Provided by: apt_1.0.1ubuntu2.24_amd64 bug


       apt-secure - Archive authentication support for APT


       Starting with version 0.6, apt contains code that does signature checking of the Release
       file for all archives. This ensures that packages in the archive can't be modified by
       people who have no access to the Release file signing key.

       If a package comes from a archive without a signature, or with a signature that apt does
       not have a key for, that package is considered untrusted, and installing it will result in
       a big warning.  apt-get will currently only warn for unsigned archives; future releases
       might force all sources to be verified before downloading packages from them.

       The package frontends apt-get(8), aptitude(8) and synaptic(8) support this new
       authentication feature.


       The chain of trust from an apt archive to the end user is made up of several steps.
       apt-secure is the last step in this chain; trusting an archive does not mean that you
       trust its packages not to contain malicious code, but means that you trust the archive
       maintainer. It's the archive maintainer's responsibility to ensure that the archive's
       integrity is preserved.

       apt-secure does not review signatures at a package level. If you require tools to do this
       you should look at debsig-verify and debsign (provided in the debsig-verify and devscripts
       packages respectively).

       The chain of trust in Debian starts when a maintainer uploads a new package or a new
       version of a package to the Debian archive. In order to become effective, this upload
       needs to be signed by a key contained in the Debian Maintainers keyring (available in the
       debian-keyring package). Maintainers' keys are signed by other maintainers following
       pre-established procedures to ensure the identity of the key holder.

       Once the uploaded package is verified and included in the archive, the maintainer
       signature is stripped off, and checksums of the package are computed and put in the
       Packages file. The checksums of all of the Packages files are then computed and put into
       the Release file. The Release file is then signed by the archive key for this Ubuntu
       release, and distributed alongside the packages and the Packages files on Ubuntu mirrors.
       The keys are in the Ubuntu archive keyring available in the ubuntu-keyring package.

       End users can check the signature of the Release file, extract a checksum of a package
       from it and compare it with the checksum of the package they downloaded by hand - or rely
       on APT doing this automatically.

       Notice that this is distinct from checking signatures on a per package basis. It is
       designed to prevent two possible attacks:

       •   Network "man in the middle" attacks. Without signature checking, malicious agents can
           introduce themselves into the package download process and provide malicious software
           either by controlling a network element (router, switch, etc.) or by redirecting
           traffic to a rogue server (through ARP or DNS spoofing attacks).

       •   Mirror network compromise. Without signature checking, a malicious agent can
           compromise a mirror host and modify the files in it to propagate malicious software to
           all users downloading packages from that host.

       However, it does not defend against a compromise of the Debian master server itself (which
       signs the packages) or against a compromise of the key used to sign the Release files. In
       any case, this mechanism can complement a per-package signature.


       apt-key is the program that manages the list of keys used by apt. It can be used to add or
       remove keys, although an installation of this release will automatically contain the
       default Debian archive signing keys used in the Debian package repositories.

       In order to add a new key you need to first download it (you should make sure you are
       using a trusted communication channel when retrieving it), add it with apt-key and then
       run apt-get update so that apt can download and verify the InRelease or Release.gpg files
       from the archives you have configured.


       If you want to provide archive signatures in an archive under your maintenance you have

       •   Create a toplevel Release file, if it does not exist already. You can do this by
           running apt-ftparchive release (provided in apt-utils).

       •   Sign it. You can do this by running gpg --clearsign -o InRelease Release and gpg -abs
           -o Release.gpg Release.

       •   Publish the key fingerprint, that way your users will know what key they need to
           import in order to authenticate the files in the archive.

       Whenever the contents of the archive change (new packages are added or removed) the
       archive maintainer has to follow the first two steps outlined above.


       apt.conf(5), apt-get(8), sources.list(5), apt-key(8), apt-ftparchive(1), debsign(1)debsig-
       verify(1), gpg(1)

       For more background information you might want to review the Debian Security
       Infrastructure[1] chapter of the Securing Debian Manual (available also in the harden-doc
       package) and the Strong Distribution HOWTO[2] by V. Alex Brennen.


       APT bug page[3]. If you wish to report a bug in APT, please see
       /usr/share/doc/debian/bug-reporting.txt or the reportbug(1) command.


       APT was written by the APT team <>.


       This man-page is based on the work of Javier Fernández-Sanguino Peña, Isaac Jones, Colin
       Walters, Florian Weimer and Michael Vogt.


       Jason Gunthorpe

       APT team


        1. Debian Security Infrastructure

        2. Strong Distribution HOWTO

        3. APT bug page