Provided by: virt-p2v_1.42.4-1_amd64 bug

NAME

       virt-p2v - Convert a physical machine to use KVM

SYNOPSIS

        virt-p2v

        virt-p2v.iso

DESCRIPTION

       Virt-p2v converts a physical machine to run virtualized on KVM, managed by libvirt,
       OpenStack, oVirt, Red Hat Virtualisation (RHV), or one of the other targets supported by
       virt-v2v(1).

       Normally you don’t run the virt-p2v program directly.  Instead you have to boot the
       physical machine using the bootable CD-ROM, ISO or PXE image.  This bootable image
       contains the virt-p2v binary and runs it automatically.  Booting from a CD-ROM/etc is
       required because the disks which are being converted must be quiescent.  It is not safe to
       try to convert a running physical machine where other programs may be modifying the disk
       content at the same time.

       This manual page documents running the virt-p2v program.  To create the bootable image you
       should look at virt-p2v-make-disk(1) or virt-p2v-make-kickstart(1).

NETWORK SETUP

       Virt-p2v runs on the physical machine which you want to convert.  It has to talk to
       another server called the "conversion server" which must have virt-v2v(1) installed on it.
       It always talks to the conversion server over SSH:

        ┌──────────────┐                  ┌─────────────────┐
        │ virt-p2v     │                  │ virt-v2v        │
        │ (physical    │  ssh connection  │ (conversion     │
        │  server)   ╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍▶ server)       │
        └──────────────┘                  └─────────────────┘

       The virt-v2v program on the conversion server does the actual conversion (physical to
       virtual, and virtual to virtual conversions are sufficiently similar that we use the same
       program to do both).

       The SSH connection is always initiated from the physical server.  All data is transferred
       over the SSH connection.  In terms of firewall and network configuration, you only need to
       ensure that the physical server has access to a port (usually TCP port 22) on the
       conversion server.  Note that the physical machine may reconnect several times during the
       conversion process.

       The reverse port forwarding feature of ssh (ie. "ssh -R") is required by virt-p2v, and it
       will not work if this is disabled on the conversion server.  ("AllowTcpForwarding" must be
       "yes" in the sshd_config(5) file on the conversion server).

       The scp (secure copy) feature of ssh is required by virt-p2v so it can send over small
       files (this is not the method by which disks are copied).

       The conversion server does not need to be a physical machine.  It could be a virtual
       machine, as long as it has sufficient memory and disk space to do the conversion, and as
       long as the physical machine can connect directly to its SSH port.  (See also "Resource
       requirements" in virt-v2v(1)).

       Because all of the data on the physical server’s hard drive(s) has to be copied over the
       network, the speed of conversion is largely determined by the speed of the network between
       the two machines.

GUI INTERACTIVE CONFIGURATION

       When you start virt-p2v, you'll see a graphical configuration dialog that walks you
       through connection to the conversion server, asks for the password, which local hard disks
       you want to convert, and other things like the name of the guest to create and the number
       of virtual CPUs to give it.

   SSH CONFIGURATION DIALOG
       When virt-p2v starts up in GUI mode, the first dialog looks like this:

        ┌─────────────────────────────────────────────────────────────┐
        │                           virt-p2v                          │
        │                                                             │
        │ Conversion server: [____________________________] : [22___] │
        │                                                             │
        │         User name: [root__________________________________] │
        │                                                             │
        │          Password: [______________________________________] │
        │                                                             │
        │  SSH Identity URL: [______________________________________] │
        │                                                             │

       In the fields above, you must enter the details of the conversion server: the hostname,
       SSH port number, remote user name, and either the password or SSH identity (private key)
       URL.  The conversion server must have an up to date version of virt-v2v.

       Normally you must log in to the conversion server as root, but if you check the following
       box:

        │                                                             │
        │                    [ ] Use sudo when running virt-v2v       │
        │                                                             │

       then you can log in as another user, and virt-p2v will use the sudo(8) command to elevate
       privileges to root.  Note that sudo must not require a password.

       It is also possible to run virt-v2v on the conversion server entirely as non-root, but
       output modes may be limited.  Consult the virt-v2v(1) manual page for details.

       At the bottom of the dialog are these buttons:

        │                                                             │
        │                     [ Test connection ]                     │
        │                                                             │
        │ [ Configure network ] [ XTerm ] [ About virt-p2v ] [ Next ] │
        │                                                             │
        └─────────────────────────────────────────────────────────────┘

       You must press the "Test connection" button first to test the SSH connection to the
       conversion server.  If that is successful (ie. you have supplied the correct server name,
       user name, password, etc., and a suitable version of virt-v2v is available remotely) then
       press the "Next" button to move to the next dialog.

       You can use the "Configure network" button if you need to assign a static IP address to
       the physical machine, or use Wifi, bonding or other network features.

       The "XTerm" button opens a shell which can be used for diagnostics, manual network
       configuration, and so on.

   DISK AND NETWORK CONFIGURATION DIALOG
       The second configuration dialog lets you configure the details of conversion, including
       what to convert and where to send the guest.

       In the left hand column, starting at the top, the target properties let you select the
       name of the guest (ie. after conversion) and how many virtual CPUs and how much RAM to
       give it.  The defaults come from the physical machine, and you can usually leave them
       unchanged:

        ┌─────────────────────────────────────── ─ ─ ─ ─
        │ Target properties:
        │
        │        Name: [hostname______________]
        │
        │     # vCPUs: [4_____________________]
        │
        │ Memory (MB): [16384_________________]
        │

       The second panel on the left controls the virt-v2v output options.  To understand these
       options it is a really good idea to read the virt-v2v(1) manual page.  You can leave the
       options at the default to create a guest as a disk image plus libvirt XML file located in
       /var/tmp on the conversion host.  This is a good idea if you are a first-time virt-p2v
       user.

        │
        │ Virt-v2v output options:
        │
        │          Output to (-o): [local             ▼]
        │
        │      Output conn. (-oc): [___________________]
        │
        │    Output storage (-os): [/var/tmp___________]
        │
        │     Output format (-of): [___________________]
        │
        │ Output allocation (-oa): [sparse            ▼]
        │
        │     Misc. options (-oo): [___________________]
        │

       All output options and paths are relative to the conversion server (not to the physical
       server).

       Note that the "Misc. options" text entry behaves differently from the other text entries
       -- its format is identical to that of the "p2v.output.misc" kernel command line option.
       Namely, the text entry contains a comma-separated list of miscellaneous, output-specific
       options.  (Do not put spaces around the commas!)  Each element in the list is of the form
       "OPTION=VALUE", and each element is passed to virt-v2v as a standalone -oo OPTION=VALUE
       option.

       Finally in the left hand column is an information box giving the version of virt-p2v (on
       the physical server) and virt-v2v (on the conversion server).  You should supply this
       information when reporting bugs.

       In the right hand column are three panels which control what hard disks, removable media
       devices, and network interfaces, will be created in the output guest.  Normally leaving
       these at the default settings is fine.

        ─ ─ ──────────────────────────────────────────────────┐
            Fixed hard disks                                  │
                                                              │
            Convert  Device                                   │
            [✔]      sda                                      │
                     1024G HITACHI                            │
                     s/n 12345                                │
            [✔]      sdb                                      │
                     119G HITACHI                             │
                     s/n 12346                                │
                                                              │

       Normally you would want to convert all hard disks.  If you want virt-p2v to completely
       ignore a local hard disk, uncheck it.  The hard disk that contains the operating system
       must be selected.  If a hard disk is part of a RAID array or LVM volume group (VG), then
       either all hard disks in that array/VG must be selected, or none of them.

                                                              │
            Removable media                                   │
                                                              │
            Convert  Device                                   │
            [✔]      sr0                                      │
                                                              │

       If the physical machine has CD or DVD drives, then you can use the Removable media panel
       to create corresponding drives on the guest after conversion.  Note that any data CDs/DVDs
       which are mounted in the drives are not copied over.

       At the bottom of the dialog, the "Refresh disks" button instructs virt-p2v to re-enumerate
       the fixed hard disks and the removable media drives.  (Note that the button will also
       reset the currently active selections in both of those panels.)  This button is useful in
       combination with the "XTerm" button on the "SSH CONFIGURATION DIALOG": in the XTerm
       window, you can expose further block devices to the kernel (such as LUNs from iSCSI
       targets), and the "Refresh disks" button allows virt-p2v to learn about all the block
       devices again.

                                                              │
            Network interfaces                                │
                                                              │
            Convert  Device Connect to virtual network        │
            [✔]      em1    [default________________________] │
            [ ]      wlp3s0 [default________________________] │
                                                              │

       In the Network interfaces panel, select the network interfaces that should be created in
       the guest after conversion.  You can also connect these to target hypervisor networks (for
       further information about this feature, see "Networks and bridges" in virt-v2v(1)).

       On supported hardware, left-clicking on the device name (eg. "em1") causes a light to
       start flashing on the physical interface, allowing the interface to be identified by the
       operator.

       When you are ready to begin the conversion, press the "Start conversion" button:

                                                              │
            [ Back ]  [ Refresh disks ]  [ Start conversion ] │
                                                              │
        ─ ─ ──────────────────────────────────────────────────┘

   CONVERSION RUNNING DIALOG
       When conversion is running you will see this dialog:

        ┌────────────────────────────────────────────────────────┐
        │                      virt-p2v                          │
        │                                                        │
        │  ┌──────────────────────────────────────────────────┐  │
        │  │                                                 ▲│  │
        │  │                                                  │  │
        │  │                                                  │  │
        ∼  ∼                                                  ∼  ∼
        │  │                                                  │  │
        │  │                                                  │  │
        │  │                                                 ▼│  │
        │  └──────────────────────────────────────────────────┘  │
        │                                                        │
        │ Log files ... to /tmp/virt-p2v-xxx                     │
        │                                                        │
        │ Doing conversion ...                                   │
        │                                                        │
        │                                 [ Cancel conversion ]  │
        │                                                        │
        └────────────────────────────────────────────────────────┘

       In the main scrolling area you will see messages from the virt-v2v process.

       Below the main area, virt-p2v shows you the location of the directory on the conversion
       server that contains log files and other debugging information.  Below that is the current
       status and a button for cancelling conversion.

       Once conversion has finished, you should shut down the physical machine.  If conversion is
       successful, you should never reboot it.

KERNEL COMMAND LINE CONFIGURATION

       If you don’t want to configure things using the graphical UI, an alternative is to
       configure through the kernel command line.  This is especially convenient if you are
       converting a lot of physical machines which are booted using PXE.

       Where exactly you set command line arguments depends on your PXE implementation, but for
       pxelinux you put them in the "APPEND" field in the pxelinux.cfg file.  For example:

        DEFAULT p2v
        TIMEOUT 20
        PROMPT 0
        LABEL p2v
          KERNEL vmlinuz0
          APPEND initrd=initrd0.img [....] p2v.server=conv.example.com p2v.password=secret p2v.o=libvirt

       You have to set some or all of the following command line arguments:

       p2v.remote.server=SERVER
       p2v.server=SERVER
           The name or IP address of the conversion server.

           This is always required if you are using the kernel configuration method.  If virt-p2v
           does not find this on the kernel command line then it switches to the GUI
           (interactive) configuration method.

       p2v.remote.port=PORT
       p2v.port=PORT
           The SSH port number on the conversion server (default: 22).

       p2v.auth.username=USERNAME
       p2v.username=USERNAME
           The SSH username that we log in as on the conversion server (default: "root").

       p2v.auth.password=PASSWORD
       p2v.password=PASSWORD
           The SSH password that we use to log in to the conversion server.

           The default is to try with no password.  If this fails then virt-p2v will ask the user
           to type the password (probably several times during conversion).

           This setting is ignored if "p2v.auth.identity.url" is present.

       p2v.auth.identity.url=URL
       p2v.identity=URL
           Provide a URL pointing to an SSH identity (private key) file.  The URL is interpreted
           by curl(1) so any URL that curl supports can be used here, including "https://" and
           "file://".  For more information on using SSH identities, see "SSH IDENTITIES" below.

           If "p2v.auth.identity.url" is present, it overrides "p2v.auth.password".  There is no
           fallback.

       p2v.auth.sudo
       p2v.sudo
           Use "p2v.sudo" to tell virt-p2v to use sudo(8) to gain root privileges on the
           conversion server after logging in as a non-root user (default: do not use sudo).

       p2v.guestname=GUESTNAME
       p2v.name=GUESTNAME
           The name of the guest that is created.  The default is to try to derive a name from
           the physical machine’s hostname (if possible) else use a randomly generated name.

       p2v.vcpu.phys_topo
           Copy the physical machine's complete CPU topology (sockets, cores and threads) to the
           guest.  Disabled by default.  If disabled, the "p2v.vcpu.cores" setting takes effect.

       p2v.vcpu.cores=N
           This setting is ignored if "p2v.vcpu.phys_topo" is enabled.  Otherwise, it specifies
           the flat number of vCPU cores to give to the guest (placing all of those cores into a
           single socket, and exposing one thread per core).  The default value is the number of
           online logical processors on the physical machine.

       p2v.memory=n(M|G)
           The size of the guest memory.  You must specify the unit such as megabytes or
           gigabytes by using for example "p2v.memory=1024M" or "p2v.memory=1G".

           The default is to use the same amount of RAM as on the physical machine.

       p2v.cpu.vendor=VENDOR
           The vCPU vendor, eg. "Intel" or "AMD".  The default is to use the same CPU vendor as
           the physical machine.

       p2v.cpu.model=MODEL
           The vCPU model, eg. "IvyBridge".  The default is to use the same CPU model as the
           physical machine.

       p2v.cpu.acpi
           Whether to enable ACPI in the remote virtual machine.  The default is to use the same
           as the physical machine.

       p2v.cpu.apic
           Whether to enable APIC in the remote virtual machine.  The default is to use the same
           as the physical machine.

       p2v.cpu.pae
           Whether to enable PAE in the remote virtual machine.  The default is to use the same
           as the physical machine.

       p2v.rtc.basis=(unknown|utc|localtime)
           Set the basis of the Real Time Clock in the virtual machine.  The default is to try to
           detect this setting from the physical machine.

       p2v.rtc.offset=[+|-]HOURS
           The offset of the Real Time Clock from UTC.  The default is to try to detect this
           setting from the physical machine.

       p2v.disks=sda,sdb,...
           A list of physical hard disks to convert, for example:

            p2v.disks=sda,sdc

           The default is to convert all local hard disks that are found.

       p2v.removable=sra,srb,...
           A list of removable media to convert.  The default is to create virtual removable
           devices for every physical removable device found.  Note that the content of removable
           media is never copied over.

       p2v.interfaces=em1,...
           A list of network interfaces to convert.  The default is to create virtual network
           interfaces for every physical network interface found.

       p2v.network_map=interface:target,...
       p2v.network=interface:target,...
           Controls how network interfaces are connected to virtual networks on the target
           hypervisor.  The default is to connect all network interfaces to the target "default"
           network.

           You give a comma-separated list of "interface:target" pairs, plus optionally a default
           target.  For example:

            p2v.network=em1:ovirtmgmt

           maps interface "em1" to target network "ovirtmgmt".

            p2v.network=em1:ovirtmgmt,em2:management,other

           maps interface "em1" to "ovirtmgmt", and "em2" to "management", and any other
           interface that is found to "other".

       p2v.output.type=(libvirt|local|...)
       p2v.o=(libvirt|local|...)
           Set the output mode.  This is the same as the virt-v2v -o option.  See "OPTIONS" in
           virt-v2v(1).

           If not specified, the default is "local", and the converted guest is written to
           /var/tmp.

       p2v.output.allocation=(none|sparse|preallocated)
       p2v.oa=(none|sparse|preallocated)
           Set the output allocation mode.  This is the same as the virt-v2v -oa option.  See
           "OPTIONS" in virt-v2v(1).

       p2v.output.connection=URI
       p2v.oc=URI
           Set the output connection libvirt URI.  This is the same as the virt-v2v -oc option.
           See "OPTIONS" in virt-v2v(1) and http://libvirt.org/uri.html

       p2v.output.format=(raw|qcow2|...)
       p2v.of=(raw|qcow2|...)
           Set the output format.  This is the same as the virt-v2v -of option.  See "OPTIONS" in
           virt-v2v(1).

       p2v.output.storage=STORAGE
       p2v.os=STORAGE
           Set the output storage.  This is the same as the virt-v2v -os option.  See "OPTIONS"
           in virt-v2v(1).

           If not specified, the default is /var/tmp (on the conversion server).

       p2v.output.misc=OPTION=VALUE,...
       p2v.oo=OPTION=VALUE,...
           Set miscellaneous output option(s) related to the selected output mode.  This is the
           same as the virt-v2v -oo option; each "OPTION=VALUE" element in the list will be
           turned into a separate -oo OPTION=VALUE option on the virt-v2v command line.  See
           "OPTIONS" in virt-v2v(1).

       p2v.pre=COMMAND
       p2v.pre="COMMAND ARG ..."
           Select a pre-conversion command to run.  Any command or script can be specified here.
           If the command contains spaces, you must quote the whole command with double quotes.
           The default is not to run any command.

       p2v.post=poweroff
       p2v.post=reboot
       p2v.post=COMMAND
       p2v.post="COMMAND ARG ..."
           Select a post-conversion command to run if conversion is successful.  This can be any
           command or script.  If the command contains spaces, you must quote the whole command
           with double quotes.

           If virt-p2v is running as root, and the command line was set from /proc/cmdline (not
           --cmdline), then the default is to run the poweroff(8) command.  Otherwise the default
           is not to run any command.

       p2v.fail=COMMAND
       p2v.fail="COMMAND ARG ..."
           Select a post-conversion command to run if conversion fails.  Any command or script
           can be specified here.  If the command contains spaces, you must quote the whole
           command with double quotes.  The default is not to run any command.

       ip=dhcp
           Use DHCP for configuring the network interface (this is the default).

SSH IDENTITIES

       As a somewhat more secure alternative to password authentication, you can use an SSH
       identity (private key) for authentication.

       First create a key pair.  It must have an empty passphrase:

        ssh-keygen -t rsa -N '' -f id_rsa

       This creates a private key ("id_rsa") and a public key ("id_rsa.pub") pair.

       The public key should be appended to the "authorized_keys" file on the virt-v2v conversion
       server (usually to "/root/.ssh/authorized_keys").

       For distributing the private key, there are four scenarios from least secure to most
       secure:

       1.  Not using SSH identities at all, ie. password authentication.

           Anyone who can sniff the PXE boot parameters from the network or observe the password
           some other way can log in to the virt-v2v conversion server.

       2.  SSH identity embedded in the virt-p2v ISO or disk image.  In the GUI, use:

            │          Password: [    <leave this field blank>       ] │
            │                                                          │
            │  SSH Identity URL: [file:///var/tmp/id_rsa_____________] │

           or on the kernel command line:

            p2v.identity=file:///var/tmp/id_rsa

           The SSH private key can still be sniffed from the network if using standard PXE.

       3.  SSH identity downloaded from a website.  In the GUI, use:

            │          Password: [    <leave this field blank>       ] │
            │                                                          │
            │  SSH Identity URL: [https://internal.example.com/id_rsa] │

           or on the kernel command line:

            p2v.identity=https://internal.example.com/id_rsa

           Anyone could still download the private key and use it to log in to the virt-v2v
           conversion server, but you could provide some extra security by configuring the web
           server to only allow connections from P2V machines.

           Note that ssh-keygen(1) creates the "id_rsa" (private key) file with mode 0600.  If
           you simply copy the file to a webserver, the webserver will not serve it.  It will
           reply with "403 Forbidden" errors.  You will need to change the mode of the file to
           make it publicly readable, for example by using:

            chmod 0644 id_rsa

       4.  SSH identity embedded in the virt-p2v ISO or disk image (like 2.), and use of secure
           PXE, PXE over separate physical network, or sneakernet to distribute virt-p2v to the
           physical machine.

       Both virt-p2v-make-disk(1) and virt-p2v-make-kickstart(1) have the same option
       --inject-ssh-identity for injecting the private key into the virt-p2v disk image / ISO.
       See also the following manual sections:

       "ADDING AN SSH IDENTITY" in virt-p2v-make-disk(1)

       "ADDING AN SSH IDENTITY" in virt-p2v-make-kickstart(1)

ACCESSING ISCSI DEVICES

       In case the disk that contains the operating system, or other disks that you want to
       convert, are LUNs of remote iSCSI targets, follow the steps below so that virt-p2v can
       learn about said disks.  Note that this procedure depends on the use of the GUI.

       The guide below is roughly based on the RHEL9 product documentation.

       1.  Open a shell in an XTerm window, using the "XTerm" button of the "SSH CONFIGURATION
           DIALOG".

           (Note that the XTerm window(s) persist while you advance to further dialogs in
           virt-p2v, therefore it's unnecessary to jump back and forth between virt-p2v dialogs
           just for entering additional shell commands in the XTerm window(s).)

       2.  Using "vi" or another text editor, set the iSCSI initiator name in
           /etc/iscsi/initiatorname.iscsi, for example:

            InitiatorName=iqn.1994-05.com.redhat:846e82c634

           If the file does not exist, create it.  (Remember that this file is part of the
           virt-p2v Live environment, therefore saving it does not modify any hard disks.)

       3.  Configure any further iSCSI initiator details completely that are required by the
           iSCSI target that you intend to log in to; that is, before you issue the first
           "iscsiadm" command below.  This includes the CHAP user name and password if the target
           authenticates the initiator with CHAP, and the reverse direction CHAP user name and
           password too, if you want to ascertain the identity of the target on the initiator as
           well (this is called "mutual authentication").

           Completing the configuration at this stage is important because the first "iscsiadm"
           command will start up the "iscsid" service, and configuration changes with that
           service already running will not (or may not) take effect until/unless you restart the
           service using "systemctl".

       4.  Discover the iSCSI targets offered by the desired host:

            iscsiadm -m discovery -t st -p IP_ADDRESS

           The command should respond with a two-column list of targets.  The symbolic target
           names are in the right hand side column, for example:

                10.64.24.179:3260,1 iqn.2006-04.example:444

       5.  Picking an appropriate target from the right hand side column of the previous step's
           output, log in to the target:

            iscsiadm -m node -T TARGET -l

           This command will inform you whether the login attempt was successful.

       6.  In case the login succeeds, a scan for LUNs on the iSCSI target will commence at once.
           There are two pitfalls here.  One, dependent on network characteristics, the scan may
           take several (tens of) seconds.  Two, even if the login succeeds, ACLs on the target
           may silently prevent the initiator from seeing particular LUNs -- meaning that no new
           /dev/sdX nodes will appear.  This is why it is important to get the initiator name
           (and, potentially, CHAP authentication) correct at the very beginning of this
           procedure.

           Verify the results of the target scan with the "dmesg" command, and/or with

            ls -l /dev/disk/by-path/ip-*-iscsi-*-lun-*

           If these symlinks exist, containing the "IP_ADDRESS" from step 4 and the "TARGET" name
           from step 5 in their filenames, then the target scan has successfully found the
           corresponding LUNs.

       7.  Once the remote LUNs have been successfully enumerated, click the "Refresh disks"
           button in the "DISK AND NETWORK CONFIGURATION DIALOG".

COMMON PROBLEMS

   Timeouts
       As described below (see "HOW VIRT-P2V WORKS") virt-p2v makes several long-lived ssh
       connections to the conversion server.  If these connections time out then virt-p2v will
       fail.

       To test if a timeout might be causing problems, open an XTerm on the virt-p2v machine,
       "ssh root@conversion-server", and leave it for at least an hour.  If the session
       disconnects without you doing anything, then there is a timeout which you should turn off.

       Timeouts happen because:

       "TIMEOUT" or "TMOUT" environment variable
           Check if one of these environment variables is set in the root shell on the conversion
           server.

       sshd "ClientAlive*" setting
           Check for "ClientAlive*" settings in "/etc/ssh/sshd_config" on the conversion server.

       Firewall or NAT settings
           Check if there is a firewall or NAT box between virt-p2v and the conversion server,
           and if this firewall drops idle connections after a too-short time.

           virt-p2v ≥ 1.36 attempts to work around firewall timeouts by sending ssh keepalive
           messages every 5 minutes.

OPTIONS

       --help
           Display help.

       --cmdline=CMDLINE
           This is used for debugging. Instead of parsing the kernel command line from
           /proc/cmdline, parse the string parameter "CMDLINE".

       --colors
       --colours
           Use ANSI colour sequences to colourize messages.  This is the default when the output
           is a tty.  If the output of the program is redirected to a file, ANSI colour sequences
           are disabled unless you use this option.

       --iso
           This flag is passed to virt-p2v when it is launched inside the virt-p2v ISO
           environment, ie. when it is running on a real physical machine (and thus not when
           testing).  It enables various dangerous features such as the Shutdown popup button.

       --test-disk=/PATH/TO/DISK.IMG
           For testing or debugging purposes, replace /dev/sda with a local file.  You must use
           an absolute path.  Note that the "Refresh disks" button will be disabled in the "DISK
           AND NETWORK CONFIGURATION DIALOG" of the GUI.

       -v
       --verbose
           In libguestfs ≥ 1.33.41, debugging is always enabled on the conversion server, and
           this option does nothing.

       -V
       --version
           Display version number and exit.

HOW VIRT-P2V WORKS

       Note this section is not normative.  We may change how virt-p2v works at any time in the
       future.

       As described above, virt-p2v runs on a physical machine, interrogates the user or the
       kernel command line for configuration, and then establishes one or more ssh connections to
       the virt-v2v conversion server.  The ssh connections are interactive shell sessions to the
       remote host, but the commands sent are generated entirely by virt-p2v itself, not by the
       user.  For data transfer, virt-p2v will use the reverse port forward feature of ssh (ie.
       "ssh -R").

       It will first make one or more test connections, which are used to query the remote
       version of virt-v2v and its features.  The test connections are closed before conversion
       begins.

        ┌──────────────┐                      ┌─────────────────┐
        │ virt-p2v     │                      │ virt-v2v        │
        │ (physical    │  control connection  │ (conversion     │
        │  server)   ╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍▶ server)       │
        └──────────────┘                      └─────────────────┘

       Once virt-p2v is ready to start conversion, it will open a single ssh control connection.
       It first sends a mkdir command to create a temporary directory on the conversion server.
       The directory name is randomly chosen and is displayed in the GUI.  It has the form:

        /tmp/virt-p2v-YYYYMMDD-XXXXXXXX

       where "YYYYMMDD" is the current date, and the ‘X’s are random characters.

       Into this directory are written various files which include:

       dmesg
       lscpu
       lspci
       lsscsi
       lsusb
           (before conversion)

           The output of the corresponding commands (ie dmesg(1), lscpu(1) etc) on the physical
           machine.

           The dmesg output is useful for detecting problems such as missing device drivers or
           firmware on the virt-p2v ISO.  The others are useful for debugging novel hardware
           configurations.

       environment
           (before conversion)

           The content of the environment where virt-v2v(1) will run.

       name
           (before conversion)

           The name (usually the hostname) of the physical machine.

       physical.xml
           (before conversion)

           Libvirt XML describing the physical machine.  It is used to pass data about the
           physical source host to virt-v2v(1) via the -i libvirtxml option.

           Note this is not "real" libvirt XML (and must never be loaded into libvirt, which
           would reject it anyhow).  Also it is not the same as the libvirt XML which virt-v2v
           generates in certain output modes.

       p2v-version
       v2v-version
           (before conversion)

           The versions of virt-p2v and virt-v2v respectively.

       status
           (after conversion)

           The final status of the conversion.  0 if the conversion was successful.  Non-zero if
           the conversion failed.

       time
           (before conversion)

           The start date/time of conversion.

       virt-v2v-conversion-log.txt
           (during/after conversion)

           The conversion log.  This is just the output of the virt-v2v command on the conversion
           server.  If conversion fails, you should examine this log file, and you may be asked
           to supply the complete, unedited log file in any bug reports or support tickets.

       virt-v2v-wrapper.sh
           (before conversion)

           This is the wrapper script which is used when running virt-v2v.  For interest only, do
           not attempt to run this script yourself.

       Before conversion actually begins, virt-p2v then makes one or more further ssh connections
       to the server for data transfer.

       The transfer protocol used currently is NBD (Network Block Device), which is proxied over
       ssh.  The NBD server is nbdkit(1), with nbdkit-file-plugin(1) and socket activation.

       There is one ssh connection per physical hard disk on the source machine (the common case
       — a single hard disk — is shown below):

        ┌──────────────┐                      ┌─────────────────┐
        │ virt-p2v     │                      │ virt-v2v        │
        │ (physical    │  control connection  │ (conversion     │
        │  server)   ╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍▶ server)       │
        │              │                      │                 │
        │              │  data connection     │                 │
        │            ╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍▶               │
        │ nbdkit  ← ─┘ │                      │└─ ← NBD         │
        │ /dev/sda     │                      │     requests    │
        ∼              ∼                      ∼                 ∼
        └──────────────┘                      └─────────────────┘

       Although the ssh data connection is originated from the physical server and terminates on
       the conversion server, in fact NBD requests flow in the opposite direction.  This is
       because the reverse port forward feature of ssh ("ssh -R") is used to open a port on the
       loopback interface of the conversion server which is proxied back by ssh to nbdkit running
       on the physical machine.  The effect is that virt-v2v via libguestfs can open nbd
       connections which directly read the hard disk(s) of the physical server.

       Two layers of protection are used to ensure that there are no writes to the hard disks:
       Firstly, the nbdkit -r (readonly) option is used.  Secondly libguestfs creates an overlay
       on top of the NBD connection which stores writes in a temporary file on the conversion
       file.

       The long "virt-v2v -i libvirtxml physical.xml ..." command is wrapped inside a wrapper
       script and uploaded to the conversion server.  The final step is to run this wrapper
       script, in turn running the virt-v2v command.  The virt-v2v command references the
       physical.xml file (see above), which in turn references the NBD listening port(s) of the
       data connection(s).

       Output from the virt-v2v command (messages, debugging etc) is saved in the log file on the
       conversion server.  Only informational messages are sent back over the control connection
       to be displayed in the graphical UI.

SEE ALSO

       virt-p2v-make-disk(1), virt-p2v-make-kickstart(1), virt-p2v-make-kiwi(1), virt-v2v(1),
       nbdkit(1), nbdkit-file-plugin(1), ssh(1), sshd(8), sshd_config(5), http://libguestfs.org/.

AUTHORS

       Matthew Booth

       John Eckersberg

       Richard W.M. Jones http://people.redhat.com/~rjones/

       Mike Latimer

       Pino Toscano

       Tingting Zheng

COPYRIGHT

       Copyright (C) 2009-2019 Red Hat Inc.

LICENSE

       This program is free software; you can redistribute it and/or modify it under the terms of
       the GNU General Public License as published by the Free Software Foundation; either
       version 2 of the License, or (at your option) any later version.

       This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
       without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
       See the GNU General Public License for more details.

       You should have received a copy of the GNU General Public License along with this program.
       If not, see <https://www.gnu.org/licenses/>.

BUGS

       To get a list of bugs against libguestfs (which include virt-p2v), use this link:
       https://bugzilla.redhat.com/buglist.cgi?component=libguestfs&product=Virtualization+Tools

       To report a new bug against libguestfs, use this link:
       https://bugzilla.redhat.com/enter_bug.cgi?component=libguestfs&product=Virtualization+Tools

       When reporting a bug, please supply:

       •   The version of virt-p2v.

       •   Where you got virt-p2v (eg. which Linux distro, compiled from source, etc)

       •   Describe the bug accurately and give a way to reproduce it.