare_partition_list (const struct guestfs_partition_list *, const struct guestfs_partition_list *); struct guestfs_partition *guestfs_copy_partition (const struct guestfs_partition *); struct guestfs_partition_list *guestfs_copy_partition_list (const struct guestfs_partition_list *); void guestfs_free_partition (struct guestfs_partition *); void guestfs_free_partition_list (struct guestfs_partition_list *); guestfs_application struct guestfs_application { char *app_name; char *app_display_name; int32_t app_epoch; char *app_version; char *app_release; char *app_install_path; char *app_trans_path; char *app_publisher; char *app_url; char *app_source_package; char *app_summary; char *app_description; }; struct guestfs_application_list { uint32_t len; /* Number of elements in list. */ struct guestfs_application *val; /* Elements. */ }; int guestfs_compare_application (const struct guestfs_application *, const struct guestfs_application *); int guestfs_compare_application_list (const struct guestfs_application_list *, const struct guestfs_application_list *); struct guestfs_application *guestfs_copy_application (const struct guestfs_application *); struct guestfs_application_list *guestfs_copy_application_list (const struct guestfs_application_list *); void guestfs_free_application (struct guestfs_application *); void guestfs_free_application_list (struct guestfs_application_list *); guestfs_application2 struct guestfs_application2 { char *app2_name; char *app2_display_name; int32_t app2_epoch; char *app2_version; char *app2_release; char *app2_arch; char *app2_install_path; char *app2_trans_path; char *app2_publisher; char *app2_url; char *app2_source_package; char *app2_summary; char *app2_description; char *app2_spare1; char *app2_spare2; char *app2_spare3; char *app2_spare4; }; struct guestfs_application2_list { uint32_t len; /* Number of elements in list. */ struct guestfs_application2 *val; /* Elements. */ }; int guestfs_compare_application2 (const struct guestfs_application2 *, const struct guestfs_application2 *); int guestfs_compare_application2_list (const struct guestfs_application2_list *, const struct guestfs_application2_list *); struct guestfs_application2 *guestfs_copy_application2 (const struct guestfs_application2 *); struct guestfs_application2_list *guestfs_copy_application2_list (const struct guestfs_application2_list *); void guestfs_free_application2 (struct guestfs_application2 *); void guestfs_free_application2_list (struct guestfs_application2_list *); guestfs_isoinfo struct guestfs_isoinfo { char *iso_system_id; char *iso_volume_id; uint32_t iso_volume_space_size; uint32_t iso_volume_set_size; uint32_t iso_volume_sequence_number; uint32_t iso_logical_block_size; char *iso_volume_set_id; char *iso_publisher_id; char *iso_data_preparer_id; char *iso_application_id; char *iso_copyright_file_id; char *iso_abstract_file_id; char *iso_bibliographic_file_id; int64_t iso_volume_creation_t; int64_t iso_volume_modification_t; int64_t iso_volume_expiration_t; int64_t iso_volume_effective_t; }; struct guestfs_isoinfo_list { uint32_t len; /* Number of elements in list. */ struct guestfs_isoinfo *val; /* Elements. */ }; int guestfs_compare_isoinfo (const struct guestfs_isoinfo *, const struct guestfs_isoinfo *); int guestfs_compare_isoinfo_list (const struct guestfs_isoinfo_list *, const struct guestfs_isoinfo_list *); struct guestfs_isoinfo *guestfs_copy_isoinfo (const struct guestfs_isoinfo *); struct guestfs_isoinfo_list *guestfs_copy_isoinfo_list (const struct guestfs_isoinfo_list *); void guestfs_free_isoinfo (struct guestfs_isoinfo *); void guestfs_free_isoinfo_list (struct guestfs_isoinfo_list *); guestfs_mdstat struct guestfs_mdstat { char *mdstat_device; int32_t mdstat_index; char *mdstat_flags; }; struct guestfs_mdstat_list { uint32_t len; /* Number of elements in list. */ struct guestfs_mdstat *val; /* Elements. */ }; int guestfs_compare_mdstat (const struct guestfs_mdstat *, const struct guestfs_mdstat *); int guestfs_compare_mdstat_list (const struct guestfs_mdstat_list *, const struct guestfs_mdstat_list *); struct guestfs_mdstat *guestfs_copy_mdstat (const struct guestfs_mdstat *); struct guestfs_mdstat_list *guestfs_copy_mdstat_list (const struct guestfs_mdstat_list *); void guestfs_free_mdstat (struct guestfs_mdstat *); void guestfs_free_mdstat_list (struct guestfs_mdstat_list *); guestfs_btrfssubvolume struct guestfs_btrfssubvolume { uint64_t btrfssubvolume_id; uint64_t btrfssubvolume_top_level_id; char *btrfssubvolume_path; }; struct guestfs_btrfssubvolume_list { uint32_t len; /* Number of elements in list. */ struct guestfs_btrfssubvolume *val; /* Elements. */ }; int guestfs_compare_btrfssubvolume (const struct guestfs_btrfssubvolume *, const struct guestfs_btrfssubvolume *); int guestfs_compare_btrfssubvolume_list (const struct guestfs_btrfssubvolume_list *, const struct guestfs_btrfssubvolume_list *); struct guestfs_btrfssubvolume *guestfs_copy_btrfssubvolume (const struct guestfs_btrfssubvolume *); struct guestfs_btrfssubvolume_list *guestfs_copy_btrfssubvolume_list (const struct guestfs_btrfssubvolume_list *); void guestfs_free_btrfssubvolume (struct guestfs_btrfssubvolume *); void guestfs_free_btrfssubvolume_list (struct guestfs_btrfssubvolume_list *); guestfs_btrfsqgroup struct guestfs_btrfsqgroup { char *btrfsqgroup_id; uint64_t btrfsqgroup_rfer; uint64_t btrfsqgroup_excl; }; struct guestfs_btrfsqgroup_list { uint32_t len; /* Number of elements in list. */ struct guestfs_btrfsqgroup *val; /* Elements. */ }; int guestfs_compare_btrfsqgroup (const struct guestfs_btrfsqgroup *, const struct guestfs_btrfsqgroup *); int guestfs_compare_btrfsqgroup_list (const struct guestfs_btrfsqgroup_list *, const struct guestfs_btrfsqgroup_list *); struct guestfs_btrfsqgroup *guestfs_copy_btrfsqgroup (const struct guestfs_btrfsqgroup *); struct guestfs_btrfsqgroup_list *guestfs_copy_btrfsqgroup_list (const struct guestfs_btrfsqgroup_list *); void guestfs_free_btrfsqgroup (struct guestfs_btrfsqgroup *); void guestfs_free_btrfsqgroup_list (struct guestfs_btrfsqgroup_list *); guestfs_btrfsbalance struct guestfs_btrfsbalance { char *btrfsbalance_status; uint64_t btrfsbalance_total; uint64_t btrfsbalance_balanced; uint64_t btrfsbalance_considered; uint64_t btrfsbalance_left; }; struct guestfs_btrfsbalance_list { uint32_t len; /* Number of elements in list. */ struct guestfs_btrfsbalance *val; /* Elements. */ }; int guestfs_compare_btrfsbalance (const struct guestfs_btrfsbalance *, const struct guestfs_btrfsbalance *); int guestfs_compare_btrfsbalance_list (const struct guestfs_btrfsbalance_list *, const struct guestfs_btrfsbalance_list *); struct guestfs_btrfsbalance *guestfs_copy_btrfsbalance (const struct guestfs_btrfsbalance *); struct guestfs_btrfsbalance_list *guestfs_copy_btrfsbalance_list (const struct guestfs_btrfsbalance_list *); void guestfs_free_btrfsbalance (struct guestfs_btrfsbalance *); void guestfs_free_btrfsbalance_list (struct guestfs_btrfsbalance_list *); guestfs_btrfsscrub struct guestfs_btrfsscrub { uint64_t btrfsscrub_data_extents_scrubbed; uint64_t btrfsscrub_tree_extents_scrubbed; uint64_t btrfsscrub_data_bytes_scrubbed; uint64_t btrfsscrub_tree_bytes_scrubbed; uint64_t btrfsscrub_read_errors; uint64_t btrfsscrub_csum_errors; uint64_t btrfsscrub_verify_errors; uint64_t btrfsscrub_no_csum; uint64_t btrfsscrub_csum_discards; uint64_t btrfsscrub_super_errors; uint64_t btrfsscrub_malloc_errors; uint64_t btrfsscrub_uncorrectable_errors; uint64_t btrfsscrub_unverified_errors; uint64_t btrfsscrub_corrected_errors; uint64_t btrfsscrub_last_physical; }; struct guestfs_btrfsscrub_list { uint32_t len; /* Number of elements in list. */ struct guestfs_btrfsscrub *val; /* Elements. */ }; int guestfs_compare_btrfsscrub (const struct guestfs_btrfsscrub *, const struct guestfs_btrfsscrub *); int guestfs_compare_btrfsscrub_list (const struct guestfs_btrfsscrub_list *, const struct guestfs_btrfsscrub_list *); struct guestfs_btrfsscrub *guestfs_copy_btrfsscrub (const struct guestfs_btrfsscrub *); struct guestfs_btrfsscrub_list *guestfs_copy_btrfsscrub_list (const struct guestfs_btrfsscrub_list *); void guestfs_free_btrfsscrub (struct guestfs_btrfsscrub *); void guestfs_free_btrfsscrub_list (struct guestfs_btrfsscrub_list *); guestfs_xfsinfo struct guestfs_xfsinfo { char *xfs_mntpoint; uint32_t xfs_inodesize; uint32_t xfs_agcount; uint32_t xfs_agsize; uint32_t xfs_sectsize; uint32_t xfs_attr; uint32_t xfs_blocksize; uint64_t xfs_datablocks; uint32_t xfs_imaxpct; uint32_t xfs_sunit; uint32_t xfs_swidth; uint32_t xfs_dirversion; uint32_t xfs_dirblocksize; uint32_t xfs_cimode; char *xfs_logname; uint32_t xfs_logblocksize; uint32_t xfs_logblocks; uint32_t xfs_logversion; uint32_t xfs_logsectsize; uint32_t xfs_logsunit; uint32_t xfs_lazycount; char *xfs_rtname; uint32_t xfs_rtextsize; uint64_t xfs_rtblocks; uint64_t xfs_rtextents; }; struct guestfs_xfsinfo_list { uint32_t len; /* Number of elements in list. */ struct guestfs_xfsinfo *val; /* Elements. */ }; int guestfs_compare_xfsinfo (const struct guestfs_xfsinfo *, const struct guestfs_xfsinfo *); int guestfs_compare_xfsinfo_list (const struct guestfs_xfsinfo_list *, const struct guestfs_xfsinfo_list *); struct guestfs_xfsinfo *guestfs_copy_xfsinfo (const struct guestfs_xfsinfo *); struct guestfs_xfsinfo_list *guestfs_copy_xfsinfo_list (const struct guestfs_xfsinfo_list *); void guestfs_free_xfsinfo (struct guestfs_xfsinfo *); void guestfs_free_xfsinfo_list (struct guestfs_xfsinfo_list *); guestfs_utsname struct guestfs_utsname { char *uts_sysname; char *uts_release; char *uts_version; char *uts_machine; }; struct guestfs_utsname_list { uint32_t len; /* Number of elements in list. */ struct guestfs_utsname *val; /* Elements. */ }; int guestfs_compare_utsname (const struct guestfs_utsname *, const struct guestfs_utsname *); int guestfs_compare_utsname_list (const struct guestfs_utsname_list *, const struct guestfs_utsname_list *); struct guestfs_utsname *guestfs_copy_utsname (const struct guestfs_utsname *); struct guestfs_utsname_list *guestfs_copy_utsname_list (const struct guestfs_utsname_list *); void guestfs_free_utsname (struct guestfs_utsname *); void guestfs_free_utsname_list (struct guestfs_utsname_list *); guestfs_hivex_node struct guestfs_hivex_node { int64_t hivex_node_h; }; struct guestfs_hivex_node_list { uint32_t len; /* Number of elements in list. */ struct guestfs_hivex_node *val; /* Elements. */ }; int guestfs_compare_hivex_node (const struct guestfs_hivex_node *, const struct guestfs_hivex_node *); int guestfs_compare_hivex_node_list (const struct guestfs_hivex_node_list *, const struct guestfs_hivex_node_list *); struct guestfs_hivex_node *guestfs_copy_hivex_node (const struct guestfs_hivex_node *); struct guestfs_hivex_node_list *guestfs_copy_hivex_node_list (const struct guestfs_hivex_node_list *); void guestfs_free_hivex_node (struct guestfs_hivex_node *); void guestfs_free_hivex_node_list (struct guestfs_hivex_node_list *); guestfs_hivex_value struct guestfs_hivex_value { int64_t hivex_value_h; }; struct guestfs_hivex_value_list { uint32_t len; /* Number of elements in list. */ struct guestfs_hivex_value *val; /* Elements. */ }; int guestfs_compare_hivex_value (const struct guestfs_hivex_value *, const struct guestfs_hivex_value *); int guestfs_compare_hivex_value_list (const struct guestfs_hivex_value_list *, const struct guestfs_hivex_value_list *); struct guestfs_hivex_value *guestfs_copy_hivex_value (const struct guestfs_hivex_value *); struct guestfs_hivex_value_list *guestfs_copy_hivex_value_list (const struct guestfs_hivex_value_list *); void guestfs_free_hivex_value (struct guestfs_hivex_value *); void guestfs_free_hivex_value_list (struct guestfs_hivex_value_list *); guestfs_internal_mountable struct guestfs_internal_mountable { int32_t im_type; char *im_device; char *im_volume; }; struct guestfs_internal_mountable_list { uint32_t len; /* Number of elements in list. */ struct guestfs_internal_mountable *val; /* Elements. */ }; int guestfs_compare_internal_mountable (const struct guestfs_internal_mountable *, const struct guestfs_internal_mountable *); int guestfs_compare_internal_mountable_list (const struct guestfs_internal_mountable_list *, const struct guestfs_internal_mountable_list *); struct guestfs_internal_mountable *guestfs_copy_internal_mountable (const struct guestfs_internal_mountable *); struct guestfs_internal_mountable_list *guestfs_copy_internal_mountable_list (const struct guestfs_internal_mountable_list *); void guestfs_free_internal_mountable (struct guestfs_internal_mountable *); void guestfs_free_internal_mountable_list (struct guestfs_internal_mountable_list *); guestfs_tsk_dirent struct guestfs_tsk_dirent { uint64_t tsk_inode; char tsk_type; int64_t tsk_size; char *tsk_name; uint32_t tsk_flags; int64_t tsk_atime_sec; int64_t tsk_atime_nsec; int64_t tsk_mtime_sec; int64_t tsk_mtime_nsec; int64_t tsk_ctime_sec; int64_t tsk_ctime_nsec; int64_t tsk_crtime_sec; int64_t tsk_crtime_nsec; int64_t tsk_nlink; char *tsk_link; int64_t tsk_spare1; }; struct guestfs_tsk_dirent_list { uint32_t len; /* Number of elements in list. */ struct guestfs_tsk_dirent *val; /* Elements. */ }; int guestfs_compare_tsk_dirent (const struct guestfs_tsk_dirent *, const struct guestfs_tsk_dirent *); int guestfs_compare_tsk_dirent_list (const struct guestfs_tsk_dirent_list *, const struct guestfs_tsk_dirent_list *); struct guestfs_tsk_dirent *guestfs_copy_tsk_dirent (const struct guestfs_tsk_dirent *); struct guestfs_tsk_dirent_list *guestfs_copy_tsk_dirent_list (const struct guestfs_tsk_dirent_list *); void guestfs_free_tsk_dirent (struct guestfs_tsk_dirent *); void guestfs_free_tsk_dirent_list (struct guestfs_tsk_dirent_list *);
AVAILABILITY
GROUPS OF FUNCTIONALITY IN THE APPLIANCE Using "guestfs_available" you can test availability of the following groups of functions. This test queries the appliance to see if the appliance you are currently using supports the functionality. acl The following functions: "guestfs_acl_delete_def_file" "guestfs_acl_get_file" "guestfs_acl_set_file" blkdiscard The following functions: "guestfs_blkdiscard" blkdiscardzeroes The following functions: "guestfs_blkdiscardzeroes" btrfs The following functions: "guestfs_btrfs_balance_cancel" "guestfs_btrfs_balance_pause" "guestfs_btrfs_balance_resume" "guestfs_btrfs_balance_status" "guestfs_btrfs_device_add" "guestfs_btrfs_device_delete" "guestfs_btrfs_filesystem_balance" "guestfs_btrfs_filesystem_defragment" "guestfs_btrfs_filesystem_resize" "guestfs_btrfs_filesystem_show" "guestfs_btrfs_filesystem_sync" "guestfs_btrfs_fsck" "guestfs_btrfs_image" "guestfs_btrfs_qgroup_assign" "guestfs_btrfs_qgroup_create" "guestfs_btrfs_qgroup_destroy" "guestfs_btrfs_qgroup_limit" "guestfs_btrfs_qgroup_remove" "guestfs_btrfs_qgroup_show" "guestfs_btrfs_quota_enable" "guestfs_btrfs_quota_rescan" "guestfs_btrfs_replace" "guestfs_btrfs_rescue_chunk_recover" "guestfs_btrfs_rescue_super_recover" "guestfs_btrfs_scrub_cancel" "guestfs_btrfs_scrub_resume" "guestfs_btrfs_scrub_start" "guestfs_btrfs_scrub_status" "guestfs_btrfs_set_seeding" "guestfs_btrfs_subvolume_create" "guestfs_btrfs_subvolume_delete" "guestfs_btrfs_subvolume_get_default" "guestfs_btrfs_subvolume_list" "guestfs_btrfs_subvolume_set_default" "guestfs_btrfs_subvolume_show" "guestfs_btrfs_subvolume_snapshot" "guestfs_btrfstune_enable_extended_inode_refs" "guestfs_btrfstune_enable_skinny_metadata_extent_refs" "guestfs_btrfstune_seeding" "guestfs_mkfs_btrfs" extlinux The following functions: "guestfs_extlinux" fstrim The following functions: "guestfs_fstrim" gdisk The following functions: "guestfs_part_expand_gpt" "guestfs_part_get_disk_guid" "guestfs_part_get_gpt_guid" "guestfs_part_get_gpt_type" "guestfs_part_set_disk_guid" "guestfs_part_set_disk_guid_random" "guestfs_part_set_gpt_guid" "guestfs_part_set_gpt_type" grub The following functions: "guestfs_grub_install" hivex The following functions: "guestfs_hivex_close" "guestfs_hivex_commit" "guestfs_hivex_node_add_child" "guestfs_hivex_node_children" "guestfs_hivex_node_delete_child" "guestfs_hivex_node_get_child" "guestfs_hivex_node_get_value" "guestfs_hivex_node_name" "guestfs_hivex_node_parent" "guestfs_hivex_node_set_value" "guestfs_hivex_node_values" "guestfs_hivex_open" "guestfs_hivex_root" "guestfs_hivex_value_key" "guestfs_hivex_value_type" "guestfs_hivex_value_value" inotify The following functions: "guestfs_inotify_add_watch" "guestfs_inotify_close" "guestfs_inotify_files" "guestfs_inotify_init" "guestfs_inotify_read" "guestfs_inotify_rm_watch" journal The following functions: "guestfs_internal_journal_get" "guestfs_journal_close" "guestfs_journal_get_data_threshold" "guestfs_journal_get_realtime_usec" "guestfs_journal_next" "guestfs_journal_open" "guestfs_journal_set_data_threshold" "guestfs_journal_skip" ldm The following functions: "guestfs_ldmtool_create_all" "guestfs_ldmtool_diskgroup_disks" "guestfs_ldmtool_diskgroup_name" "guestfs_ldmtool_diskgroup_volumes" "guestfs_ldmtool_remove_all" "guestfs_ldmtool_scan" "guestfs_ldmtool_scan_devices" "guestfs_ldmtool_volume_hint" "guestfs_ldmtool_volume_partitions" "guestfs_ldmtool_volume_type" "guestfs_list_ldm_partitions" "guestfs_list_ldm_volumes" libtsk The following functions: "guestfs_internal_filesystem_walk" "guestfs_internal_find_inode" linuxcaps The following functions: "guestfs_cap_get_file" "guestfs_cap_set_file" linuxfsuuid The following functions: "guestfs_mke2fs_JU" "guestfs_mke2journal_U" "guestfs_mkswap_U" "guestfs_swapoff_uuid" "guestfs_swapon_uuid" linuxmodules The following functions: "guestfs_modprobe" linuxxattrs The following functions: "guestfs_getxattr" "guestfs_getxattrs" "guestfs_internal_lxattrlist" "guestfs_lgetxattr" "guestfs_lgetxattrs" "guestfs_lremovexattr" "guestfs_lsetxattr" "guestfs_removexattr" "guestfs_setxattr" luks The following functions: "guestfs_luks_add_key" "guestfs_luks_close" "guestfs_luks_format" "guestfs_luks_format_cipher" "guestfs_luks_kill_slot" "guestfs_luks_open" "guestfs_luks_open_ro" lvm2 The following functions: "guestfs_lvcreate" "guestfs_lvcreate_free" "guestfs_lvm_remove_all" "guestfs_lvm_set_filter" "guestfs_lvremove" "guestfs_lvresize" "guestfs_lvresize_free" "guestfs_lvs" "guestfs_lvs_full" "guestfs_pvchange_uuid" "guestfs_pvchange_uuid_all" "guestfs_pvcreate" "guestfs_pvremove" "guestfs_pvresize" "guestfs_pvresize_size" "guestfs_pvs" "guestfs_pvs_full" "guestfs_vg_activate" "guestfs_vg_activate_all" "guestfs_vgchange_uuid" "guestfs_vgchange_uuid_all" "guestfs_vgcreate" "guestfs_vgmeta" "guestfs_vgremove" "guestfs_vgs" "guestfs_vgs_full" mdadm The following functions: "guestfs_md_create" "guestfs_md_detail" "guestfs_md_stat" "guestfs_md_stop" mknod The following functions: "guestfs_mkfifo" "guestfs_mknod" "guestfs_mknod_b" "guestfs_mknod_c" ntfs3g The following functions: "guestfs_ntfs_3g_probe" "guestfs_ntfsclone_in" "guestfs_ntfsclone_out" "guestfs_ntfsfix" ntfsprogs The following functions: "guestfs_ntfsresize" "guestfs_ntfsresize_size" rsync The following functions: "guestfs_rsync" "guestfs_rsync_in" "guestfs_rsync_out" scrub The following functions: "guestfs_scrub_device" "guestfs_scrub_file" "guestfs_scrub_freespace" selinux The following functions: "guestfs_getcon" "guestfs_setcon" selinuxrelabel The following functions: "guestfs_selinux_relabel" sleuthkit The following functions: "guestfs_download_blocks" "guestfs_download_inode" squashfs The following functions: "guestfs_mksquashfs" syslinux The following functions: "guestfs_syslinux" wipefs The following functions: "guestfs_wipefs" xfs The following functions: "guestfs_xfs_admin" "guestfs_xfs_growfs" "guestfs_xfs_info" "guestfs_xfs_repair" xz The following functions: "guestfs_txz_in" "guestfs_txz_out" zerofree The following functions: "guestfs_zerofree" FILESYSTEM AVAILABLE The "guestfs_filesystem_available" call tests whether a filesystem type is supported by the appliance kernel. This is mainly useful as a negative test. If this returns true, it doesn't mean that a particular filesystem can be mounted, since filesystems can fail for other reasons such as it being a later version of the filesystem, or having incompatible features. GUESTFISH supported COMMAND In guestfish(3) there is a handy interactive command "supported" which prints out the available groups and whether they are supported by this build of libguestfs. Note however that you have to do "run" first. SINGLE CALLS AT COMPILE TIME Since version 1.5.8, "<guestfs.h>" defines symbols for each C API function, such as: #define GUESTFS_HAVE_DD 1 if "guestfs_dd" is available. Before version 1.5.8, if you needed to test whether a single libguestfs function is available at compile time, we recommended using build tools such as autoconf or cmake. For example in autotools you could use: AC_CHECK_LIB([guestfs],[guestfs_create]) AC_CHECK_FUNCS([guestfs_dd]) which would result in "HAVE_GUESTFS_DD" being either defined or not defined in your program. SINGLE CALLS AT RUN TIME Testing at compile time doesn't guarantee that a function really exists in the library. The reason is that you might be dynamically linked against a previous libguestfs.so (dynamic library) which doesn't have the call. This situation unfortunately results in a segmentation fault, which is a shortcoming of the C dynamic linking system itself. You can use dlopen(3) to test if a function is available at run time, as in this example program (note that you still need the compile time check as well): #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <dlfcn.h> #include <guestfs.h> main () { #ifdef GUESTFS_HAVE_DD void *dl; int has_function; /* Test if the function guestfs_dd is really available. */ dl = dlopen (NULL, RTLD_LAZY); if (!dl) { fprintf (stderr, "dlopen: %s\n", dlerror ()); exit (EXIT_FAILURE); } has_function = dlsym (dl, "guestfs_dd") != NULL; dlclose (dl); if (!has_function) printf ("this libguestfs.so does NOT have guestfs_dd function\n"); else { printf ("this libguestfs.so has guestfs_dd function\n"); /* Now it's safe to call guestfs_dd (g, "foo", "bar"); */ } #else printf ("guestfs_dd function was not found at compile time\n"); #endif } You may think the above is an awful lot of hassle, and it is. There are other ways outside of the C linking system to ensure that this kind of incompatibility never arises, such as using package versioning: Requires: libguestfs >= 1.0.80
CALLS WITH OPTIONAL ARGUMENTS
A recent feature of the API is the introduction of calls which take optional arguments. In C these are declared 3 ways. The main way is as a call which takes variable arguments (ie. "..."), as in this example: int guestfs_add_drive_opts (guestfs_h *g, const char *filename, ...); Call this with a list of optional arguments, terminated by "-1". So to call with no optional arguments specified: guestfs_add_drive_opts (g, filename, -1); With a single optional argument: guestfs_add_drive_opts (g, filename, GUESTFS_ADD_DRIVE_OPTS_FORMAT, "qcow2", -1); With two: guestfs_add_drive_opts (g, filename, GUESTFS_ADD_DRIVE_OPTS_FORMAT, "qcow2", GUESTFS_ADD_DRIVE_OPTS_READONLY, 1, -1); and so forth. Don't forget the terminating "-1" otherwise Bad Things will happen! USING va_list FOR OPTIONAL ARGUMENTS The second variant has the same name with the suffix "_va", which works the same way but takes a "va_list". See the C manual for details. For the example function, this is declared: int guestfs_add_drive_opts_va (guestfs_h *g, const char *filename, va_list args); CONSTRUCTING OPTIONAL ARGUMENTS The third variant is useful where you need to construct these calls. You pass in a structure where you fill in the optional fields. The structure has a bitmask as the first element which you must set to indicate which fields you have filled in. For our example function the structure and call are declared: struct guestfs_add_drive_opts_argv { uint64_t bitmask; int readonly; const char *format; /* ... */ }; int guestfs_add_drive_opts_argv (guestfs_h *g, const char *filename, const struct guestfs_add_drive_opts_argv *optargs); You could call it like this: struct guestfs_add_drive_opts_argv optargs = { .bitmask = GUESTFS_ADD_DRIVE_OPTS_READONLY_BITMASK | GUESTFS_ADD_DRIVE_OPTS_FORMAT_BITMASK, .readonly = 1, .format = "qcow2" }; guestfs_add_drive_opts_argv (g, filename, &optargs); Notes: • The "_BITMASK" suffix on each option name when specifying the bitmask. • You do not need to fill in all fields of the structure. • There must be a one-to-one correspondence between fields of the structure that are filled in, and bits set in the bitmask. OPTIONAL ARGUMENTS IN OTHER LANGUAGES In other languages, optional arguments are expressed in the way that is natural for that language. We refer you to the language-specific documentation for more details on that. For guestfish, see "OPTIONAL ARGUMENTS" in guestfish(1).
EVENTS
SETTING CALLBACKS TO HANDLE EVENTS Note: This section documents the generic event mechanism introduced in libguestfs 1.10, which you should use in new code if possible. The old functions "guestfs_set_log_message_callback", "guestfs_set_subprocess_quit_callback", "guestfs_set_launch_done_callback", "guestfs_set_close_callback" and "guestfs_set_progress_callback" are no longer documented in this manual page. Because of the ABI guarantee, the old functions continue to work. Handles generate events when certain things happen, such as log messages being generated, progress messages during long-running operations, or the handle being closed. The API calls described below let you register a callback to be called when events happen. You can register multiple callbacks (for the same, different or overlapping sets of events), and individually remove callbacks. If callbacks are not removed, then they remain in force until the handle is closed. In the current implementation, events are only generated synchronously: that means that events (and hence callbacks) can only happen while you are in the middle of making another libguestfs call. The callback is called in the same thread. Events may contain a payload, usually nothing (void), an array of 64 bit unsigned integers, or a message buffer. Payloads are discussed later on. CLASSES OF EVENTS GUESTFS_EVENT_CLOSE (payload type: void) The callback function will be called while the handle is being closed (synchronously from "guestfs_close"). Note that libguestfs installs an atexit(3) handler to try to clean up handles that are open when the program exits. This means that this callback might be called indirectly from exit(3), which can cause unexpected problems in higher-level languages (eg. if your HLL interpreter has already been cleaned up by the time this is called, and if your callback then jumps into some HLL function). If no callback is registered: the handle is closed without any callback being invoked. GUESTFS_EVENT_SUBPROCESS_QUIT (payload type: void) The callback function will be called when the child process quits, either asynchronously or if killed by "guestfs_kill_subprocess". (This corresponds to a transition from any state to the CONFIG state). If no callback is registered: the event is ignored. GUESTFS_EVENT_LAUNCH_DONE (payload type: void) The callback function will be called when the child process becomes ready first time after it has been launched. (This corresponds to a transition from LAUNCHING to the READY state). If no callback is registered: the event is ignored. GUESTFS_EVENT_PROGRESS (payload type: array of 4 x uint64_t) Some long-running operations can generate progress messages. If this callback is registered, then it will be called each time a progress message is generated (usually two seconds after the operation started, and three times per second thereafter until it completes, although the frequency may change in future versions). The callback receives in the payload four unsigned 64 bit numbers which are (in order): "proc_nr", "serial", "position", "total". The units of "total" are not defined, although for some operations "total" may relate in some way to the amount of data to be transferred (eg. in bytes or megabytes), and "position" may be the portion which has been transferred. The only defined and stable parts of the API are: • The callback can display to the user some type of progress bar or indicator which shows the ratio of "position":"total". • 0 <= "position" <= "total" • If any progress notification is sent during a call, then a final progress notification is always sent when "position" = "total" (unless the call fails with an error). This is to simplify caller code, so callers can easily set the progress indicator to "100%" at the end of the operation, without requiring special code to detect this case. • For some calls we are unable to estimate the progress of the call, but we can still generate progress messages to indicate activity. This is known as "pulse mode", and is directly supported by certain progress bar implementations (eg. GtkProgressBar). For these calls, zero or more progress messages are generated with "position = 0" and "total = 1", followed by a final message with "position = total = 1". As noted above, if the call fails with an error then the final message may not be generated. The callback also receives the procedure number ("proc_nr") and serial number ("serial") of the call. These are only useful for debugging protocol issues, and the callback can normally ignore them. The callback may want to print these numbers in error messages or debugging messages. If no callback is registered: progress messages are discarded. GUESTFS_EVENT_APPLIANCE (payload type: message buffer) The callback function is called whenever a log message is generated by qemu, the appliance kernel, guestfsd (daemon), or utility programs. If the verbose flag ("guestfs_set_verbose") is set before launch ("guestfs_launch") then additional debug messages are generated. If no callback is registered: the messages are discarded unless the verbose flag is set in which case they are sent to stderr. You can override the printing of verbose messages to stderr by setting up a callback. GUESTFS_EVENT_LIBRARY (payload type: message buffer) The callback function is called whenever a log message is generated by the library part of libguestfs. If the verbose flag ("guestfs_set_verbose") is set then additional debug messages are generated. If no callback is registered: the messages are discarded unless the verbose flag is set in which case they are sent to stderr. You can override the printing of verbose messages to stderr by setting up a callback. GUESTFS_EVENT_WARNING (payload type: message buffer) The callback function is called whenever a warning message is generated by the library part of libguestfs. If no callback is registered: the messages are printed to stderr. You can override the printing of warning messages to stderr by setting up a callback. GUESTFS_EVENT_TRACE (payload type: message buffer) The callback function is called whenever a trace message is generated. This only applies if the trace flag ("guestfs_set_trace") is set. If no callback is registered: the messages are sent to stderr. You can override the printing of trace messages to stderr by setting up a callback. GUESTFS_EVENT_ENTER (payload type: function name) The callback function is called whenever a libguestfs function is entered. The payload is a string which contains the name of the function that we are entering (not including "guestfs_" prefix). Note that libguestfs functions can call themselves, so you may see many events from a single call. A few libguestfs functions do not generate this event. If no callback is registered: the event is ignored. GUESTFS_EVENT_LIBVIRT_AUTH (payload type: libvirt URI) For any API function that opens a libvirt connection, this event may be generated to indicate that libvirt demands authentication information. See "LIBVIRT AUTHENTICATION" below. If no callback is registered: "virConnectAuthPtrDefault" is used (suitable for command-line programs only). EVENT API guestfs_set_event_callback int guestfs_set_event_callback (guestfs_h *g, guestfs_event_callback cb, uint64_t event_bitmask, int flags, void *opaque); This function registers a callback ("cb") for all event classes in the "event_bitmask". For example, to register for all log message events, you could call this function with the bitmask "GUESTFS_EVENT_APPLIANCE|GUESTFS_EVENT_LIBRARY|GUESTFS_EVENT_WARNING". To register a single callback for all possible classes of events, use "GUESTFS_EVENT_ALL". "flags" should always be passed as 0. "opaque" is an opaque pointer which is passed to the callback. You can use it for any purpose. The return value is the event handle (an integer) which you can use to delete the callback (see below). If there is an error, this function returns "-1", and sets the error in the handle in the usual way (see "guestfs_last_error" etc.) Callbacks remain in effect until they are deleted, or until the handle is closed. In the case where multiple callbacks are registered for a particular event class, all of the callbacks are called. The order in which multiple callbacks are called is not defined. guestfs_delete_event_callback void guestfs_delete_event_callback (guestfs_h *g, int event_handle); Delete a callback that was previously registered. "event_handle" should be the integer that was returned by a previous call to "guestfs_set_event_callback" on the same handle. guestfs_event_to_string char *guestfs_event_to_string (uint64_t event); "event" is either a single event or a bitmask of events. This returns a string representation (useful for debugging or printing events). A single event is returned as the name in lower case, eg. "close". A bitmask of several events is returned as a comma-separated list, eg. "close,progress". If zero is passed, then the empty string "" is returned. On success this returns a string. On error it returns NULL and sets "errno". The returned string must be freed by the caller. guestfs_event_callback typedef void (*guestfs_event_callback) ( guestfs_h *g, void *opaque, uint64_t event, int event_handle, int flags, const char *buf, size_t buf_len, const uint64_t *array, size_t array_len); This is the type of the event callback function that you have to provide. The basic parameters are: the handle ("g"), the opaque user pointer ("opaque"), the event class (eg. "GUESTFS_EVENT_PROGRESS"), the event handle, and "flags" which in the current API you should ignore. The remaining parameters contain the event payload (if any). Each event may contain a payload, which usually relates to the event class, but for future proofing your code should be written to handle any payload for any event class. "buf" and "buf_len" contain a message buffer (if "buf_len == 0", then there is no message buffer). Note that this message buffer can contain arbitrary 8 bit data, including NUL bytes. "array" and "array_len" is an array of 64 bit unsigned integers. At the moment this is only used for progress messages. EXAMPLE: CAPTURING LOG MESSAGES A working program demonstrating this can be found in examples/debug-logging.c in the source of libguestfs. One motivation for the generic event API was to allow GUI programs to capture debug and other messages. In libguestfs ≤ 1.8 these were sent unconditionally to "stderr". Events associated with log messages are: "GUESTFS_EVENT_LIBRARY", "GUESTFS_EVENT_APPLIANCE", "GUESTFS_EVENT_WARNING" and "GUESTFS_EVENT_TRACE". (Note that error messages are not events; you must capture error messages separately). Programs have to set up a callback to capture the classes of events of interest: int eh = guestfs_set_event_callback (g, message_callback, GUESTFS_EVENT_LIBRARY | GUESTFS_EVENT_APPLIANCE | GUESTFS_EVENT_WARNING | GUESTFS_EVENT_TRACE, 0, NULL) == -1) if (eh == -1) { // handle error in the usual way } The callback can then direct messages to the appropriate place. In this example, messages are directed to syslog: static void message_callback ( guestfs_h *g, void *opaque, uint64_t event, int event_handle, int flags, const char *buf, size_t buf_len, const uint64_t *array, size_t array_len) { const int priority = LOG_USER|LOG_INFO; if (buf_len > 0) syslog (priority, "event 0x%lx: %s", event, buf); } LIBVIRT AUTHENTICATION Some libguestfs API calls can open libvirt connections. Currently the only ones are "guestfs_add_domain"; and "guestfs_launch" if the libvirt backend has been selected. Libvirt connections may require authentication, for example if they need to access a remote server or to access root services from non-root. Libvirt authentication happens via a callback mechanism, see http://libvirt.org/guide/html/Application_Development_Guide-Connections.html You may provide libvirt authentication data by registering a callback for events of type "GUESTFS_EVENT_LIBVIRT_AUTH". If no such event is registered, then libguestfs uses a libvirt function that provides command-line prompts ("virConnectAuthPtrDefault"). This is only suitable for command-line libguestfs programs. To provide authentication, first call "guestfs_set_libvirt_supported_credentials" with the list of credentials your program knows how to provide. Second, register a callback for the "GUESTFS_EVENT_LIBVIRT_AUTH" event. The event handler will be called when libvirt is requesting authentication information. In the event handler, call "guestfs_get_libvirt_requested_credentials" to get a list of the credentials that libvirt is asking for. You then need to ask (eg. the user) for each credential, and call "guestfs_set_libvirt_requested_credential" with the answer. Note that for each credential, additional information may be available via the calls "guestfs_get_libvirt_requested_credential_prompt", "guestfs_get_libvirt_requested_credential_challenge" or "guestfs_get_libvirt_requested_credential_defresult". The example program below should make this clearer. There is also a more substantial working example program supplied with the libguestfs sources, called libvirt-auth.c. main () { guestfs_h *g; char *creds[] = { "authname", "passphrase", NULL }; int r, eh; g = guestfs_create (); if (!g) exit (EXIT_FAILURE); /* Tell libvirt what credentials the program supports. */ r = guestfs_set_libvirt_supported_credentials (g, creds); if (r == -1) exit (EXIT_FAILURE); /* Set up the event handler. */ eh = guestfs_set_event_callback ( g, do_auth, GUESTFS_EVENT_LIBVIRT_AUTH, 0, NULL); if (eh == -1) exit (EXIT_FAILURE); /* An example of a call that may ask for credentials. */ r = guestfs_add_domain ( g, "dom", GUESTFS_ADD_DOMAIN_LIBVIRTURI, "qemu:///system", -1); if (r == -1) exit (EXIT_FAILURE); exit (EXIT_SUCCESS); } static void do_auth (guestfs_h *g, void *opaque, uint64_t event, int event_handle, int flags, const char *buf, size_t buf_len, const uint64_t *array, size_t array_len) { char **creds; size_t i; char *prompt; char *reply; size_t replylen; int r; // buf will be the libvirt URI. buf_len may be ignored. printf ("Authentication required for libvirt conn '%s'\n", buf); // Ask libguestfs what credentials libvirt is demanding. creds = guestfs_get_libvirt_requested_credentials (g); if (creds == NULL) exit (EXIT_FAILURE); // Now ask the user for answers. for (i = 0; creds[i] != NULL; ++i) { if (strcmp (creds[i], "authname") == 0 || strcmp (creds[i], "passphrase") == 0) { prompt = guestfs_get_libvirt_requested_credential_prompt (g, i); if (prompt && strcmp (prompt, "") != 0) printf ("%s: ", prompt); free (prompt); // Some code here to ask for the credential. // ... // Put the reply in 'reply', length 'replylen' (bytes). r = guestfs_set_libvirt_requested_credential (g, i, reply, replylen); if (r == -1) exit (EXIT_FAILURE); } free (creds[i]); } free (creds); }
CANCELLING LONG TRANSFERS
Some operations can be cancelled by the caller while they are in progress. Currently only operations that involve uploading or downloading data can be cancelled (technically: operations that have "FileIn" or "FileOut" parameters in the generator). To cancel the transfer, call "guestfs_user_cancel". For more information, read the description of "guestfs_user_cancel".
PRIVATE DATA AREA
You can attach named pieces of private data to the libguestfs handle, fetch them by name, and walk over them, for the lifetime of the handle. This is called the private data area and is only available from the C API. To attach a named piece of data, use the following call: void guestfs_set_private (guestfs_h *g, const char *key, void *data); "key" is the name to associate with this data, and "data" is an arbitrary pointer (which can be "NULL"). Any previous item with the same key is overwritten. You can use any "key" string you want, but avoid keys beginning with an underscore character (libguestfs uses those for its own internal purposes, such as implementing language bindings). It is recommended that you prefix the key with some unique string to avoid collisions with other users. To retrieve the pointer, use: void *guestfs_get_private (guestfs_h *g, const char *key); This function returns "NULL" if either no data is found associated with "key", or if the user previously set the "key"'s "data" pointer to "NULL". Libguestfs does not try to look at or interpret the "data" pointer in any way. As far as libguestfs is concerned, it need not be a valid pointer at all. In particular, libguestfs does not try to free the data when the handle is closed. If the data must be freed, then the caller must either free it before calling "guestfs_close" or must set up a close callback to do it (see "GUESTFS_EVENT_CLOSE"). To walk over all entries, use these two functions: void *guestfs_first_private (guestfs_h *g, const char **key_rtn); void *guestfs_next_private (guestfs_h *g, const char **key_rtn); "guestfs_first_private" returns the first key, pointer pair ("first" does not have any particular meaning -- keys are not returned in any defined order). A pointer to the key is returned in *key_rtn and the corresponding data pointer is returned from the function. "NULL" is returned if there are no keys stored in the handle. "guestfs_next_private" returns the next key, pointer pair. The return value of this function is "NULL" if there are no further entries to return. Notes about walking over entries: • You must not call "guestfs_set_private" while walking over the entries. • The handle maintains an internal iterator which is reset when you call "guestfs_first_private". This internal iterator is invalidated when you call "guestfs_set_private". • If you have set the data pointer associated with a key to "NULL", ie: guestfs_set_private (g, key, NULL); then that "key" is not returned when walking. • *key_rtn is only valid until the next call to "guestfs_first_private", "guestfs_next_private" or "guestfs_set_private". The following example code shows how to print all keys and data pointers that are associated with the handle "g": const char *key; void *data = guestfs_first_private (g, &key); while (data != NULL) { printf ("key = %s, data = %p\n", key, data); data = guestfs_next_private (g, &key); } More commonly you are only interested in keys that begin with an application-specific prefix "foo_". Modify the loop like so: const char *key; void *data = guestfs_first_private (g, &key); while (data != NULL) { if (strncmp (key, "foo_", strlen ("foo_")) == 0) printf ("key = %s, data = %p\n", key, data); data = guestfs_next_private (g, &key); } If you need to modify keys while walking, then you have to jump back to the beginning of the loop. For example, to delete all keys prefixed with "foo_": const char *key; void *data; again: data = guestfs_first_private (g, &key); while (data != NULL) { if (strncmp (key, "foo_", strlen ("foo_")) == 0) { guestfs_set_private (g, key, NULL); /* note that 'key' pointer is now invalid, and so is the internal iterator */ goto again; } data = guestfs_next_private (g, &key); } Note that the above loop is guaranteed to terminate because the keys are being deleted, but other manipulations of keys within the loop might not terminate unless you also maintain an indication of which keys have been visited.
SYSTEMTAP
The libguestfs C library can be probed using systemtap or DTrace. This is true of any library, not just libguestfs. However libguestfs also contains static markers to help in probing internal operations. You can list all the static markers by doing: stap -l 'process("/usr/lib*/libguestfs.so.0") .provider("guestfs").mark("*")' Note: These static markers are not part of the stable API and may change in future versions. SYSTEMTAP SCRIPT EXAMPLE This script contains examples of displaying both the static markers and some ordinary C entry points: global last; function display_time () { now = gettimeofday_us (); delta = 0; if (last > 0) delta = now - last; last = now; printf ("%d (+%d):", now, delta); } probe begin { last = 0; printf ("ready\n"); } /* Display all calls to static markers. */ probe process("/usr/lib*/libguestfs.so.0") .provider("guestfs").mark("*") ? { display_time(); printf ("\t%s %s\n", $$name, $$parms); } /* Display all calls to guestfs_mkfs* functions. */ probe process("/usr/lib*/libguestfs.so.0") .function("guestfs_mkfs*") ? { display_time(); printf ("\t%s %s\n", probefunc(), $$parms); } The script above can be saved to test.stap and run using the stap(1) program. Note that you either have to be root, or you have to add yourself to several special stap groups. Consult the systemtap documentation for more information. # stap /tmp/test.stap ready In another terminal, run a guestfish command such as this: guestfish -N fs In the first terminal, stap trace output similar to this is shown: 1318248056692655 (+0): launch_start 1318248056692850 (+195): launch_build_appliance_start 1318248056818285 (+125435): launch_build_appliance_end 1318248056838059 (+19774): launch_run_qemu 1318248061071167 (+4233108): launch_end 1318248061280324 (+209157): guestfs_mkfs g=0x1024ab0 fstype=0x46116f device=0x1024e60
LIBGUESTFS VERSION NUMBERS
Since April 2010, libguestfs has started to make separate development and stable releases, along with corresponding branches in our git repository. These separate releases can be identified by version number: even numbers for stable: 1.2.x, 1.4.x, ... .-------- odd numbers for development: 1.3.x, 1.5.x, ... | v 1 . 3 . 5 ^ ^ | | | `-------- sub-version | `------ always '1' because we don't change the ABI Thus "1.3.5" is the 5th update to the development branch "1.3". As time passes we cherry pick fixes from the development branch and backport those into the stable branch, the effect being that the stable branch should get more stable and less buggy over time. So the stable releases are ideal for people who don't need new features but would just like the software to work. Our criteria for backporting changes are: • Documentation changes which don't affect any code are backported unless the documentation refers to a future feature which is not in stable. • Bug fixes which are not controversial, fix obvious problems, and have been well tested are backported. • Simple rearrangements of code which shouldn't affect how it works get backported. This is so that the code in the two branches doesn't get too far out of step, allowing us to backport future fixes more easily. • We don't backport new features, new APIs, new tools etc, except in one exceptional case: the new feature is required in order to implement an important bug fix. A new stable branch starts when we think the new features in development are substantial and compelling enough over the current stable branch to warrant it. When that happens we create new stable and development versions 1.N.0 and 1.(N+1).0 [N is even]. The new dot- oh release won't necessarily be so stable at this point, but by backporting fixes from development, that branch will stabilize over time.
LIMITS
PROTOCOL LIMITS Internally libguestfs uses a message-based protocol to pass API calls and their responses to and from a small "appliance" (see guestfs-internals(1) for plenty more detail about this). The maximum message size used by the protocol is slightly less than 4 MB. For some API calls you may need to be aware of this limit. The API calls which may be affected are individually documented, with a link back to this section of the documentation. In libguestfs < 1.19.32, several calls had to encode either their entire argument list or their entire return value (or sometimes both) in a single protocol message, and this gave them an arbitrary limitation on how much data they could handle. For example, "guestfs_cat" could only download a file if it was less than around 4 MB in size. In later versions of libguestfs, some of these limits have been removed. The APIs which were previously limited but are now unlimited (except perhaps by available memory) are listed below. To find out if a specific API is subject to protocol limits, check for the warning in the API documentation which links to this section, and remember to check the version of the documentation that matches the version of libguestfs you are using. "guestfs_cat", "guestfs_find", "guestfs_read_file", "guestfs_read_lines", "guestfs_write", "guestfs_write_append", "guestfs_lstatlist", "guestfs_lxattrlist", "guestfs_readlinklist", "guestfs_ls". See also "UPLOADING" and "DOWNLOADING" for further information about copying large amounts of data into or out of a filesystem. MAXIMUM NUMBER OF DISKS In libguestfs ≥ 1.19.7, you can query the maximum number of disks that may be added by calling "guestfs_max_disks". In earlier versions of libguestfs (ie. where this call is not available) you should assume the maximum is 25. The rest of this section covers implementation details, which could change in future. When using virtio-scsi disks (the default if available in qemu) the current limit is 255 disks. When using virtio-blk (the old default) the limit is around 27 disks, but may vary according to implementation details and whether the network is enabled. Virtio-scsi as used by libguestfs is configured to use one target per disk, and 256 targets are available. Virtio-blk consumes 1 virtual PCI slot per disk, and PCI is limited to 31 slots, but some of these are used for other purposes. One virtual disk is used by libguestfs internally. Before libguestfs 1.19.7, disk names had to be a single character (eg. /dev/sda through /dev/sdz), and since one disk is reserved, that meant the limit was 25. This has been fixed in more recent versions. In libguestfs ≥ 1.20 it is possible to hot plug disks. See "HOTPLUGGING". MAXIMUM NUMBER OF PARTITIONS PER DISK Virtio limits the maximum number of partitions per disk to 15. This is because it reserves 4 bits for the minor device number (thus /dev/vda, and /dev/vda1 through /dev/vda15). If you attach a disk with more than 15 partitions, the extra partitions are ignored by libguestfs. MAXIMUM SIZE OF A DISK Probably the limit is between 2**63-1 and 2**64-1 bytes. We have tested block devices up to 1 exabyte (2**60 or 1,152,921,504,606,846,976 bytes) using sparse files backed by an XFS host filesystem. Although libguestfs probably does not impose any limit, the underlying host storage will. If you store disk images on a host ext4 filesystem, then the maximum size will be limited by the maximum ext4 file size (currently 16 TB). If you store disk images as host logical volumes then you are limited by the maximum size of an LV. For the hugest disk image files, we recommend using XFS on the host for storage. MAXIMUM SIZE OF A PARTITION The MBR (ie. classic MS-DOS) partitioning scheme uses 32 bit sector numbers. Assuming a 512 byte sector size, this means that MBR cannot address a partition located beyond 2 TB on the disk. It is recommended that you use GPT partitions on disks which are larger than this size. GPT uses 64 bit sector numbers and so can address partitions which are theoretically larger than the largest disk we could support. MAXIMUM SIZE OF A FILESYSTEM, FILES, DIRECTORIES This depends on the filesystem type. libguestfs itself does not impose any known limit. Consult Wikipedia or the filesystem documentation to find out what these limits are. MAXIMUM UPLOAD AND DOWNLOAD The API functions "guestfs_upload", "guestfs_download", "guestfs_tar_in", "guestfs_tar_out" and the like allow unlimited sized uploads and downloads. INSPECTION LIMITS The inspection code has several arbitrary limits on things like the size of Windows Registry hive it will read, and the length of product name. These are intended to stop a malicious guest from consuming arbitrary amounts of memory and disk space on the host, and should not be reached in practice. See the source code for more information.
ENVIRONMENT VARIABLES
LIBGUESTFS_APPEND Pass additional options to the guest kernel. LIBGUESTFS_ATTACH_METHOD This is the old way to set "LIBGUESTFS_BACKEND". LIBGUESTFS_BACKEND Choose the default way to create the appliance. See "guestfs_set_backend" and "BACKEND". LIBGUESTFS_BACKEND_SETTINGS A colon-separated list of backend-specific settings. See "BACKEND", "BACKEND SETTINGS". LIBGUESTFS_CACHEDIR The location where libguestfs will cache its appliance, when using a supermin appliance. The appliance is cached and shared between all handles which have the same effective user ID. If "LIBGUESTFS_CACHEDIR" is not set, then "TMPDIR" is used. If "TMPDIR" is not set, then /var/tmp is used. See also "LIBGUESTFS_TMPDIR", "guestfs_set_cachedir". LIBGUESTFS_DEBUG Set "LIBGUESTFS_DEBUG=1" to enable verbose messages. This has the same effect as calling "guestfs_set_verbose (g, 1)". LIBGUESTFS_HV Set the default hypervisor (usually qemu) binary that libguestfs uses. If not set, then the qemu which was found at compile time by the configure script is used. See also "QEMU WRAPPERS" above. LIBGUESTFS_MEMSIZE Set the memory allocated to the qemu process, in megabytes. For example: LIBGUESTFS_MEMSIZE=700 LIBGUESTFS_PATH Set the path that libguestfs uses to search for a supermin appliance. See the discussion of paths in section "PATH" above. LIBGUESTFS_QEMU This is the old way to set "LIBGUESTFS_HV". LIBGUESTFS_TMPDIR The location where libguestfs will store temporary files used by each handle. If "LIBGUESTFS_TMPDIR" is not set, then "TMPDIR" is used. If "TMPDIR" is not set, then /tmp is used. See also "LIBGUESTFS_CACHEDIR", "guestfs_set_tmpdir". LIBGUESTFS_TRACE Set "LIBGUESTFS_TRACE=1" to enable command traces. This has the same effect as calling "guestfs_set_trace (g, 1)". PATH Libguestfs may run some external programs, and relies on $PATH being set to a reasonable value. If using the libvirt backend, libvirt will not work at all unless $PATH contains the path of qemu/KVM. Note that PHP by default removes $PATH from the environment which tends to break everything. SUPERMIN_KERNEL SUPERMIN_KERNEL_VERSION SUPERMIN_MODULES These three environment variables allow the kernel that libguestfs uses in the appliance to be selected. If $SUPERMIN_KERNEL is not set, then the most recent host kernel is chosen. For more information about kernel selection, see supermin(1). TMPDIR See "LIBGUESTFS_CACHEDIR", "LIBGUESTFS_TMPDIR". XDG_RUNTIME_DIR This directory represents a user-specific directory for storing non-essential runtime files. If it is set, then is used to store temporary sockets. Otherwise, /tmp is used. See also "get-sockdir", http://www.freedesktop.org/wiki/Specifications/basedir-spec/.
SEE ALSO
Examples written in C: guestfs-examples(3). Language bindings: guestfs-erlang(3), guestfs-gobject(3), guestfs-golang(3), guestfs-java(3), guestfs-lua(3), guestfs-ocaml(3), guestfs-perl(3), guestfs-python(3), guestfs-ruby(3). Tools: guestfish(1), guestmount(1), virt-alignment-scan(1), virt-builder(1), virt-cat(1), virt-copy-in(1), virt-copy-out(1), virt-customize(1), virt-df(1), virt-diff(1), virt-edit(1), virt-filesystems(1), virt-format(1), virt-inspector(1), virt-list-filesystems(1), virt-list-partitions(1), virt-log(1), virt-ls(1), virt-make-fs(1), virt-p2v(1), virt-rescue(1), virt-resize(1), virt-sparsify(1), virt-sysprep(1), virt-tail(1), virt-tar(1), virt-tar-in(1), virt-tar-out(1), virt-v2v(1), virt-win-reg(1). Other libguestfs topics: guestfs-building(1), guestfs-faq(1), guestfs-hacking(1), guestfs-internals(1), guestfs-performance(1), guestfs-release-notes(1), guestfs-security(1), guestfs-testing(1), libguestfs-test-tool(1), libguestfs-make-fixed-appliance(1). Related manual pages: supermin(1), qemu(1), hivex(3), stap(1), sd-journal(3). Website: http://libguestfs.org/ Tools with a similar purpose: fdisk(8), parted(8), kpartx(8), lvm(8), disktype(1).
AUTHORS
Richard W.M. Jones ("rjones at redhat dot com")
COPYRIGHT
Copyright (C) 2009-2017 Red Hat Inc.
LICENSE
This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
BUGS
To get a list of bugs against libguestfs, use this link: https://bugzilla.redhat.com/buglist.cgi?component=libguestfs&product=Virtualization+Tools To report a new bug against libguestfs, use this link: https://bugzilla.redhat.com/enter_bug.cgi?component=libguestfs&product=Virtualization+Tools When reporting a bug, please supply: • The version of libguestfs. • Where you got libguestfs (eg. which Linux distro, compiled from source, etc) • Describe the bug accurately and give a way to reproduce it. • Run libguestfs-test-tool(1) and paste the complete, unedited output into the bug report.