Provided by: ffmpeg_2.8.17-0ubuntu0.1_amd64 bug

NAME

       ffplay - FFplay media player

SYNOPSIS

       ffplay [options] [input_url]

DESCRIPTION

       FFplay is a very simple and portable media player using the FFmpeg libraries and the SDL library. It is
       mostly used as a testbed for the various FFmpeg APIs.

OPTIONS

       All the numerical options, if not specified otherwise, accept a string representing a number as input,
       which may be followed by one of the SI unit prefixes, for example: 'K', 'M', or 'G'.

       If 'i' is appended to the SI unit prefix, the complete prefix will be interpreted as a unit prefix for
       binary multiples, which are based on powers of 1024 instead of powers of 1000. Appending 'B' to the SI
       unit prefix multiplies the value by 8. This allows using, for example: 'KB', 'MiB', 'G' and 'B' as number
       suffixes.

       Options which do not take arguments are boolean options, and set the corresponding value to true. They
       can be set to false by prefixing the option name with "no". For example using "-nofoo" will set the
       boolean option with name "foo" to false.

   Stream specifiers
       Some options are applied per-stream, e.g. bitrate or codec. Stream specifiers are used to precisely
       specify which stream(s) a given option belongs to.

       A stream specifier is a string generally appended to the option name and separated from it by a colon.
       E.g. "-codec:a:1 ac3" contains the "a:1" stream specifier, which matches the second audio stream.
       Therefore, it would select the ac3 codec for the second audio stream.

       A stream specifier can match several streams, so that the option is applied to all of them. E.g. the
       stream specifier in "-b:a 128k" matches all audio streams.

       An empty stream specifier matches all streams. For example, "-codec copy" or "-codec: copy" would copy
       all the streams without reencoding.

       Possible forms of stream specifiers are:

       stream_index
           Matches the stream with this index. E.g. "-threads:1 4" would set the thread count for the second
           stream to 4.

       stream_type[:stream_index]
           stream_type is one of following: 'v' or 'V' for video, 'a' for audio, 's' for subtitle, 'd' for data,
           and 't' for attachments. 'v' matches all video streams, 'V' only matches video streams which are not
           attached pictures, video thumbnails or cover arts.  If stream_index is given, then it matches stream
           number stream_index of this type. Otherwise, it matches all streams of this type.

       p:program_id[:stream_index]
           If stream_index is given, then it matches the stream with number stream_index in the program with the
           id program_id. Otherwise, it matches all streams in the program.

       #stream_id or i:stream_id
           Match the stream by stream id (e.g. PID in MPEG-TS container).

       m:key[:value]
           Matches streams with the metadata tag key having the specified value. If value is not given, matches
           streams that contain the given tag with any value.

       u   Matches streams with usable configuration, the codec must be defined and the essential information
           such as video dimension or audio sample rate must be present.

           Note that in ffmpeg, matching by metadata will only work properly for input files.

   Generic options
       These options are shared amongst the ff* tools.

       -L  Show license.

       -h, -?, -help, --help [arg]
           Show help. An optional parameter may be specified to print help about a specific item. If no argument
           is specified, only basic (non advanced) tool options are shown.

           Possible values of arg are:

           long
               Print advanced tool options in addition to the basic tool options.

           full
               Print complete list of options, including shared and private options for encoders, decoders,
               demuxers, muxers, filters, etc.

           decoder=decoder_name
               Print detailed information about the decoder named decoder_name. Use the -decoders option to get
               a list of all decoders.

           encoder=encoder_name
               Print detailed information about the encoder named encoder_name. Use the -encoders option to get
               a list of all encoders.

           demuxer=demuxer_name
               Print detailed information about the demuxer named demuxer_name. Use the -formats option to get a
               list of all demuxers and muxers.

           muxer=muxer_name
               Print detailed information about the muxer named muxer_name. Use the -formats option to get a
               list of all muxers and demuxers.

           filter=filter_name
               Print detailed information about the filter name filter_name. Use the -filters option to get a
               list of all filters.

       -version
           Show version.

       -formats
           Show available formats (including devices).

       -devices
           Show available devices.

       -codecs
           Show all codecs known to libavcodec.

           Note that the term 'codec' is used throughout this documentation as a shortcut for what is more
           correctly called a media bitstream format.

       -decoders
           Show available decoders.

       -encoders
           Show all available encoders.

       -bsfs
           Show available bitstream filters.

       -protocols
           Show available protocols.

       -filters
           Show available libavfilter filters.

       -pix_fmts
           Show available pixel formats.

       -sample_fmts
           Show available sample formats.

       -layouts
           Show channel names and standard channel layouts.

       -colors
           Show recognized color names.

       -sources device[,opt1=val1[,opt2=val2]...]
           Show autodetected sources of the intput device.  Some devices may provide system-dependent source
           names that cannot be autodetected.  The returned list cannot be assumed to be always complete.

                   ffmpeg -sources pulse,server=192.168.0.4

       -sinks device[,opt1=val1[,opt2=val2]...]
           Show autodetected sinks of the output device.  Some devices may provide system-dependent sink names
           that cannot be autodetected.  The returned list cannot be assumed to be always complete.

                   ffmpeg -sinks pulse,server=192.168.0.4

       -loglevel [repeat+]loglevel | -v [repeat+]loglevel
           Set the logging level used by the library.  Adding "repeat+" indicates that repeated log output
           should not be compressed to the first line and the "Last message repeated n times" line will be
           omitted. "repeat" can also be used alone.  If "repeat" is used alone, and with no prior loglevel set,
           the default loglevel will be used. If multiple loglevel parameters are given, using 'repeat' will not
           change the loglevel.  loglevel is a string or a number containing one of the following values:

           quiet, -8
               Show nothing at all; be silent.

           panic, 0
               Only show fatal errors which could lead the process to crash, such as and assert failure. This is
               not currently used for anything.

           fatal, 8
               Only show fatal errors. These are errors after which the process absolutely cannot continue
               after.

           error, 16
               Show all errors, including ones which can be recovered from.

           warning, 24
               Show all warnings and errors. Any message related to possibly incorrect or unexpected events will
               be shown.

           info, 32
               Show informative messages during processing. This is in addition to warnings and errors. This is
               the default value.

           verbose, 40
               Same as "info", except more verbose.

           debug, 48
               Show everything, including debugging information.

           trace, 56

           By default the program logs to stderr, if coloring is supported by the terminal, colors are used to
           mark errors and warnings. Log coloring can be disabled setting the environment variable
           AV_LOG_FORCE_NOCOLOR or NO_COLOR, or can be forced setting the environment variable
           AV_LOG_FORCE_COLOR.  The use of the environment variable NO_COLOR is deprecated and will be dropped
           in a following FFmpeg version.

       -report
           Dump full command line and console output to a file named "program-YYYYMMDD-HHMMSS.log" in the
           current directory.  This file can be useful for bug reports.  It also implies "-loglevel verbose".

           Setting the environment variable FFREPORT to any value has the same effect. If the value is a
           ':'-separated key=value sequence, these options will affect the report; option values must be escaped
           if they contain special characters or the options delimiter ':' (see the ``Quoting and escaping''
           section in the ffmpeg-utils manual).

           The following options are recognized:

           file
               set the file name to use for the report; %p is expanded to the name of the program, %t is
               expanded to a timestamp, "%%" is expanded to a plain "%"

           level
               set the log verbosity level using a numerical value (see "-loglevel").

           For example, to output a report to a file named ffreport.log using a log level of 32 (alias for log
           level "info"):

                   FFREPORT=file=ffreport.log:level=32 ffmpeg -i input output

           Errors in parsing the environment variable are not fatal, and will not appear in the report.

       -hide_banner
           Suppress printing banner.

           All FFmpeg tools will normally show a copyright notice, build options and library versions. This
           option can be used to suppress printing this information.

       -cpuflags flags (global)
           Allows setting and clearing cpu flags. This option is intended for testing. Do not use it unless you
           know what you're doing.

                   ffmpeg -cpuflags -sse+mmx ...
                   ffmpeg -cpuflags mmx ...
                   ffmpeg -cpuflags 0 ...

           Possible flags for this option are:

           x86
               mmx
               mmxext
               sse
               sse2
               sse2slow
               sse3
               sse3slow
               ssse3
               atom
               sse4.1
               sse4.2
               avx
               avx2
               xop
               fma3
               fma4
               3dnow
               3dnowext
               bmi1
               bmi2
               cmov
           ARM
               armv5te
               armv6
               armv6t2
               vfp
               vfpv3
               neon
               setend
           AArch64
               armv8
               vfp
               neon
           PowerPC
               altivec
           Specific Processors
               pentium2
               pentium3
               pentium4
               k6
               k62
               athlon
               athlonxp
               k8
       -opencl_bench
           This option is used to benchmark all available OpenCL devices and print the results. This option is
           only available when FFmpeg has been compiled with "--enable-opencl".

           When FFmpeg is configured with "--enable-opencl", the options for the global OpenCL context are set
           via -opencl_options. See the "OpenCL Options" section in the ffmpeg-utils manual for the complete
           list of supported options. Amongst others, these options include the ability to select a specific
           platform and device to run the OpenCL code on. By default, FFmpeg will run on the first device of the
           first platform. While the options for the global OpenCL context provide flexibility to the user in
           selecting the OpenCL device of their choice, most users would probably want to select the fastest
           OpenCL device for their system.

           This option assists the selection of the most efficient configuration by identifying the appropriate
           device for the user's system. The built-in benchmark is run on all the OpenCL devices and the
           performance is measured for each device. The devices in the results list are sorted based on their
           performance with the fastest device listed first. The user can subsequently invoke ffmpeg using the
           device deemed most appropriate via -opencl_options to obtain the best performance for the OpenCL
           accelerated code.

           Typical usage to use the fastest OpenCL device involve the following steps.

           Run the command:

                   ffmpeg -opencl_bench

           Note down the platform ID (pidx) and device ID (didx) of the first i.e. fastest device in the list.
           Select the platform and device using the command:

                   ffmpeg -opencl_options platform_idx=<pidx>:device_idx=<didx> ...

       -opencl_options options (global)
           Set OpenCL environment options. This option is only available when FFmpeg has been compiled with
           "--enable-opencl".

           options must be a list of key=value option pairs separated by ':'. See the ``OpenCL Options'' section
           in the ffmpeg-utils manual for the list of supported options.

   AVOptions
       These options are provided directly by the libavformat, libavdevice and libavcodec libraries. To see the
       list of available AVOptions, use the -help option. They are separated into two categories:

       generic
           These options can be set for any container, codec or device. Generic options are listed under
           AVFormatContext options for containers/devices and under AVCodecContext options for codecs.

       private
           These options are specific to the given container, device or codec. Private options are listed under
           their corresponding containers/devices/codecs.

       For example to write an ID3v2.3 header instead of a default ID3v2.4 to an MP3 file, use the id3v2_version
       private option of the MP3 muxer:

               ffmpeg -i input.flac -id3v2_version 3 out.mp3

       All codec AVOptions are per-stream, and thus a stream specifier should be attached to them.

       Note: the -nooption syntax cannot be used for boolean AVOptions, use -option 0/-option 1.

       Note: the old undocumented way of specifying per-stream AVOptions by prepending v/a/s to the options name
       is now obsolete and will be removed soon.

   Main options
       -x width
           Force displayed width.

       -y height
           Force displayed height.

       -s size
           Set frame size (WxH or abbreviation), needed for videos which do not contain a header with the frame
           size like raw YUV.  This option has been deprecated in favor of private options, try -video_size.

       -fs Start in fullscreen mode.

       -an Disable audio.

       -vn Disable video.

       -sn Disable subtitles.

       -ss pos
           Seek to pos. Note that in most formats it is not possible to seek exactly, so ffplay will seek to the
           nearest seek point to pos.

           pos must be a time duration specification, see the Time duration section in the ffmpeg-utils(1)
           manual.

       -t duration
           Play duration seconds of audio/video.

           duration must be a time duration specification, see the Time duration section in the ffmpeg-utils(1)
           manual.

       -bytes
           Seek by bytes.

       -nodisp
           Disable graphical display.

       -f fmt
           Force format.

       -window_title title
           Set window title (default is the input filename).

       -loop number
           Loops movie playback <number> times. 0 means forever.

       -showmode mode
           Set the show mode to use.  Available values for mode are:

           0, video
               show video

           1, waves
               show audio waves

           2, rdft
               show audio frequency band using RDFT ((Inverse) Real Discrete Fourier Transform)

           Default value is "video", if video is not present or cannot be played "rdft" is automatically
           selected.

           You can interactively cycle through the available show modes by pressing the key w.

       -vf filtergraph
           Create the filtergraph specified by filtergraph and use it to filter the video stream.

           filtergraph is a description of the filtergraph to apply to the stream, and must have a single video
           input and a single video output. In the filtergraph, the input is associated to the label "in", and
           the output to the label "out". See the ffmpeg-filters manual for more information about the
           filtergraph syntax.

           You can specify this parameter multiple times and cycle through the specified filtergraphs along with
           the show modes by pressing the key w.

       -af filtergraph
           filtergraph is a description of the filtergraph to apply to the input audio.  Use the option
           "-filters" to show all the available filters (including sources and sinks).

       -i input_url
           Read input_url.

   Advanced options
       -pix_fmt format
           Set pixel format.  This option has been deprecated in favor of private options, try -pixel_format.

       -stats
           Print several playback statistics, in particular show the stream duration, the codec parameters, the
           current position in the stream and the audio/video synchronisation drift. It is on by default, to
           explicitly disable it you need to specify "-nostats".

       -fast
           Non-spec-compliant optimizations.

       -genpts
           Generate pts.

       -sync type
           Set the master clock to audio ("type=audio"), video ("type=video") or external ("type=ext"). Default
           is audio. The master clock is used to control audio-video synchronization. Most media players use
           audio as master clock, but in some cases (streaming or high quality broadcast) it is necessary to
           change that. This option is mainly used for debugging purposes.

       -ast audio_stream_specifier
           Select the desired audio stream using the given stream specifier. The stream specifiers are described
           in the Stream specifiers chapter. If this option is not specified, the "best" audio stream is
           selected in the program of the already selected video stream.

       -vst video_stream_specifier
           Select the desired video stream using the given stream specifier. The stream specifiers are described
           in the Stream specifiers chapter. If this option is not specified, the "best" video stream is
           selected.

       -sst subtitle_stream_specifier
           Select the desired subtitle stream using the given stream specifier. The stream specifiers are
           described in the Stream specifiers chapter. If this option is not specified, the "best" subtitle
           stream is selected in the program of the already selected video or audio stream.

       -autoexit
           Exit when video is done playing.

       -exitonkeydown
           Exit if any key is pressed.

       -exitonmousedown
           Exit if any mouse button is pressed.

       -codec:media_specifier codec_name
           Force a specific decoder implementation for the stream identified by media_specifier, which can
           assume the values "a" (audio), "v" (video), and "s" subtitle.

       -acodec codec_name
           Force a specific audio decoder.

       -vcodec codec_name
           Force a specific video decoder.

       -scodec codec_name
           Force a specific subtitle decoder.

       -autorotate
           Automatically rotate the video according to file metadata. Enabled by default, use -noautorotate to
           disable it.

       -framedrop
           Drop video frames if video is out of sync. Enabled by default if the master clock is not set to
           video. Use this option to enable frame dropping for all master clock sources, use -noframedrop to
           disable it.

       -infbuf
           Do not limit the input buffer size, read as much data as possible from the input as soon as possible.
           Enabled by default for realtime streams, where data may be dropped if not read in time. Use this
           option to enable infinite buffers for all inputs, use -noinfbuf to disable it.

   While playing
       q, ESC
           Quit.

       f   Toggle full screen.

       p, SPC
           Pause.

       a   Cycle audio channel in the current program.

       v   Cycle video channel.

       t   Cycle subtitle channel in the current program.

       c   Cycle program.

       w   Cycle video filters or show modes.

       s   Step to the next frame.

           Pause if the stream is not already paused, step to the next video frame, and pause.

       left/right
           Seek backward/forward 10 seconds.

       down/up
           Seek backward/forward 1 minute.

       page down/page up
           Seek to the previous/next chapter.  or if there are no chapters Seek backward/forward 10 minutes.

       mouse click
           Seek to percentage in file corresponding to fraction of width.

SYNTAX

       This section documents the syntax and formats employed by the FFmpeg libraries and tools.

   Quoting and escaping
       FFmpeg adopts the following quoting and escaping mechanism, unless explicitly specified. The following
       rules are applied:

       •   ' and \ are special characters (respectively used for quoting and escaping). In addition to them,
           there might be other special characters depending on the specific syntax where the escaping and
           quoting are employed.

       •   A special character is escaped by prefixing it with a \.

       •   All characters enclosed between '' are included literally in the parsed string. The quote character '
           itself cannot be quoted, so you may need to close the quote and escape it.

       •   Leading and trailing whitespaces, unless escaped or quoted, are removed from the parsed string.

       Note that you may need to add a second level of escaping when using the command line or a script, which
       depends on the syntax of the adopted shell language.

       The function "av_get_token" defined in libavutil/avstring.h can be used to parse a token quoted or
       escaped according to the rules defined above.

       The tool tools/ffescape in the FFmpeg source tree can be used to automatically quote or escape a string
       in a script.

       Examples

       •   Escape the string "Crime d'Amour" containing the "'" special character:

                   Crime d\'Amour

       •   The string above contains a quote, so the "'" needs to be escaped when quoting it:

                   'Crime d'\''Amour'

       •   Include leading or trailing whitespaces using quoting:

                   '  this string starts and ends with whitespaces  '

       •   Escaping and quoting can be mixed together:

                   ' The string '\'string\'' is a string '

       •   To include a literal \ you can use either escaping or quoting:

                   'c:\foo' can be written as c:\\foo

   Date
       The accepted syntax is:

               [(YYYY-MM-DD|YYYYMMDD)[T|t| ]]((HH:MM:SS[.m...]]])|(HHMMSS[.m...]]]))[Z]
               now

       If the value is "now" it takes the current time.

       Time is local time unless Z is appended, in which case it is interpreted as UTC.  If the year-month-day
       part is not specified it takes the current year-month-day.

   Time duration
       There are two accepted syntaxes for expressing time duration.

               [-][<HH>:]<MM>:<SS>[.<m>...]

       HH expresses the number of hours, MM the number of minutes for a maximum of 2 digits, and SS the number
       of seconds for a maximum of 2 digits. The m at the end expresses decimal value for SS.

       or

               [-]<S>+[.<m>...]

       S expresses the number of seconds, with the optional decimal part m.

       In both expressions, the optional - indicates negative duration.

       Examples

       The following examples are all valid time duration:

       55  55 seconds

       12:03:45
           12 hours, 03 minutes and 45 seconds

       23.189
           23.189 seconds

   Video size
       Specify the size of the sourced video, it may be a string of the form widthxheight, or the name of a size
       abbreviation.

       The following abbreviations are recognized:

       ntsc
           720x480

       pal 720x576

       qntsc
           352x240

       qpal
           352x288

       sntsc
           640x480

       spal
           768x576

       film
           352x240

       ntsc-film
           352x240

       sqcif
           128x96

       qcif
           176x144

       cif 352x288

       4cif
           704x576

       16cif
           1408x1152

       qqvga
           160x120

       qvga
           320x240

       vga 640x480

       svga
           800x600

       xga 1024x768

       uxga
           1600x1200

       qxga
           2048x1536

       sxga
           1280x1024

       qsxga
           2560x2048

       hsxga
           5120x4096

       wvga
           852x480

       wxga
           1366x768

       wsxga
           1600x1024

       wuxga
           1920x1200

       woxga
           2560x1600

       wqsxga
           3200x2048

       wquxga
           3840x2400

       whsxga
           6400x4096

       whuxga
           7680x4800

       cga 320x200

       ega 640x350

       hd480
           852x480

       hd720
           1280x720

       hd1080
           1920x1080

       2k  2048x1080

       2kflat
           1998x1080

       2kscope
           2048x858

       4k  4096x2160

       4kflat
           3996x2160

       4kscope
           4096x1716

       nhd 640x360

       hqvga
           240x160

       wqvga
           400x240

       fwqvga
           432x240

       hvga
           480x320

       qhd 960x540

       2kdci
           2048x1080

       4kdci
           4096x2160

       uhd2160
           3840x2160

       uhd4320
           7680x4320

   Video rate
       Specify the frame rate of a video, expressed as the number of frames generated per second. It has to be a
       string in the format frame_rate_num/frame_rate_den, an integer number, a float number or a valid video
       frame rate abbreviation.

       The following abbreviations are recognized:

       ntsc
           30000/1001

       pal 25/1

       qntsc
           30000/1001

       qpal
           25/1

       sntsc
           30000/1001

       spal
           25/1

       film
           24/1

       ntsc-film
           24000/1001

   Ratio
       A ratio can be expressed as an expression, or in the form numerator:denominator.

       Note that a ratio with infinite (1/0) or negative value is considered valid, so you should check on the
       returned value if you want to exclude those values.

       The undefined value can be expressed using the "0:0" string.

   Color
       It can be the name of a color as defined below (case insensitive match) or a "[0x|#]RRGGBB[AA]" sequence,
       possibly followed by @ and a string representing the alpha component.

       The alpha component may be a string composed by "0x" followed by an hexadecimal number or a decimal
       number between 0.0 and 1.0, which represents the opacity value (0x00 or 0.0 means completely transparent,
       0xff or 1.0 completely opaque). If the alpha component is not specified then 0xff is assumed.

       The string random will result in a random color.

       The following names of colors are recognized:

       AliceBlue
           0xF0F8FF

       AntiqueWhite
           0xFAEBD7

       Aqua
           0x00FFFF

       Aquamarine
           0x7FFFD4

       Azure
           0xF0FFFF

       Beige
           0xF5F5DC

       Bisque
           0xFFE4C4

       Black
           0x000000

       BlanchedAlmond
           0xFFEBCD

       Blue
           0x0000FF

       BlueViolet
           0x8A2BE2

       Brown
           0xA52A2A

       BurlyWood
           0xDEB887

       CadetBlue
           0x5F9EA0

       Chartreuse
           0x7FFF00

       Chocolate
           0xD2691E

       Coral
           0xFF7F50

       CornflowerBlue
           0x6495ED

       Cornsilk
           0xFFF8DC

       Crimson
           0xDC143C

       Cyan
           0x00FFFF

       DarkBlue
           0x00008B

       DarkCyan
           0x008B8B

       DarkGoldenRod
           0xB8860B

       DarkGray
           0xA9A9A9

       DarkGreen
           0x006400

       DarkKhaki
           0xBDB76B

       DarkMagenta
           0x8B008B

       DarkOliveGreen
           0x556B2F

       Darkorange
           0xFF8C00

       DarkOrchid
           0x9932CC

       DarkRed
           0x8B0000

       DarkSalmon
           0xE9967A

       DarkSeaGreen
           0x8FBC8F

       DarkSlateBlue
           0x483D8B

       DarkSlateGray
           0x2F4F4F

       DarkTurquoise
           0x00CED1

       DarkViolet
           0x9400D3

       DeepPink
           0xFF1493

       DeepSkyBlue
           0x00BFFF

       DimGray
           0x696969

       DodgerBlue
           0x1E90FF

       FireBrick
           0xB22222

       FloralWhite
           0xFFFAF0

       ForestGreen
           0x228B22

       Fuchsia
           0xFF00FF

       Gainsboro
           0xDCDCDC

       GhostWhite
           0xF8F8FF

       Gold
           0xFFD700

       GoldenRod
           0xDAA520

       Gray
           0x808080

       Green
           0x008000

       GreenYellow
           0xADFF2F

       HoneyDew
           0xF0FFF0

       HotPink
           0xFF69B4

       IndianRed
           0xCD5C5C

       Indigo
           0x4B0082

       Ivory
           0xFFFFF0

       Khaki
           0xF0E68C

       Lavender
           0xE6E6FA

       LavenderBlush
           0xFFF0F5

       LawnGreen
           0x7CFC00

       LemonChiffon
           0xFFFACD

       LightBlue
           0xADD8E6

       LightCoral
           0xF08080

       LightCyan
           0xE0FFFF

       LightGoldenRodYellow
           0xFAFAD2

       LightGreen
           0x90EE90

       LightGrey
           0xD3D3D3

       LightPink
           0xFFB6C1

       LightSalmon
           0xFFA07A

       LightSeaGreen
           0x20B2AA

       LightSkyBlue
           0x87CEFA

       LightSlateGray
           0x778899

       LightSteelBlue
           0xB0C4DE

       LightYellow
           0xFFFFE0

       Lime
           0x00FF00

       LimeGreen
           0x32CD32

       Linen
           0xFAF0E6

       Magenta
           0xFF00FF

       Maroon
           0x800000

       MediumAquaMarine
           0x66CDAA

       MediumBlue
           0x0000CD

       MediumOrchid
           0xBA55D3

       MediumPurple
           0x9370D8

       MediumSeaGreen
           0x3CB371

       MediumSlateBlue
           0x7B68EE

       MediumSpringGreen
           0x00FA9A

       MediumTurquoise
           0x48D1CC

       MediumVioletRed
           0xC71585

       MidnightBlue
           0x191970

       MintCream
           0xF5FFFA

       MistyRose
           0xFFE4E1

       Moccasin
           0xFFE4B5

       NavajoWhite
           0xFFDEAD

       Navy
           0x000080

       OldLace
           0xFDF5E6

       Olive
           0x808000

       OliveDrab
           0x6B8E23

       Orange
           0xFFA500

       OrangeRed
           0xFF4500

       Orchid
           0xDA70D6

       PaleGoldenRod
           0xEEE8AA

       PaleGreen
           0x98FB98

       PaleTurquoise
           0xAFEEEE

       PaleVioletRed
           0xD87093

       PapayaWhip
           0xFFEFD5

       PeachPuff
           0xFFDAB9

       Peru
           0xCD853F

       Pink
           0xFFC0CB

       Plum
           0xDDA0DD

       PowderBlue
           0xB0E0E6

       Purple
           0x800080

       Red 0xFF0000

       RosyBrown
           0xBC8F8F

       RoyalBlue
           0x4169E1

       SaddleBrown
           0x8B4513

       Salmon
           0xFA8072

       SandyBrown
           0xF4A460

       SeaGreen
           0x2E8B57

       SeaShell
           0xFFF5EE

       Sienna
           0xA0522D

       Silver
           0xC0C0C0

       SkyBlue
           0x87CEEB

       SlateBlue
           0x6A5ACD

       SlateGray
           0x708090

       Snow
           0xFFFAFA

       SpringGreen
           0x00FF7F

       SteelBlue
           0x4682B4

       Tan 0xD2B48C

       Teal
           0x008080

       Thistle
           0xD8BFD8

       Tomato
           0xFF6347

       Turquoise
           0x40E0D0

       Violet
           0xEE82EE

       Wheat
           0xF5DEB3

       White
           0xFFFFFF

       WhiteSmoke
           0xF5F5F5

       Yellow
           0xFFFF00

       YellowGreen
           0x9ACD32

   Channel Layout
       A channel layout specifies the spatial disposition of the channels in a multi-channel audio stream. To
       specify a channel layout, FFmpeg makes use of a special syntax.

       Individual channels are identified by an id, as given by the table below:

       FL  front left

       FR  front right

       FC  front center

       LFE low frequency

       BL  back left

       BR  back right

       FLC front left-of-center

       FRC front right-of-center

       BC  back center

       SL  side left

       SR  side right

       TC  top center

       TFL top front left

       TFC top front center

       TFR top front right

       TBL top back left

       TBC top back center

       TBR top back right

       DL  downmix left

       DR  downmix right

       WL  wide left

       WR  wide right

       SDL surround direct left

       SDR surround direct right

       LFE2
           low frequency 2

       Standard channel layout compositions can be specified by using the following identifiers:

       mono
           FC

       stereo
           FL+FR

       2.1 FL+FR+LFE

       3.0 FL+FR+FC

       3.0(back)
           FL+FR+BC

       4.0 FL+FR+FC+BC

       quad
           FL+FR+BL+BR

       quad(side)
           FL+FR+SL+SR

       3.1 FL+FR+FC+LFE

       5.0 FL+FR+FC+BL+BR

       5.0(side)
           FL+FR+FC+SL+SR

       4.1 FL+FR+FC+LFE+BC

       5.1 FL+FR+FC+LFE+BL+BR

       5.1(side)
           FL+FR+FC+LFE+SL+SR

       6.0 FL+FR+FC+BC+SL+SR

       6.0(front)
           FL+FR+FLC+FRC+SL+SR

       hexagonal
           FL+FR+FC+BL+BR+BC

       6.1 FL+FR+FC+LFE+BC+SL+SR

       6.1 FL+FR+FC+LFE+BL+BR+BC

       6.1(front)
           FL+FR+LFE+FLC+FRC+SL+SR

       7.0 FL+FR+FC+BL+BR+SL+SR

       7.0(front)
           FL+FR+FC+FLC+FRC+SL+SR

       7.1 FL+FR+FC+LFE+BL+BR+SL+SR

       7.1(wide)
           FL+FR+FC+LFE+BL+BR+FLC+FRC

       7.1(wide-side)
           FL+FR+FC+LFE+FLC+FRC+SL+SR

       octagonal
           FL+FR+FC+BL+BR+BC+SL+SR

       downmix
           DL+DR

       A custom channel layout can be specified as a sequence of terms, separated by '+' or '|'. Each term can
       be:

       •   the name of a standard channel layout (e.g. mono, stereo, 4.0, quad, 5.0, etc.)

       •   the name of a single channel (e.g. FL, FR, FC, LFE, etc.)

       •   a number of channels, in decimal, optionally followed by 'c', yielding the default channel layout for
           that number of channels (see the function "av_get_default_channel_layout")

       •   a channel layout mask, in hexadecimal starting with "0x" (see the "AV_CH_*" macros in
           libavutil/channel_layout.h.

       Starting from libavutil version 53 the trailing character "c" to specify a number of channels will be
       required, while a channel layout mask could also be specified as a decimal number (if and only if not
       followed by "c").

       See also the function "av_get_channel_layout" defined in libavutil/channel_layout.h.

EXPRESSION EVALUATION

       When evaluating an arithmetic expression, FFmpeg uses an internal formula evaluator, implemented through
       the libavutil/eval.h interface.

       An expression may contain unary, binary operators, constants, and functions.

       Two expressions expr1 and expr2 can be combined to form another expression "expr1;expr2".  expr1 and
       expr2 are evaluated in turn, and the new expression evaluates to the value of expr2.

       The following binary operators are available: "+", "-", "*", "/", "^".

       The following unary operators are available: "+", "-".

       The following functions are available:

       abs(x)
           Compute absolute value of x.

       acos(x)
           Compute arccosine of x.

       asin(x)
           Compute arcsine of x.

       atan(x)
           Compute arctangent of x.

       between(x, min, max)
           Return 1 if x is greater than or equal to min and lesser than or equal to max, 0 otherwise.

       bitand(x, y)
       bitor(x, y)
           Compute bitwise and/or operation on x and y.

           The results of the evaluation of x and y are converted to integers before executing the bitwise
           operation.

           Note that both the conversion to integer and the conversion back to floating point can lose
           precision. Beware of unexpected results for large numbers (usually 2^53 and larger).

       ceil(expr)
           Round the value of expression expr upwards to the nearest integer. For example, "ceil(1.5)" is "2.0".

       clip(x, min, max)
           Return the value of x clipped between min and max.

       cos(x)
           Compute cosine of x.

       cosh(x)
           Compute hyperbolic cosine of x.

       eq(x, y)
           Return 1 if x and y are equivalent, 0 otherwise.

       exp(x)
           Compute exponential of x (with base "e", the Euler's number).

       floor(expr)
           Round the value of expression expr downwards to the nearest integer. For example, "floor(-1.5)" is
           "-2.0".

       gauss(x)
           Compute Gauss function of x, corresponding to "exp(-x*x/2) / sqrt(2*PI)".

       gcd(x, y)
           Return the greatest common divisor of x and y. If both x and y are 0 or either or both are less than
           zero then behavior is undefined.

       gt(x, y)
           Return 1 if x is greater than y, 0 otherwise.

       gte(x, y)
           Return 1 if x is greater than or equal to y, 0 otherwise.

       hypot(x, y)
           This function is similar to the C function with the same name; it returns "sqrt(x*x + y*y)", the
           length of the hypotenuse of a right triangle with sides of length x and y, or the distance of the
           point (x, y) from the origin.

       if(x, y)
           Evaluate x, and if the result is non-zero return the result of the evaluation of y, return 0
           otherwise.

       if(x, y, z)
           Evaluate x, and if the result is non-zero return the evaluation result of y, otherwise the evaluation
           result of z.

       ifnot(x, y)
           Evaluate x, and if the result is zero return the result of the evaluation of y, return 0 otherwise.

       ifnot(x, y, z)
           Evaluate x, and if the result is zero return the evaluation result of y, otherwise the evaluation
           result of z.

       isinf(x)
           Return 1.0 if x is +/-INFINITY, 0.0 otherwise.

       isnan(x)
           Return 1.0 if x is NAN, 0.0 otherwise.

       ld(var)
           Load the value of the internal variable with number var, which was previously stored with st(var,
           expr).  The function returns the loaded value.

       log(x)
           Compute natural logarithm of x.

       lt(x, y)
           Return 1 if x is lesser than y, 0 otherwise.

       lte(x, y)
           Return 1 if x is lesser than or equal to y, 0 otherwise.

       max(x, y)
           Return the maximum between x and y.

       min(x, y)
           Return the minimum between x and y.

       mod(x, y)
           Compute the remainder of division of x by y.

       not(expr)
           Return 1.0 if expr is zero, 0.0 otherwise.

       pow(x, y)
           Compute the power of x elevated y, it is equivalent to "(x)^(y)".

       print(t)
       print(t, l)
           Print the value of expression t with loglevel l. If l is not specified then a default log level is
           used.  Returns the value of the expression printed.

           Prints t with loglevel l

       random(x)
           Return a pseudo random value between 0.0 and 1.0. x is the index of the internal variable which will
           be used to save the seed/state.

       root(expr, max)
           Find an input value for which the function represented by expr with argument ld(0) is 0 in the
           interval 0..max.

           The expression in expr must denote a continuous function or the result is undefined.

           ld(0) is used to represent the function input value, which means that the given expression will be
           evaluated multiple times with various input values that the expression can access through ld(0). When
           the expression evaluates to 0 then the corresponding input value will be returned.

       sin(x)
           Compute sine of x.

       sinh(x)
           Compute hyperbolic sine of x.

       sqrt(expr)
           Compute the square root of expr. This is equivalent to "(expr)^.5".

       squish(x)
           Compute expression "1/(1 + exp(4*x))".

       st(var, expr)
           Store the value of the expression expr in an internal variable. var specifies the number of the
           variable where to store the value, and it is a value ranging from 0 to 9. The function returns the
           value stored in the internal variable.  Note, Variables are currently not shared between expressions.

       tan(x)
           Compute tangent of x.

       tanh(x)
           Compute hyperbolic tangent of x.

       taylor(expr, x)
       taylor(expr, x, id)
           Evaluate a Taylor series at x, given an expression representing the "ld(id)"-th derivative of a
           function at 0.

           When the series does not converge the result is undefined.

           ld(id) is used to represent the derivative order in expr, which means that the given expression will
           be evaluated multiple times with various input values that the expression can access through
           "ld(id)". If id is not specified then 0 is assumed.

           Note, when you have the derivatives at y instead of 0, "taylor(expr, x-y)" can be used.

       time(0)
           Return the current (wallclock) time in seconds.

       trunc(expr)
           Round the value of expression expr towards zero to the nearest integer. For example, "trunc(-1.5)" is
           "-1.0".

       while(cond, expr)
           Evaluate expression expr while the expression cond is non-zero, and returns the value of the last
           expr evaluation, or NAN if cond was always false.

       The following constants are available:

       PI  area of the unit disc, approximately 3.14

       E   exp(1) (Euler's number), approximately 2.718

       PHI golden ratio (1+sqrt(5))/2, approximately 1.618

       Assuming that an expression is considered "true" if it has a non-zero value, note that:

       "*" works like AND

       "+" works like OR

       For example the construct:

               if (A AND B) then C

       is equivalent to:

               if(A*B, C)

       In your C code, you can extend the list of unary and binary functions, and define recognized constants,
       so that they are available for your expressions.

       The evaluator also recognizes the International System unit prefixes.  If 'i' is appended after the
       prefix, binary prefixes are used, which are based on powers of 1024 instead of powers of 1000.  The 'B'
       postfix multiplies the value by 8, and can be appended after a unit prefix or used alone. This allows
       using for example 'KB', 'MiB', 'G' and 'B' as number postfix.

       The list of available International System prefixes follows, with indication of the corresponding powers
       of 10 and of 2.

       y   10^-24 / 2^-80

       z   10^-21 / 2^-70

       a   10^-18 / 2^-60

       f   10^-15 / 2^-50

       p   10^-12 / 2^-40

       n   10^-9 / 2^-30

       u   10^-6 / 2^-20

       m   10^-3 / 2^-10

       c   10^-2

       d   10^-1

       h   10^2

       k   10^3 / 2^10

       K   10^3 / 2^10

       M   10^6 / 2^20

       G   10^9 / 2^30

       T   10^12 / 2^40

       P   10^15 / 2^40

       E   10^18 / 2^50

       Z   10^21 / 2^60

       Y   10^24 / 2^70

OPENCL OPTIONS

       When FFmpeg is configured with "--enable-opencl", it is possible to set the options for the global OpenCL
       context.

       The list of supported options follows:

       build_options
           Set build options used to compile the registered kernels.

           See reference "OpenCL Specification Version: 1.2 chapter 5.6.4".

       platform_idx
           Select the index of the platform to run OpenCL code.

           The specified index must be one of the indexes in the device list which can be obtained with "ffmpeg
           -opencl_bench" or "av_opencl_get_device_list()".

       device_idx
           Select the index of the device used to run OpenCL code.

           The specified index must be one of the indexes in the device list which can be obtained with "ffmpeg
           -opencl_bench" or "av_opencl_get_device_list()".

CODEC OPTIONS

       libavcodec provides some generic global options, which can be set on all the encoders and decoders. In
       addition each codec may support so-called private options, which are specific for a given codec.

       Sometimes, a global option may only affect a specific kind of codec, and may be nonsensical or ignored by
       another, so you need to be aware of the meaning of the specified options. Also some options are meant
       only for decoding or encoding.

       Options may be set by specifying -option value in the FFmpeg tools, or by setting the value explicitly in
       the "AVCodecContext" options or using the libavutil/opt.h API for programmatic use.

       The list of supported options follow:

       b integer (encoding,audio,video)
           Set bitrate in bits/s. Default value is 200K.

       ab integer (encoding,audio)
           Set audio bitrate (in bits/s). Default value is 128K.

       bt integer (encoding,video)
           Set video bitrate tolerance (in bits/s). In 1-pass mode, bitrate tolerance specifies how far
           ratecontrol is willing to deviate from the target average bitrate value. This is not related to
           min/max bitrate. Lowering tolerance too much has an adverse effect on quality.

       flags flags (decoding/encoding,audio,video,subtitles)
           Set generic flags.

           Possible values:

           mv4 Use four motion vector by macroblock (mpeg4).

           qpel
               Use 1/4 pel motion compensation.

           loop
               Use loop filter.

           qscale
               Use fixed qscale.

           gmc Use gmc.

           mv0 Always try a mb with mv=<0,0>.

           input_preserved
           pass1
               Use internal 2pass ratecontrol in first pass mode.

           pass2
               Use internal 2pass ratecontrol in second pass mode.

           gray
               Only decode/encode grayscale.

           emu_edge
               Do not draw edges.

           psnr
               Set error[?] variables during encoding.

           truncated
           naq Normalize adaptive quantization.

           ildct
               Use interlaced DCT.

           low_delay
               Force low delay.

           global_header
               Place global headers in extradata instead of every keyframe.

           bitexact
               Only write platform-, build- and time-independent data. (except (I)DCT).  This ensures that file
               and data checksums are reproducible and match between platforms. Its primary use is for
               regression testing.

           aic Apply H263 advanced intra coding / mpeg4 ac prediction.

           cbp Deprecated, use mpegvideo private options instead.

           qprd
               Deprecated, use mpegvideo private options instead.

           ilme
               Apply interlaced motion estimation.

           cgop
               Use closed gop.

       me_method integer (encoding,video)
           Set motion estimation method.

           Possible values:

           zero
               zero motion estimation (fastest)

           full
               full motion estimation (slowest)

           epzs
               EPZS motion estimation (default)

           esa esa motion estimation (alias for full)

           tesa
               tesa motion estimation

           dia dia motion estimation (alias for epzs)

           log log motion estimation

           phods
               phods motion estimation

           x1  X1 motion estimation

           hex hex motion estimation

           umh umh motion estimation

           iter
               iter motion estimation

       extradata_size integer
           Set extradata size.

       time_base rational number
           Set codec time base.

           It is the fundamental unit of time (in seconds) in terms of which frame timestamps are represented.
           For fixed-fps content, timebase should be "1 / frame_rate" and timestamp increments should be
           identically 1.

       g integer (encoding,video)
           Set the group of picture size. Default value is 12.

       ar integer (decoding/encoding,audio)
           Set audio sampling rate (in Hz).

       ac integer (decoding/encoding,audio)
           Set number of audio channels.

       cutoff integer (encoding,audio)
           Set cutoff bandwidth.

       frame_size integer (encoding,audio)
           Set audio frame size.

           Each submitted frame except the last must contain exactly frame_size samples per channel. May be 0
           when the codec has CODEC_CAP_VARIABLE_FRAME_SIZE set, in that case the frame size is not restricted.
           It is set by some decoders to indicate constant frame size.

       frame_number integer
           Set the frame number.

       delay integer
       qcomp float (encoding,video)
           Set video quantizer scale compression (VBR). It is used as a constant in the ratecontrol equation.
           Recommended range for default rc_eq: 0.0-1.0.

       qblur float (encoding,video)
           Set video quantizer scale blur (VBR).

       qmin integer (encoding,video)
           Set min video quantizer scale (VBR). Must be included between -1 and 69, default value is 2.

       qmax integer (encoding,video)
           Set max video quantizer scale (VBR). Must be included between -1 and 1024, default value is 31.

       qdiff integer (encoding,video)
           Set max difference between the quantizer scale (VBR).

       bf integer (encoding,video)
           Set max number of B frames between non-B-frames.

           Must be an integer between -1 and 16. 0 means that B-frames are disabled. If a value of -1 is used,
           it will choose an automatic value depending on the encoder.

           Default value is 0.

       b_qfactor float (encoding,video)
           Set qp factor between P and B frames.

       rc_strategy integer (encoding,video)
           Set ratecontrol method.

       b_strategy integer (encoding,video)
           Set strategy to choose between I/P/B-frames.

       ps integer (encoding,video)
           Set RTP payload size in bytes.

       mv_bits integer
       header_bits integer
       i_tex_bits integer
       p_tex_bits integer
       i_count integer
       p_count integer
       skip_count integer
       misc_bits integer
       frame_bits integer
       codec_tag integer
       bug flags (decoding,video)
           Workaround not auto detected encoder bugs.

           Possible values:

           autodetect
           old_msmpeg4
               some old lavc generated msmpeg4v3 files (no autodetection)

           xvid_ilace
               Xvid interlacing bug (autodetected if fourcc==XVIX)

           ump4
               (autodetected if fourcc==UMP4)

           no_padding
               padding bug (autodetected)

           amv
           ac_vlc
               illegal vlc bug (autodetected per fourcc)

           qpel_chroma
           std_qpel
               old standard qpel (autodetected per fourcc/version)

           qpel_chroma2
           direct_blocksize
               direct-qpel-blocksize bug (autodetected per fourcc/version)

           edge
               edge padding bug (autodetected per fourcc/version)

           hpel_chroma
           dc_clip
           ms  Workaround various bugs in microsoft broken decoders.

           trunc
               trancated frames

       lelim integer (encoding,video)
           Set single coefficient elimination threshold for luminance (negative values also consider DC
           coefficient).

       celim integer (encoding,video)
           Set single coefficient elimination threshold for chrominance (negative values also consider dc
           coefficient)

       strict integer (decoding/encoding,audio,video)
           Specify how strictly to follow the standards.

           Possible values:

           very
               strictly conform to a older more strict version of the spec or reference software

           strict
               strictly conform to all the things in the spec no matter what consequences

           normal
           unofficial
               allow unofficial extensions

           experimental
               allow non standardized experimental things, experimental (unfinished/work in progress/not well
               tested) decoders and encoders.  Note: experimental decoders can pose a security risk, do not use
               this for decoding untrusted input.

       b_qoffset float (encoding,video)
           Set QP offset between P and B frames.

       err_detect flags (decoding,audio,video)
           Set error detection flags.

           Possible values:

           crccheck
               verify embedded CRCs

           bitstream
               detect bitstream specification deviations

           buffer
               detect improper bitstream length

           explode
               abort decoding on minor error detection

           ignore_err
               ignore decoding errors, and continue decoding.  This is useful if you want to analyze the content
               of a video and thus want everything to be decoded no matter what. This option will not result in
               a video that is pleasing to watch in case of errors.

           careful
               consider things that violate the spec and have not been seen in the wild as errors

           compliant
               consider all spec non compliancies as errors

           aggressive
               consider things that a sane encoder should not do as an error

       has_b_frames integer
       block_align integer
       mpeg_quant integer (encoding,video)
           Use MPEG quantizers instead of H.263.

       qsquish float (encoding,video)
           How to keep quantizer between qmin and qmax (0 = clip, 1 = use differentiable function).

       rc_qmod_amp float (encoding,video)
           Set experimental quantizer modulation.

       rc_qmod_freq integer (encoding,video)
           Set experimental quantizer modulation.

       rc_override_count integer
       rc_eq string (encoding,video)
           Set rate control equation. When computing the expression, besides the standard functions defined in
           the section 'Expression Evaluation', the following functions are available: bits2qp(bits),
           qp2bits(qp). Also the following constants are available: iTex pTex tex mv fCode iCount mcVar var isI
           isP isB avgQP qComp avgIITex avgPITex avgPPTex avgBPTex avgTex.

       maxrate integer (encoding,audio,video)
           Set max bitrate tolerance (in bits/s). Requires bufsize to be set.

       minrate integer (encoding,audio,video)
           Set min bitrate tolerance (in bits/s). Most useful in setting up a CBR encode. It is of little use
           elsewise.

       bufsize integer (encoding,audio,video)
           Set ratecontrol buffer size (in bits).

       rc_buf_aggressivity float (encoding,video)
           Currently useless.

       i_qfactor float (encoding,video)
           Set QP factor between P and I frames.

       i_qoffset float (encoding,video)
           Set QP offset between P and I frames.

       rc_init_cplx float (encoding,video)
           Set initial complexity for 1-pass encoding.

       dct integer (encoding,video)
           Set DCT algorithm.

           Possible values:

           auto
               autoselect a good one (default)

           fastint
               fast integer

           int accurate integer

           mmx
           altivec
           faan
               floating point AAN DCT

       lumi_mask float (encoding,video)
           Compress bright areas stronger than medium ones.

       tcplx_mask float (encoding,video)
           Set temporal complexity masking.

       scplx_mask float (encoding,video)
           Set spatial complexity masking.

       p_mask float (encoding,video)
           Set inter masking.

       dark_mask float (encoding,video)
           Compress dark areas stronger than medium ones.

       idct integer (decoding/encoding,video)
           Select IDCT implementation.

           Possible values:

           auto
           int
           simple
           simplemmx
           simpleauto
               Automatically pick a IDCT compatible with the simple one

           arm
           altivec
           sh4
           simplearm
           simplearmv5te
           simplearmv6
           simpleneon
           simplealpha
           ipp
           xvidmmx
           faani
               floating point AAN IDCT

       slice_count integer
       ec flags (decoding,video)
           Set error concealment strategy.

           Possible values:

           guess_mvs
               iterative motion vector (MV) search (slow)

           deblock
               use strong deblock filter for damaged MBs

           favor_inter
               favor predicting from the previous frame instead of the current

       bits_per_coded_sample integer
       pred integer (encoding,video)
           Set prediction method.

           Possible values:

           left
           plane
           median
       aspect rational number (encoding,video)
           Set sample aspect ratio.

       debug flags (decoding/encoding,audio,video,subtitles)
           Print specific debug info.

           Possible values:

           pict
               picture info

           rc  rate control

           bitstream
           mb_type
               macroblock (MB) type

           qp  per-block quantization parameter (QP)

           mv  motion vector

           dct_coeff
           green_metadata
               display complexity metadata for the upcoming frame, GoP or for a given duration.

           skip
           startcode
           pts
           er  error recognition

           mmco
               memory management control operations (H.264)

           bugs
           vis_qp
               visualize quantization parameter (QP), lower QP are tinted greener

           vis_mb_type
               visualize block types

           buffers
               picture buffer allocations

           thread_ops
               threading operations

           nomc
               skip motion compensation

       vismv integer (decoding,video)
           Visualize motion vectors (MVs).

           This option is deprecated, see the codecview filter instead.

           Possible values:

           pf  forward predicted MVs of P-frames

           bf  forward predicted MVs of B-frames

           bb  backward predicted MVs of B-frames

       cmp integer (encoding,video)
           Set full pel me compare function.

           Possible values:

           sad sum of absolute differences, fast (default)

           sse sum of squared errors

           satd
               sum of absolute Hadamard transformed differences

           dct sum of absolute DCT transformed differences

           psnr
               sum of squared quantization errors (avoid, low quality)

           bit number of bits needed for the block

           rd  rate distortion optimal, slow

           zero
               0

           vsad
               sum of absolute vertical differences

           vsse
               sum of squared vertical differences

           nsse
               noise preserving sum of squared differences

           w53 5/3 wavelet, only used in snow

           w97 9/7 wavelet, only used in snow

           dctmax
           chroma
       subcmp integer (encoding,video)
           Set sub pel me compare function.

           Possible values:

           sad sum of absolute differences, fast (default)

           sse sum of squared errors

           satd
               sum of absolute Hadamard transformed differences

           dct sum of absolute DCT transformed differences

           psnr
               sum of squared quantization errors (avoid, low quality)

           bit number of bits needed for the block

           rd  rate distortion optimal, slow

           zero
               0

           vsad
               sum of absolute vertical differences

           vsse
               sum of squared vertical differences

           nsse
               noise preserving sum of squared differences

           w53 5/3 wavelet, only used in snow

           w97 9/7 wavelet, only used in snow

           dctmax
           chroma
       mbcmp integer (encoding,video)
           Set macroblock compare function.

           Possible values:

           sad sum of absolute differences, fast (default)

           sse sum of squared errors

           satd
               sum of absolute Hadamard transformed differences

           dct sum of absolute DCT transformed differences

           psnr
               sum of squared quantization errors (avoid, low quality)

           bit number of bits needed for the block

           rd  rate distortion optimal, slow

           zero
               0

           vsad
               sum of absolute vertical differences

           vsse
               sum of squared vertical differences

           nsse
               noise preserving sum of squared differences

           w53 5/3 wavelet, only used in snow

           w97 9/7 wavelet, only used in snow

           dctmax
           chroma
       ildctcmp integer (encoding,video)
           Set interlaced dct compare function.

           Possible values:

           sad sum of absolute differences, fast (default)

           sse sum of squared errors

           satd
               sum of absolute Hadamard transformed differences

           dct sum of absolute DCT transformed differences

           psnr
               sum of squared quantization errors (avoid, low quality)

           bit number of bits needed for the block

           rd  rate distortion optimal, slow

           zero
               0

           vsad
               sum of absolute vertical differences

           vsse
               sum of squared vertical differences

           nsse
               noise preserving sum of squared differences

           w53 5/3 wavelet, only used in snow

           w97 9/7 wavelet, only used in snow

           dctmax
           chroma
       dia_size integer (encoding,video)
           Set diamond type & size for motion estimation.

       last_pred integer (encoding,video)
           Set amount of motion predictors from the previous frame.

       preme integer (encoding,video)
           Set pre motion estimation.

       precmp integer (encoding,video)
           Set pre motion estimation compare function.

           Possible values:

           sad sum of absolute differences, fast (default)

           sse sum of squared errors

           satd
               sum of absolute Hadamard transformed differences

           dct sum of absolute DCT transformed differences

           psnr
               sum of squared quantization errors (avoid, low quality)

           bit number of bits needed for the block

           rd  rate distortion optimal, slow

           zero
               0

           vsad
               sum of absolute vertical differences

           vsse
               sum of squared vertical differences

           nsse
               noise preserving sum of squared differences

           w53 5/3 wavelet, only used in snow

           w97 9/7 wavelet, only used in snow

           dctmax
           chroma
       pre_dia_size integer (encoding,video)
           Set diamond type & size for motion estimation pre-pass.

       subq integer (encoding,video)
           Set sub pel motion estimation quality.

       dtg_active_format integer
       me_range integer (encoding,video)
           Set limit motion vectors range (1023 for DivX player).

       ibias integer (encoding,video)
           Set intra quant bias.

       pbias integer (encoding,video)
           Set inter quant bias.

       color_table_id integer
       global_quality integer (encoding,audio,video)
       coder integer (encoding,video)
           Possible values:

           vlc variable length coder / huffman coder

           ac  arithmetic coder

           raw raw (no encoding)

           rle run-length coder

           deflate
               deflate-based coder

       context integer (encoding,video)
           Set context model.

       slice_flags integer
       xvmc_acceleration integer
       mbd integer (encoding,video)
           Set macroblock decision algorithm (high quality mode).

           Possible values:

           simple
               use mbcmp (default)

           bits
               use fewest bits

           rd  use best rate distortion

       stream_codec_tag integer
       sc_threshold integer (encoding,video)
           Set scene change threshold.

       lmin integer (encoding,video)
           Set min lagrange factor (VBR).

       lmax integer (encoding,video)
           Set max lagrange factor (VBR).

       nr integer (encoding,video)
           Set noise reduction.

       rc_init_occupancy integer (encoding,video)
           Set number of bits which should be loaded into the rc buffer before decoding starts.

       flags2 flags (decoding/encoding,audio,video)
           Possible values:

           fast
               Allow non spec compliant speedup tricks.

           sgop
               Deprecated, use mpegvideo private options instead.

           noout
               Skip bitstream encoding.

           ignorecrop
               Ignore cropping information from sps.

           local_header
               Place global headers at every keyframe instead of in extradata.

           chunks
               Frame data might be split into multiple chunks.

           showall
               Show all frames before the first keyframe.

           skiprd
               Deprecated, use mpegvideo private options instead.

           export_mvs
               Export motion vectors into frame side-data (see "AV_FRAME_DATA_MOTION_VECTORS") for codecs that
               support it. See also doc/examples/export_mvs.c.

       error integer (encoding,video)
       qns integer (encoding,video)
           Deprecated, use mpegvideo private options instead.

       threads integer (decoding/encoding,video)
           Possible values:

           auto
               detect a good number of threads

       me_threshold integer (encoding,video)
           Set motion estimation threshold.

       mb_threshold integer (encoding,video)
           Set macroblock threshold.

       dc integer (encoding,video)
           Set intra_dc_precision.

       nssew integer (encoding,video)
           Set nsse weight.

       skip_top integer (decoding,video)
           Set number of macroblock rows at the top which are skipped.

       skip_bottom integer (decoding,video)
           Set number of macroblock rows at the bottom which are skipped.

       profile integer (encoding,audio,video)
           Possible values:

           unknown
           aac_main
           aac_low
           aac_ssr
           aac_ltp
           aac_he
           aac_he_v2
           aac_ld
           aac_eld
           mpeg2_aac_low
           mpeg2_aac_he
           mpeg4_sp
           mpeg4_core
           mpeg4_main
           mpeg4_asp
           dts
           dts_es
           dts_96_24
           dts_hd_hra
           dts_hd_ma
       level integer (encoding,audio,video)
           Possible values:

           unknown
       lowres integer (decoding,audio,video)
           Decode at 1= 1/2, 2=1/4, 3=1/8 resolutions.

       skip_threshold integer (encoding,video)
           Set frame skip threshold.

       skip_factor integer (encoding,video)
           Set frame skip factor.

       skip_exp integer (encoding,video)
           Set frame skip exponent.  Negative values behave identical to the corresponding positive ones, except
           that the score is normalized.  Positive values exist primarily for compatibility reasons and are not
           so useful.

       skipcmp integer (encoding,video)
           Set frame skip compare function.

           Possible values:

           sad sum of absolute differences, fast (default)

           sse sum of squared errors

           satd
               sum of absolute Hadamard transformed differences

           dct sum of absolute DCT transformed differences

           psnr
               sum of squared quantization errors (avoid, low quality)

           bit number of bits needed for the block

           rd  rate distortion optimal, slow

           zero
               0

           vsad
               sum of absolute vertical differences

           vsse
               sum of squared vertical differences

           nsse
               noise preserving sum of squared differences

           w53 5/3 wavelet, only used in snow

           w97 9/7 wavelet, only used in snow

           dctmax
           chroma
       border_mask float (encoding,video)
           Increase the quantizer for macroblocks close to borders.

       mblmin integer (encoding,video)
           Set min macroblock lagrange factor (VBR).

       mblmax integer (encoding,video)
           Set max macroblock lagrange factor (VBR).

       mepc integer (encoding,video)
           Set motion estimation bitrate penalty compensation (1.0 = 256).

       skip_loop_filter integer (decoding,video)
       skip_idct        integer (decoding,video)
       skip_frame       integer (decoding,video)
           Make decoder discard processing depending on the frame type selected by the option value.

           skip_loop_filter skips frame loop filtering, skip_idct skips frame IDCT/dequantization, skip_frame
           skips decoding.

           Possible values:

           none
               Discard no frame.

           default
               Discard useless frames like 0-sized frames.

           noref
               Discard all non-reference frames.

           bidir
               Discard all bidirectional frames.

           nokey
               Discard all frames excepts keyframes.

           all Discard all frames.

           Default value is default.

       bidir_refine integer (encoding,video)
           Refine the two motion vectors used in bidirectional macroblocks.

       brd_scale integer (encoding,video)
           Downscale frames for dynamic B-frame decision.

       keyint_min integer (encoding,video)
           Set minimum interval between IDR-frames.

       refs integer (encoding,video)
           Set reference frames to consider for motion compensation.

       chromaoffset integer (encoding,video)
           Set chroma qp offset from luma.

       trellis integer (encoding,audio,video)
           Set rate-distortion optimal quantization.

       sc_factor integer (encoding,video)
           Set value multiplied by qscale for each frame and added to scene_change_score.

       mv0_threshold integer (encoding,video)
       b_sensitivity integer (encoding,video)
           Adjust sensitivity of b_frame_strategy 1.

       compression_level integer (encoding,audio,video)
       min_prediction_order integer (encoding,audio)
       max_prediction_order integer (encoding,audio)
       timecode_frame_start integer (encoding,video)
           Set GOP timecode frame start number, in non drop frame format.

       request_channels integer (decoding,audio)
           Set desired number of audio channels.

       bits_per_raw_sample integer
       channel_layout integer (decoding/encoding,audio)
           Possible values:

       request_channel_layout integer (decoding,audio)
           Possible values:

       rc_max_vbv_use float (encoding,video)
       rc_min_vbv_use float (encoding,video)
       ticks_per_frame integer (decoding/encoding,audio,video)
       color_primaries integer (decoding/encoding,video)
       color_trc integer (decoding/encoding,video)
       colorspace integer (decoding/encoding,video)
       color_range integer (decoding/encoding,video)
           If used as input parameter, it serves as a hint to the decoder, which color_range the input has.

       chroma_sample_location integer (decoding/encoding,video)
       log_level_offset integer
           Set the log level offset.

       slices integer (encoding,video)
           Number of slices, used in parallelized encoding.

       thread_type flags (decoding/encoding,video)
           Select which multithreading methods to use.

           Use of frame will increase decoding delay by one frame per thread, so clients which cannot provide
           future frames should not use it.

           Possible values:

           slice
               Decode more than one part of a single frame at once.

               Multithreading using slices works only when the video was encoded with slices.

           frame
               Decode more than one frame at once.

           Default value is slice+frame.

       audio_service_type integer (encoding,audio)
           Set audio service type.

           Possible values:

           ma  Main Audio Service

           ef  Effects

           vi  Visually Impaired

           hi  Hearing Impaired

           di  Dialogue

           co  Commentary

           em  Emergency

           vo  Voice Over

           ka  Karaoke

       request_sample_fmt sample_fmt (decoding,audio)
           Set sample format audio decoders should prefer. Default value is "none".

       pkt_timebase rational number
       sub_charenc encoding (decoding,subtitles)
           Set the input subtitles character encoding.

       field_order  field_order (video)
           Set/override the field order of the video.  Possible values:

           progressive
               Progressive video

           tt  Interlaced video, top field coded and displayed first

           bb  Interlaced video, bottom field coded and displayed first

           tb  Interlaced video, top coded first, bottom displayed first

           bt  Interlaced video, bottom coded first, top displayed first

       skip_alpha integer (decoding,video)
           Set to 1 to disable processing alpha (transparency). This works like the gray flag in the flags
           option which skips chroma information instead of alpha. Default is 0.

       codec_whitelist list (input)
           "," separated List of allowed decoders. By default all are allowed.

       dump_separator string (input)
           Separator used to separate the fields printed on the command line about the Stream parameters.  For
           example to separate the fields with newlines and indention:

                   ffprobe -dump_separator "
                                             "  -i ~/videos/matrixbench_mpeg2.mpg

DECODERS

       Decoders are configured elements in FFmpeg which allow the decoding of multimedia streams.

       When you configure your FFmpeg build, all the supported native decoders are enabled by default. Decoders
       requiring an external library must be enabled manually via the corresponding "--enable-lib" option. You
       can list all available decoders using the configure option "--list-decoders".

       You can disable all the decoders with the configure option "--disable-decoders" and selectively enable /
       disable single decoders with the options "--enable-decoder=DECODER" / "--disable-decoder=DECODER".

       The option "-decoders" of the ff* tools will display the list of enabled decoders.

VIDEO DECODERS

       A description of some of the currently available video decoders follows.

   hevc
       HEVC / H.265 decoder.

       Note: the skip_loop_filter option has effect only at level "all".

   rawvideo
       Raw video decoder.

       This decoder decodes rawvideo streams.

       Options

       top top_field_first
           Specify the assumed field type of the input video.

           -1  the video is assumed to be progressive (default)

           0   bottom-field-first is assumed

           1   top-field-first is assumed

AUDIO DECODERS

       A description of some of the currently available audio decoders follows.

   ac3
       AC-3 audio decoder.

       This decoder implements part of ATSC A/52:2010 and ETSI TS 102 366, as well as the undocumented RealAudio
       3 (a.k.a. dnet).

       AC-3 Decoder Options

       -drc_scale value
           Dynamic Range Scale Factor. The factor to apply to dynamic range values from the AC-3 stream. This
           factor is applied exponentially.  There are 3 notable scale factor ranges:

           drc_scale == 0
               DRC disabled. Produces full range audio.

           0 < drc_scale <= 1
               DRC enabled.  Applies a fraction of the stream DRC value.  Audio reproduction is between full
               range and full compression.

           drc_scale > 1
               DRC enabled. Applies drc_scale asymmetrically.  Loud sounds are fully compressed.  Soft sounds
               are enhanced.

   flac
       FLAC audio decoder.

       This decoder aims to implement the complete FLAC specification from Xiph.

       FLAC Decoder options

       -use_buggy_lpc
           The lavc FLAC encoder used to produce buggy streams with high lpc values (like the default value).
           This option makes it possible to decode such streams correctly by using lavc's old buggy lpc logic
           for decoding.

   ffwavesynth
       Internal wave synthetizer.

       This decoder generates wave patterns according to predefined sequences. Its use is purely internal and
       the format of the data it accepts is not publicly documented.

   libcelt
       libcelt decoder wrapper.

       libcelt allows libavcodec to decode the Xiph CELT ultra-low delay audio codec.  Requires the presence of
       the libcelt headers and library during configuration.  You need to explicitly configure the build with
       "--enable-libcelt".

   libgsm
       libgsm decoder wrapper.

       libgsm allows libavcodec to decode the GSM full rate audio codec. Requires the presence of the libgsm
       headers and library during configuration. You need to explicitly configure the build with
       "--enable-libgsm".

       This decoder supports both the ordinary GSM and the Microsoft variant.

   libilbc
       libilbc decoder wrapper.

       libilbc allows libavcodec to decode the Internet Low Bitrate Codec (iLBC) audio codec. Requires the
       presence of the libilbc headers and library during configuration. You need to explicitly configure the
       build with "--enable-libilbc".

       Options

       The following option is supported by the libilbc wrapper.

       enhance
           Enable the enhancement of the decoded audio when set to 1. The default value is 0 (disabled).

   libopencore-amrnb
       libopencore-amrnb decoder wrapper.

       libopencore-amrnb allows libavcodec to decode the Adaptive Multi-Rate Narrowband audio codec. Using it
       requires the presence of the libopencore-amrnb headers and library during configuration. You need to
       explicitly configure the build with "--enable-libopencore-amrnb".

       An FFmpeg native decoder for AMR-NB exists, so users can decode AMR-NB without this library.

   libopencore-amrwb
       libopencore-amrwb decoder wrapper.

       libopencore-amrwb allows libavcodec to decode the Adaptive Multi-Rate Wideband audio codec. Using it
       requires the presence of the libopencore-amrwb headers and library during configuration. You need to
       explicitly configure the build with "--enable-libopencore-amrwb".

       An FFmpeg native decoder for AMR-WB exists, so users can decode AMR-WB without this library.

   libopus
       libopus decoder wrapper.

       libopus allows libavcodec to decode the Opus Interactive Audio Codec.  Requires the presence of the
       libopus headers and library during configuration. You need to explicitly configure the build with
       "--enable-libopus".

       An FFmpeg native decoder for Opus exists, so users can decode Opus without this library.

SUBTITLES DECODERS

   dvbsub
       Options

       compute_clut
           -1  Compute clut if no matching CLUT is in the stream.

           0   Never compute CLUT

           1   Always compute CLUT and override the one provided in the stream.

       dvb_substream
           Selects the dvb substream, or all substreams if -1 which is default.

   dvdsub
       This codec decodes the bitmap subtitles used in DVDs; the same subtitles can also be found in VobSub file
       pairs and in some Matroska files.

       Options

       palette
           Specify the global palette used by the bitmaps. When stored in VobSub, the palette is normally
           specified in the index file; in Matroska, the palette is stored in the codec extra-data in the same
           format as in VobSub. In DVDs, the palette is stored in the IFO file, and therefore not available when
           reading from dumped VOB files.

           The format for this option is a string containing 16 24-bits hexadecimal numbers (without 0x prefix)
           separated by comas, for example "0d00ee, ee450d, 101010, eaeaea, 0ce60b, ec14ed, ebff0b, 0d617a,
           7b7b7b, d1d1d1, 7b2a0e, 0d950c, 0f007b, cf0dec, cfa80c, 7c127b".

       ifo_palette
           Specify the IFO file from which the global palette is obtained.  (experimental)

       forced_subs_only
           Only decode subtitle entries marked as forced. Some titles have forced and non-forced subtitles in
           the same track. Setting this flag to 1 will only keep the forced subtitles. Default value is 0.

   libzvbi-teletext
       Libzvbi allows libavcodec to decode DVB teletext pages and DVB teletext subtitles. Requires the presence
       of the libzvbi headers and library during configuration. You need to explicitly configure the build with
       "--enable-libzvbi".

       Options

       txt_page
           List of teletext page numbers to decode. You may use the special * string to match all pages. Pages
           that do not match the specified list are dropped.  Default value is *.

       txt_chop_top
           Discards the top teletext line. Default value is 1.

       txt_format
           Specifies the format of the decoded subtitles. The teletext decoder is capable of decoding the
           teletext pages to bitmaps or to simple text, you should use "bitmap" for teletext pages, because
           certain graphics and colors cannot be expressed in simple text. You might use "text" for teletext
           based subtitles if your application can handle simple text based subtitles. Default value is bitmap.

       txt_left
           X offset of generated bitmaps, default is 0.

       txt_top
           Y offset of generated bitmaps, default is 0.

       txt_chop_spaces
           Chops leading and trailing spaces and removes empty lines from the generated text. This option is
           useful for teletext based subtitles where empty spaces may be present at the start or at the end of
           the lines or empty lines may be present between the subtitle lines because of double-sized teletext
           charactes.  Default value is 1.

       txt_duration
           Sets the display duration of the decoded teletext pages or subtitles in miliseconds. Default value is
           30000 which is 30 seconds.

       txt_transparent
           Force transparent background of the generated teletext bitmaps. Default value is 0 which means an
           opaque (black) background.

BITSTREAM FILTERS

       When you configure your FFmpeg build, all the supported bitstream filters are enabled by default. You can
       list all available ones using the configure option "--list-bsfs".

       You can disable all the bitstream filters using the configure option "--disable-bsfs", and selectively
       enable any bitstream filter using the option "--enable-bsf=BSF", or you can disable a particular
       bitstream filter using the option "--disable-bsf=BSF".

       The option "-bsfs" of the ff* tools will display the list of all the supported bitstream filters included
       in your build.

       The ff* tools have a -bsf option applied per stream, taking a comma-separated list of filters, whose
       parameters follow the filter name after a '='.

               ffmpeg -i INPUT -c:v copy -bsf:v filter1[=opt1=str1/opt2=str2][,filter2] OUTPUT

       Below is a description of the currently available bitstream filters, with their parameters, if any.

   aac_adtstoasc
       Convert MPEG-2/4 AAC ADTS to MPEG-4 Audio Specific Configuration bitstream filter.

       This filter creates an MPEG-4 AudioSpecificConfig from an MPEG-2/4 ADTS header and removes the ADTS
       header.

       This is required for example when copying an AAC stream from a raw ADTS AAC container to a FLV or a
       MOV/MP4 file.

   chomp
       Remove zero padding at the end of a packet.

   dump_extra
       Add extradata to the beginning of the filtered packets.

       The additional argument specifies which packets should be filtered.  It accepts the values:

       a   add extradata to all key packets, but only if local_header is set in the flags2 codec context field

       k   add extradata to all key packets

       e   add extradata to all packets

       If not specified it is assumed k.

       For example the following ffmpeg command forces a global header (thus disabling individual packet
       headers) in the H.264 packets generated by the "libx264" encoder, but corrects them by adding the header
       stored in extradata to the key packets:

               ffmpeg -i INPUT -map 0 -flags:v +global_header -c:v libx264 -bsf:v dump_extra out.ts

   h264_mp4toannexb
       Convert an H.264 bitstream from length prefixed mode to start code prefixed mode (as defined in the Annex
       B of the ITU-T H.264 specification).

       This is required by some streaming formats, typically the MPEG-2 transport stream format ("mpegts").

       For example to remux an MP4 file containing an H.264 stream to mpegts format with ffmpeg, you can use the
       command:

               ffmpeg -i INPUT.mp4 -codec copy -bsf:v h264_mp4toannexb OUTPUT.ts

   imxdump
       Modifies the bitstream to fit in MOV and to be usable by the Final Cut Pro decoder. This filter only
       applies to the mpeg2video codec, and is likely not needed for Final Cut Pro 7 and newer with the
       appropriate -tag:v.

       For example, to remux 30 MB/sec NTSC IMX to MOV:

               ffmpeg -i input.mxf -c copy -bsf:v imxdump -tag:v mx3n output.mov

   mjpeg2jpeg
       Convert MJPEG/AVI1 packets to full JPEG/JFIF packets.

       MJPEG is a video codec wherein each video frame is essentially a JPEG image. The individual frames can be
       extracted without loss, e.g. by

               ffmpeg -i ../some_mjpeg.avi -c:v copy frames_%d.jpg

       Unfortunately, these chunks are incomplete JPEG images, because they lack the DHT segment required for
       decoding. Quoting from <http://www.digitalpreservation.gov/formats/fdd/fdd000063.shtml>:

       Avery Lee, writing in the rec.video.desktop newsgroup in 2001, commented that "MJPEG, or at least the
       MJPEG in AVIs having the MJPG fourcc, is restricted JPEG with a fixed -- and *omitted* -- Huffman table.
       The JPEG must be YCbCr colorspace, it must be 4:2:2, and it must use basic Huffman encoding, not
       arithmetic or progressive. . . . You can indeed extract the MJPEG frames and decode them with a regular
       JPEG decoder, but you have to prepend the DHT segment to them, or else the decoder won't have any idea
       how to decompress the data. The exact table necessary is given in the OpenDML spec."

       This bitstream filter patches the header of frames extracted from an MJPEG stream (carrying the AVI1
       header ID and lacking a DHT segment) to produce fully qualified JPEG images.

               ffmpeg -i mjpeg-movie.avi -c:v copy -bsf:v mjpeg2jpeg frame_%d.jpg
               exiftran -i -9 frame*.jpg
               ffmpeg -i frame_%d.jpg -c:v copy rotated.avi

   mjpega_dump_header
   movsub
   mp3_header_decompress
   mpeg4_unpack_bframes
       Unpack DivX-style packed B-frames.

       DivX-style packed B-frames are not valid MPEG-4 and were only a workaround for the broken Video for
       Windows subsystem.  They use more space, can cause minor AV sync issues, require more CPU power to decode
       (unless the player has some decoded picture queue to compensate the 2,0,2,0 frame per packet style) and
       cause trouble if copied into a standard container like mp4 or mpeg-ps/ts, because MPEG-4 decoders may not
       be able to decode them, since they are not valid MPEG-4.

       For example to fix an AVI file containing an MPEG-4 stream with DivX-style packed B-frames using ffmpeg,
       you can use the command:

               ffmpeg -i INPUT.avi -codec copy -bsf:v mpeg4_unpack_bframes OUTPUT.avi

   noise
       Damages the contents of packets without damaging the container. Can be used for fuzzing or testing error
       resilience/concealment.

       Parameters: A numeral string, whose value is related to how often output bytes will be modified.
       Therefore, values below or equal to 0 are forbidden, and the lower the more frequent bytes will be
       modified, with 1 meaning every byte is modified.

               ffmpeg -i INPUT -c copy -bsf noise[=1] output.mkv

       applies the modification to every byte.

   remove_extra

FORMAT OPTIONS

       The libavformat library provides some generic global options, which can be set on all the muxers and
       demuxers. In addition each muxer or demuxer may support so-called private options, which are specific for
       that component.

       Options may be set by specifying -option value in the FFmpeg tools, or by setting the value explicitly in
       the "AVFormatContext" options or using the libavutil/opt.h API for programmatic use.

       The list of supported options follows:

       avioflags flags (input/output)
           Possible values:

           direct
               Reduce buffering.

       probesize integer (input)
           Set probing size in bytes, i.e. the size of the data to analyze to get stream information. A higher
           value will enable detecting more information in case it is dispersed into the stream, but will
           increase latency. Must be an integer not lesser than 32. It is 5000000 by default.

       packetsize integer (output)
           Set packet size.

       fflags flags (input/output)
           Set format flags.

           Possible values:

           ignidx
               Ignore index.

           fastseek
               Enable fast, but inaccurate seeks for some formats.

           genpts
               Generate PTS.

           nofillin
               Do not fill in missing values that can be exactly calculated.

           noparse
               Disable AVParsers, this needs "+nofillin" too.

           igndts
               Ignore DTS.

           discardcorrupt
               Discard corrupted frames.

           sortdts
               Try to interleave output packets by DTS.

           keepside
               Do not merge side data.

           latm
               Enable RTP MP4A-LATM payload.

           nobuffer
               Reduce the latency introduced by optional buffering

           bitexact
               Only write platform-, build- and time-independent data.  This ensures that file and data
               checksums are reproducible and match between platforms. Its primary use is for regression
               testing.

       seek2any integer (input)
           Allow seeking to non-keyframes on demuxer level when supported if set to 1.  Default is 0.

       analyzeduration integer (input)
           Specify how many microseconds are analyzed to probe the input. A higher value will enable detecting
           more accurate information, but will increase latency. It defaults to 5,000,000 microseconds = 5
           seconds.

       cryptokey hexadecimal string (input)
           Set decryption key.

       indexmem integer (input)
           Set max memory used for timestamp index (per stream).

       rtbufsize integer (input)
           Set max memory used for buffering real-time frames.

       fdebug flags (input/output)
           Print specific debug info.

           Possible values:

           ts
       max_delay integer (input/output)
           Set maximum muxing or demuxing delay in microseconds.

       fpsprobesize integer (input)
           Set number of frames used to probe fps.

       audio_preload integer (output)
           Set microseconds by which audio packets should be interleaved earlier.

       chunk_duration integer (output)
           Set microseconds for each chunk.

       chunk_size integer (output)
           Set size in bytes for each chunk.

       err_detect, f_err_detect flags (input)
           Set error detection flags. "f_err_detect" is deprecated and should be used only via the ffmpeg tool.

           Possible values:

           crccheck
               Verify embedded CRCs.

           bitstream
               Detect bitstream specification deviations.

           buffer
               Detect improper bitstream length.

           explode
               Abort decoding on minor error detection.

           careful
               Consider things that violate the spec and have not been seen in the wild as errors.

           compliant
               Consider all spec non compliancies as errors.

           aggressive
               Consider things that a sane encoder should not do as an error.

       max_interleave_delta integer (output)
           Set maximum buffering duration for interleaving. The duration is expressed in microseconds, and
           defaults to 1000000 (1 second).

           To ensure all the streams are interleaved correctly, libavformat will wait until it has at least one
           packet for each stream before actually writing any packets to the output file. When some streams are
           "sparse" (i.e. there are large gaps between successive packets), this can result in excessive
           buffering.

           This field specifies the maximum difference between the timestamps of the first and the last packet
           in the muxing queue, above which libavformat will output a packet regardless of whether it has queued
           a packet for all the streams.

           If set to 0, libavformat will continue buffering packets until it has a packet for each stream,
           regardless of the maximum timestamp difference between the buffered packets.

       use_wallclock_as_timestamps integer (input)
           Use wallclock as timestamps.

       avoid_negative_ts integer (output)
           Possible values:

           make_non_negative
               Shift timestamps to make them non-negative.  Also note that this affects only leading negative
               timestamps, and not non-monotonic negative timestamps.

           make_zero
               Shift timestamps so that the first timestamp is 0.

           auto (default)
               Enables shifting when required by the target format.

           disabled
               Disables shifting of timestamp.

           When shifting is enabled, all output timestamps are shifted by the same amount. Audio, video, and
           subtitles desynching and relative timestamp differences are preserved compared to how they would have
           been without shifting.

       skip_initial_bytes integer (input)
           Set number of bytes to skip before reading header and frames if set to 1.  Default is 0.

       correct_ts_overflow integer (input)
           Correct single timestamp overflows if set to 1. Default is 1.

       flush_packets integer (output)
           Flush the underlying I/O stream after each packet. Default 1 enables it, and has the effect of
           reducing the latency; 0 disables it and may slightly increase performance in some cases.

       output_ts_offset offset (output)
           Set the output time offset.

           offset must be a time duration specification, see the Time duration section in the ffmpeg-utils(1)
           manual.

           The offset is added by the muxer to the output timestamps.

           Specifying a positive offset means that the corresponding streams are delayed bt the time duration
           specified in offset. Default value is 0 (meaning that no offset is applied).

       format_whitelist list (input)
           "," separated List of allowed demuxers. By default all are allowed.

       dump_separator string (input)
           Separator used to separate the fields printed on the command line about the Stream parameters.  For
           example to separate the fields with newlines and indention:

                   ffprobe -dump_separator "
                                             "  -i ~/videos/matrixbench_mpeg2.mpg

       max_streams integer (input)
           Specifies the maximum number of streams. This can be used to reject files that would require too many
           resources due to a large number of streams.

   Format stream specifiers
       Format stream specifiers allow selection of one or more streams that match specific properties.

       Possible forms of stream specifiers are:

       stream_index
           Matches the stream with this index.

       stream_type[:stream_index]
           stream_type is one of following: 'v' for video, 'a' for audio, 's' for subtitle, 'd' for data, and
           't' for attachments. If stream_index is given, then it matches the stream number stream_index of this
           type. Otherwise, it matches all streams of this type.

       p:program_id[:stream_index]
           If stream_index is given, then it matches the stream with number stream_index in the program with the
           id program_id. Otherwise, it matches all streams in the program.

       #stream_id
           Matches the stream by a format-specific ID.

       The exact semantics of stream specifiers is defined by the "avformat_match_stream_specifier()" function
       declared in the libavformat/avformat.h header.

DEMUXERS

       Demuxers are configured elements in FFmpeg that can read the multimedia streams from a particular type of
       file.

       When you configure your FFmpeg build, all the supported demuxers are enabled by default. You can list all
       available ones using the configure option "--list-demuxers".

       You can disable all the demuxers using the configure option "--disable-demuxers", and selectively enable
       a single demuxer with the option "--enable-demuxer=DEMUXER", or disable it with the option
       "--disable-demuxer=DEMUXER".

       The option "-formats" of the ff* tools will display the list of enabled demuxers.

       The description of some of the currently available demuxers follows.

   aa
       Audible Format 2, 3, and 4 demuxer.

       This demuxer is used to demux Audible Format 2, 3, and 4 (.aa) files.

   applehttp
       Apple HTTP Live Streaming demuxer.

       This demuxer presents all AVStreams from all variant streams.  The id field is set to the bitrate variant
       index number. By setting the discard flags on AVStreams (by pressing 'a' or 'v' in ffplay), the caller
       can decide which variant streams to actually receive.  The total bitrate of the variant that the stream
       belongs to is available in a metadata key named "variant_bitrate".

   apng
       Animated Portable Network Graphics demuxer.

       This demuxer is used to demux APNG files.  All headers, but the PNG signature, up to (but not including)
       the first fcTL chunk are transmitted as extradata.  Frames are then split as being all the chunks between
       two fcTL ones, or between the last fcTL and IEND chunks.

       -ignore_loop bool
           Ignore the loop variable in the file if set.

       -max_fps int
           Maximum framerate in frames per second (0 for no limit).

       -default_fps int
           Default framerate in frames per second when none is specified in the file (0 meaning as fast as
           possible).

   asf
       Advanced Systems Format demuxer.

       This demuxer is used to demux ASF files and MMS network streams.

       -no_resync_search bool
           Do not try to resynchronize by looking for a certain optional start code.

   concat
       Virtual concatenation script demuxer.

       This demuxer reads a list of files and other directives from a text file and demuxes them one after the
       other, as if all their packet had been muxed together.

       The timestamps in the files are adjusted so that the first file starts at 0 and each next file starts
       where the previous one finishes. Note that it is done globally and may cause gaps if all streams do not
       have exactly the same length.

       All files must have the same streams (same codecs, same time base, etc.).

       The duration of each file is used to adjust the timestamps of the next file: if the duration is incorrect
       (because it was computed using the bit-rate or because the file is truncated, for example), it can cause
       artifacts. The "duration" directive can be used to override the duration stored in each file.

       Syntax

       The script is a text file in extended-ASCII, with one directive per line.  Empty lines, leading spaces
       and lines starting with '#' are ignored. The following directive is recognized:

       "file path"
           Path to a file to read; special characters and spaces must be escaped with backslash or single
           quotes.

           All subsequent file-related directives apply to that file.

       "ffconcat version 1.0"
           Identify the script type and version. It also sets the safe option to 1 if it was -1.

           To make FFmpeg recognize the format automatically, this directive must appears exactly as is (no
           extra space or byte-order-mark) on the very first line of the script.

       "duration dur"
           Duration of the file. This information can be specified from the file; specifying it here may be more
           efficient or help if the information from the file is not available or accurate.

           If the duration is set for all files, then it is possible to seek in the whole concatenated video.

       "inpoint timestamp"
           In point of the file. When the demuxer opens the file it instantly seeks to the specified timestamp.
           Seeking is done so that all streams can be presented successfully at In point.

           This directive works best with intra frame codecs, because for non-intra frame ones you will usually
           get extra packets before the actual In point and the decoded content will most likely contain frames
           before In point too.

           For each file, packets before the file In point will have timestamps less than the calculated start
           timestamp of the file (negative in case of the first file), and the duration of the files (if not
           specified by the "duration" directive) will be reduced based on their specified In point.

           Because of potential packets before the specified In point, packet timestamps may overlap between two
           concatenated files.

       "outpoint timestamp"
           Out point of the file. When the demuxer reaches the specified decoding timestamp in any of the
           streams, it handles it as an end of file condition and skips the current and all the remaining
           packets from all streams.

           Out point is exclusive, which means that the demuxer will not output packets with a decoding
           timestamp greater or equal to Out point.

           This directive works best with intra frame codecs and formats where all streams are tightly
           interleaved. For non-intra frame codecs you will usually get additional packets with presentation
           timestamp after Out point therefore the decoded content will most likely contain frames after Out
           point too. If your streams are not tightly interleaved you may not get all the packets from all
           streams before Out point and you may only will be able to decode the earliest stream until Out point.

           The duration of the files (if not specified by the "duration" directive) will be reduced based on
           their specified Out point.

       "file_packet_metadata key=value"
           Metadata of the packets of the file. The specified metadata will be set for each file packet. You can
           specify this directive multiple times to add multiple metadata entries.

       "stream"
           Introduce a stream in the virtual file.  All subsequent stream-related directives apply to the last
           introduced stream.  Some streams properties must be set in order to allow identifying the matching
           streams in the subfiles.  If no streams are defined in the script, the streams from the first file
           are copied.

       "exact_stream_id id"
           Set the id of the stream.  If this directive is given, the string with the corresponding id in the
           subfiles will be used.  This is especially useful for MPEG-PS (VOB) files, where the order of the
           streams is not reliable.

       Options

       This demuxer accepts the following option:

       safe
           If set to 1, reject unsafe file paths. A file path is considered safe if it does not contain a
           protocol specification and is relative and all components only contain characters from the portable
           character set (letters, digits, period, underscore and hyphen) and have no period at the beginning of
           a component.

           If set to 0, any file name is accepted.

           The default is 1.

           -1 is equivalent to 1 if the format was automatically probed and 0 otherwise.

       auto_convert
           If set to 1, try to perform automatic conversions on packet data to make the streams concatenable.
           The default is 1.

           Currently, the only conversion is adding the h264_mp4toannexb bitstream filter to H.264 streams in
           MP4 format. This is necessary in particular if there are resolution changes.

   flv
       Adobe Flash Video Format demuxer.

       This demuxer is used to demux FLV files and RTMP network streams.

       -flv_metadata bool
           Allocate the streams according to the onMetaData array content.

   libgme
       The Game Music Emu library is a collection of video game music file emulators.

       See <http://code.google.com/p/game-music-emu/> for more information.

       Some files have multiple tracks. The demuxer will pick the first track by default. The track_index option
       can be used to select a different track. Track indexes start at 0. The demuxer exports the number of
       tracks as tracks meta data entry.

       For very large files, the max_size option may have to be adjusted.

   libquvi
       Play media from Internet services using the quvi project.

       The demuxer accepts a format option to request a specific quality. It is by default set to best.

       See <http://quvi.sourceforge.net/> for more information.

       FFmpeg needs to be built with "--enable-libquvi" for this demuxer to be enabled.

   gif
       Animated GIF demuxer.

       It accepts the following options:

       min_delay
           Set the minimum valid delay between frames in hundredths of seconds.  Range is 0 to 6000. Default
           value is 2.

       max_gif_delay
           Set the maximum valid delay between frames in hundredth of seconds.  Range is 0 to 65535. Default
           value is 65535 (nearly eleven minutes), the maximum value allowed by the specification.

       default_delay
           Set the default delay between frames in hundredths of seconds.  Range is 0 to 6000. Default value is
           10.

       ignore_loop
           GIF files can contain information to loop a certain number of times (or infinitely). If ignore_loop
           is set to 1, then the loop setting from the input will be ignored and looping will not occur. If set
           to 0, then looping will occur and will cycle the number of times according to the GIF. Default value
           is 1.

       For example, with the overlay filter, place an infinitely looping GIF over another video:

               ffmpeg -i input.mp4 -ignore_loop 0 -i input.gif -filter_complex overlay=shortest=1 out.mkv

       Note that in the above example the shortest option for overlay filter is used to end the output video at
       the length of the shortest input file, which in this case is input.mp4 as the GIF in this example loops
       infinitely.

   hls
       HLS demuxer

       It accepts the following options:

       live_start_index
           segment index to start live streams at (negative values are from the end).

       allowed_extensions
           ',' separated list of file extensions that hls is allowed to access.

       max_reload
           Maximum number of times a insufficient list is attempted to be reloaded.  Default value is 1000.

   image2
       Image file demuxer.

       This demuxer reads from a list of image files specified by a pattern.  The syntax and meaning of the
       pattern is specified by the option pattern_type.

       The pattern may contain a suffix which is used to automatically determine the format of the images
       contained in the files.

       The size, the pixel format, and the format of each image must be the same for all the files in the
       sequence.

       This demuxer accepts the following options:

       framerate
           Set the frame rate for the video stream. It defaults to 25.

       loop
           If set to 1, loop over the input. Default value is 0.

       pattern_type
           Select the pattern type used to interpret the provided filename.

           pattern_type accepts one of the following values.

           none
               Disable pattern matching, therefore the video will only contain the specified image. You should
               use this option if you do not want to create sequences from multiple images and your filenames
               may contain special pattern characters.

           sequence
               Select a sequence pattern type, used to specify a sequence of files indexed by sequential
               numbers.

               A sequence pattern may contain the string "%d" or "%0Nd", which specifies the position of the
               characters representing a sequential number in each filename matched by the pattern. If the form
               "%d0Nd" is used, the string representing the number in each filename is 0-padded and N is the
               total number of 0-padded digits representing the number. The literal character '%' can be
               specified in the pattern with the string "%%".

               If the sequence pattern contains "%d" or "%0Nd", the first filename of the file list specified by
               the pattern must contain a number inclusively contained between start_number and
               start_number+start_number_range-1, and all the following numbers must be sequential.

               For example the pattern "img-%03d.bmp" will match a sequence of filenames of the form
               img-001.bmp, img-002.bmp, ..., img-010.bmp, etc.; the pattern "i%%m%%g-%d.jpg" will match a
               sequence of filenames of the form i%m%g-1.jpg, i%m%g-2.jpg, ..., i%m%g-10.jpg, etc.

               Note that the pattern must not necessarily contain "%d" or "%0Nd", for example to convert a
               single image file img.jpeg you can employ the command:

                       ffmpeg -i img.jpeg img.png

           glob
               Select a glob wildcard pattern type.

               The pattern is interpreted like a "glob()" pattern. This is only selectable if libavformat was
               compiled with globbing support.

           glob_sequence (deprecated, will be removed)
               Select a mixed glob wildcard/sequence pattern.

               If your version of libavformat was compiled with globbing support, and the provided pattern
               contains at least one glob meta character among "%*?[]{}" that is preceded by an unescaped "%",
               the pattern is interpreted like a "glob()" pattern, otherwise it is interpreted like a sequence
               pattern.

               All glob special characters "%*?[]{}" must be prefixed with "%". To escape a literal "%" you
               shall use "%%".

               For example the pattern "foo-%*.jpeg" will match all the filenames prefixed by "foo-" and
               terminating with ".jpeg", and "foo-%?%?%?.jpeg" will match all the filenames prefixed with
               "foo-", followed by a sequence of three characters, and terminating with ".jpeg".

               This pattern type is deprecated in favor of glob and sequence.

           Default value is glob_sequence.

       pixel_format
           Set the pixel format of the images to read. If not specified the pixel format is guessed from the
           first image file in the sequence.

       start_number
           Set the index of the file matched by the image file pattern to start to read from. Default value is
           0.

       start_number_range
           Set the index interval range to check when looking for the first image file in the sequence, starting
           from start_number. Default value is 5.

       ts_from_file
           If set to 1, will set frame timestamp to modification time of image file. Note that monotonity of
           timestamps is not provided: images go in the same order as without this option. Default value is 0.
           If set to 2, will set frame timestamp to the modification time of the image file in nanosecond
           precision.

       video_size
           Set the video size of the images to read. If not specified the video size is guessed from the first
           image file in the sequence.

       Examples

       •   Use ffmpeg for creating a video from the images in the file sequence img-001.jpeg, img-002.jpeg, ...,
           assuming an input frame rate of 10 frames per second:

                   ffmpeg -framerate 10 -i 'img-%03d.jpeg' out.mkv

       •   As above, but start by reading from a file with index 100 in the sequence:

                   ffmpeg -framerate 10 -start_number 100 -i 'img-%03d.jpeg' out.mkv

       •   Read images matching the "*.png" glob pattern , that is all the files terminating with the ".png"
           suffix:

                   ffmpeg -framerate 10 -pattern_type glob -i "*.png" out.mkv

   mov/mp4/3gp/Quicktme
       Quicktime / MP4 demuxer.

       This demuxer accepts the following options:

       enable_drefs
           Enable loading of external tracks, disabled by default.  Enabling this can theoretically leak
           information in some use cases.

       use_absolute_path
           Allows loading of external tracks via absolute paths, disabled by default.  Enabling this poses a
           security risk. It should only be enabled if the source is known to be non malicious.

   mpegts
       MPEG-2 transport stream demuxer.

       This demuxer accepts the following options:

       resync_size
           Set size limit for looking up a new synchronization. Default value is 65536.

       fix_teletext_pts
           Override teletext packet PTS and DTS values with the timestamps calculated from the PCR of the first
           program which the teletext stream is part of and is not discarded. Default value is 1, set this
           option to 0 if you want your teletext packet PTS and DTS values untouched.

       ts_packetsize
           Output option carrying the raw packet size in bytes.  Show the detected raw packet size, cannot be
           set by the user.

       scan_all_pmts
           Scan and combine all PMTs. The value is an integer with value from -1 to 1 (-1 means automatic
           setting, 1 means enabled, 0 means disabled). Default value is -1.

   rawvideo
       Raw video demuxer.

       This demuxer allows one to read raw video data. Since there is no header specifying the assumed video
       parameters, the user must specify them in order to be able to decode the data correctly.

       This demuxer accepts the following options:

       framerate
           Set input video frame rate. Default value is 25.

       pixel_format
           Set the input video pixel format. Default value is "yuv420p".

       video_size
           Set the input video size. This value must be specified explicitly.

       For example to read a rawvideo file input.raw with ffplay, assuming a pixel format of "rgb24", a video
       size of "320x240", and a frame rate of 10 images per second, use the command:

               ffplay -f rawvideo -pixel_format rgb24 -video_size 320x240 -framerate 10 input.raw

   sbg
       SBaGen script demuxer.

       This demuxer reads the script language used by SBaGen <http://uazu.net/sbagen/> to generate binaural
       beats sessions. A SBG script looks like that:

               -SE
               a: 300-2.5/3 440+4.5/0
               b: 300-2.5/0 440+4.5/3
               off: -
               NOW      == a
               +0:07:00 == b
               +0:14:00 == a
               +0:21:00 == b
               +0:30:00    off

       A SBG script can mix absolute and relative timestamps. If the script uses either only absolute timestamps
       (including the script start time) or only relative ones, then its layout is fixed, and the conversion is
       straightforward. On the other hand, if the script mixes both kind of timestamps, then the NOW reference
       for relative timestamps will be taken from the current time of day at the time the script is read, and
       the script layout will be frozen according to that reference. That means that if the script is directly
       played, the actual times will match the absolute timestamps up to the sound controller's clock accuracy,
       but if the user somehow pauses the playback or seeks, all times will be shifted accordingly.

   tedcaptions
       JSON captions used for <http://www.ted.com/>.

       TED does not provide links to the captions, but they can be guessed from the page. The file
       tools/bookmarklets.html from the FFmpeg source tree contains a bookmarklet to expose them.

       This demuxer accepts the following option:

       start_time
           Set the start time of the TED talk, in milliseconds. The default is 15000 (15s). It is used to sync
           the captions with the downloadable videos, because they include a 15s intro.

       Example: convert the captions to a format most players understand:

               ffmpeg -i http://www.ted.com/talks/subtitles/id/1/lang/en talk1-en.srt

METADATA

       FFmpeg is able to dump metadata from media files into a simple UTF-8-encoded INI-like text file and then
       load it back using the metadata muxer/demuxer.

       The file format is as follows:

       1.  A file consists of a header and a number of metadata tags divided into sections, each on its own
           line.

       2.  The header is a ;FFMETADATA string, followed by a version number (now 1).

       3.  Metadata tags are of the form key=value

       4.  Immediately after header follows global metadata

       5.  After global metadata there may be sections with per-stream/per-chapter metadata.

       6.  A section starts with the section name in uppercase (i.e. STREAM or CHAPTER) in brackets ([, ]) and
           ends with next section or end of file.

       7.  At the beginning of a chapter section there may be an optional timebase to be used for start/end
           values. It must be in form TIMEBASE=num/den, where num and den are integers. If the timebase is
           missing then start/end times are assumed to be in milliseconds.

           Next a chapter section must contain chapter start and end times in form START=num, END=num, where num
           is a positive integer.

       8.  Empty lines and lines starting with ; or # are ignored.

       9.  Metadata keys or values containing special characters (=, ;, #, \ and a newline) must be escaped with
           a backslash \.

       10. Note that whitespace in metadata (e.g. foo = bar) is considered to be a part of the tag (in the
           example above key is foo , value is
            bar).

       A ffmetadata file might look like this:

               ;FFMETADATA1
               title=bike\\shed
               ;this is a comment
               artist=FFmpeg troll team

               [CHAPTER]
               TIMEBASE=1/1000
               START=0
               #chapter ends at 0:01:00
               END=60000
               title=chapter \#1
               [STREAM]
               title=multi\
               line

       By using the ffmetadata muxer and demuxer it is possible to extract metadata from an input file to an
       ffmetadata file, and then transcode the file into an output file with the edited ffmetadata file.

       Extracting an ffmetadata file with ffmpeg goes as follows:

               ffmpeg -i INPUT -f ffmetadata FFMETADATAFILE

       Reinserting edited metadata information from the FFMETADATAFILE file can be done as:

               ffmpeg -i INPUT -i FFMETADATAFILE -map_metadata 1 -codec copy OUTPUT

PROTOCOLS

       Protocols are configured elements in FFmpeg that enable access to resources that require specific
       protocols.

       When you configure your FFmpeg build, all the supported protocols are enabled by default. You can list
       all available ones using the configure option "--list-protocols".

       You can disable all the protocols using the configure option "--disable-protocols", and selectively
       enable a protocol using the option "--enable-protocol=PROTOCOL", or you can disable a particular protocol
       using the option "--disable-protocol=PROTOCOL".

       The option "-protocols" of the ff* tools will display the list of supported protocols.

       A description of the currently available protocols follows.

   async
       Asynchronous data filling wrapper for input stream.

       Fill data in a background thread, to decouple I/O operation from demux thread.

               async:<URL>
               async:http://host/resource
               async:cache:http://host/resource

   bluray
       Read BluRay playlist.

       The accepted options are:

       angle
           BluRay angle

       chapter
           Start chapter (1...N)

       playlist
           Playlist to read (BDMV/PLAYLIST/?????.mpls)

       Examples:

       Read longest playlist from BluRay mounted to /mnt/bluray:

               bluray:/mnt/bluray

       Read angle 2 of playlist 4 from BluRay mounted to /mnt/bluray, start from chapter 2:

               -playlist 4 -angle 2 -chapter 2 bluray:/mnt/bluray

   cache
       Caching wrapper for input stream.

       Cache the input stream to temporary file. It brings seeking capability to live streams.

               cache:<URL>

   concat
       Physical concatenation protocol.

       Read and seek from many resources in sequence as if they were a unique resource.

       A URL accepted by this protocol has the syntax:

               concat:<URL1>|<URL2>|...|<URLN>

       where URL1, URL2, ..., URLN are the urls of the resource to be concatenated, each one possibly specifying
       a distinct protocol.

       For example to read a sequence of files split1.mpeg, split2.mpeg, split3.mpeg with ffplay use the
       command:

               ffplay concat:split1.mpeg\|split2.mpeg\|split3.mpeg

       Note that you may need to escape the character "|" which is special for many shells.

   crypto
       AES-encrypted stream reading protocol.

       The accepted options are:

       key Set the AES decryption key binary block from given hexadecimal representation.

       iv  Set the AES decryption initialization vector binary block from given hexadecimal representation.

       Accepted URL formats:

               crypto:<URL>
               crypto+<URL>

   data
       Data in-line in the URI. See <http://en.wikipedia.org/wiki/Data_URI_scheme>.

       For example, to convert a GIF file given inline with ffmpeg:

               ffmpeg -i "" smiley.png

   file
       File access protocol.

       Read from or write to a file.

       A file URL can have the form:

               file:<filename>

       where filename is the path of the file to read.

       An URL that does not have a protocol prefix will be assumed to be a file URL. Depending on the build, an
       URL that looks like a Windows path with the drive letter at the beginning will also be assumed to be a
       file URL (usually not the case in builds for unix-like systems).

       For example to read from a file input.mpeg with ffmpeg use the command:

               ffmpeg -i file:input.mpeg output.mpeg

       This protocol accepts the following options:

       truncate
           Truncate existing files on write, if set to 1. A value of 0 prevents truncating. Default value is 1.

       blocksize
           Set I/O operation maximum block size, in bytes. Default value is "INT_MAX", which results in not
           limiting the requested block size.  Setting this value reasonably low improves user termination
           request reaction time, which is valuable for files on slow medium.

   ftp
       FTP (File Transfer Protocol).

       Read from or write to remote resources using FTP protocol.

       Following syntax is required.

               ftp://[user[:password]@]server[:port]/path/to/remote/resource.mpeg

       This protocol accepts the following options.

       timeout
           Set timeout in microseconds of socket I/O operations used by the underlying low level operation. By
           default it is set to -1, which means that the timeout is not specified.

       ftp-anonymous-password
           Password used when login as anonymous user. Typically an e-mail address should be used.

       ftp-write-seekable
           Control seekability of connection during encoding. If set to 1 the resource is supposed to be
           seekable, if set to 0 it is assumed not to be seekable. Default value is 0.

       NOTE: Protocol can be used as output, but it is recommended to not do it, unless special care is taken
       (tests, customized server configuration etc.). Different FTP servers behave in different way during seek
       operation. ff* tools may produce incomplete content due to server limitations.

   gopher
       Gopher protocol.

   hls
       Read Apple HTTP Live Streaming compliant segmented stream as a uniform one. The M3U8 playlists describing
       the segments can be remote HTTP resources or local files, accessed using the standard file protocol.  The
       nested protocol is declared by specifying "+proto" after the hls URI scheme name, where proto is either
       "file" or "http".

               hls+http://host/path/to/remote/resource.m3u8
               hls+file://path/to/local/resource.m3u8

       Using this protocol is discouraged - the hls demuxer should work just as well (if not, please report the
       issues) and is more complete.  To use the hls demuxer instead, simply use the direct URLs to the m3u8
       files.

   http
       HTTP (Hyper Text Transfer Protocol).

       This protocol accepts the following options:

       seekable
           Control seekability of connection. If set to 1 the resource is supposed to be seekable, if set to 0
           it is assumed not to be seekable, if set to -1 it will try to autodetect if it is seekable. Default
           value is -1.

       chunked_post
           If set to 1 use chunked Transfer-Encoding for posts, default is 1.

       content_type
           Set a specific content type for the POST messages.

       headers
           Set custom HTTP headers, can override built in default headers. The value must be a string encoding
           the headers.

       multiple_requests
           Use persistent connections if set to 1, default is 0.

       post_data
           Set custom HTTP post data.

       user-agent
       user_agent
           Override the User-Agent header. If not specified the protocol will use a string describing the
           libavformat build. ("Lavf/<version>")

       timeout
           Set timeout in microseconds of socket I/O operations used by the underlying low level operation. By
           default it is set to -1, which means that the timeout is not specified.

       mime_type
           Export the MIME type.

       icy If set to 1 request ICY (SHOUTcast) metadata from the server. If the server supports this, the
           metadata has to be retrieved by the application by reading the icy_metadata_headers and
           icy_metadata_packet options.  The default is 1.

       icy_metadata_headers
           If the server supports ICY metadata, this contains the ICY-specific HTTP reply headers, separated by
           newline characters.

       icy_metadata_packet
           If the server supports ICY metadata, and icy was set to 1, this contains the last non-empty metadata
           packet sent by the server. It should be polled in regular intervals by applications interested in
           mid-stream metadata updates.

       cookies
           Set the cookies to be sent in future requests. The format of each cookie is the same as the value of
           a Set-Cookie HTTP response field. Multiple cookies can be delimited by a newline character.

       offset
           Set initial byte offset.

       end_offset
           Try to limit the request to bytes preceding this offset.

       method
           When used as a client option it sets the HTTP method for the request.

           When used as a server option it sets the HTTP method that is going to be expected from the client(s).
           If the expected and the received HTTP method do not match the client will be given a Bad Request
           response.  When unset the HTTP method is not checked for now. This will be replaced by autodetection
           in the future.

       listen
           If set to 1 enables experimental HTTP server. This can be used to send data when used as an output
           option, or read data from a client with HTTP POST when used as an input option.  If set to 2 enables
           experimental mutli-client HTTP server. This is not yet implemented in ffmpeg.c or ffserver.c and thus
           must not be used as a command line option.

                   # Server side (sending):
                   ffmpeg -i somefile.ogg -c copy -listen 1 -f ogg http://<server>:<port>

                   # Client side (receiving):
                   ffmpeg -i http://<server>:<port> -c copy somefile.ogg

                   # Client can also be done with wget:
                   wget http://<server>:<port> -O somefile.ogg

                   # Server side (receiving):
                   ffmpeg -listen 1 -i http://<server>:<port> -c copy somefile.ogg

                   # Client side (sending):
                   ffmpeg -i somefile.ogg -chunked_post 0 -c copy -f ogg http://<server>:<port>

                   # Client can also be done with wget:
                   wget --post-file=somefile.ogg http://<server>:<port>

       HTTP Cookies

       Some HTTP requests will be denied unless cookie values are passed in with the request. The cookies option
       allows these cookies to be specified. At the very least, each cookie must specify a value along with a
       path and domain.  HTTP requests that match both the domain and path will automatically include the cookie
       value in the HTTP Cookie header field. Multiple cookies can be delimited by a newline.

       The required syntax to play a stream specifying a cookie is:

               ffplay -cookies "nlqptid=nltid=tsn; path=/; domain=somedomain.com;" http://somedomain.com/somestream.m3u8

   Icecast
       Icecast protocol (stream to Icecast servers)

       This protocol accepts the following options:

       ice_genre
           Set the stream genre.

       ice_name
           Set the stream name.

       ice_description
           Set the stream description.

       ice_url
           Set the stream website URL.

       ice_public
           Set if the stream should be public.  The default is 0 (not public).

       user_agent
           Override the User-Agent header. If not specified a string of the form "Lavf/<version>" will be used.

       password
           Set the Icecast mountpoint password.

       content_type
           Set the stream content type. This must be set if it is different from audio/mpeg.

       legacy_icecast
           This enables support for Icecast versions < 2.4.0, that do not support the HTTP PUT method but the
           SOURCE method.

               icecast://[<username>[:<password>]@]<server>:<port>/<mountpoint>

   mmst
       MMS (Microsoft Media Server) protocol over TCP.

   mmsh
       MMS (Microsoft Media Server) protocol over HTTP.

       The required syntax is:

               mmsh://<server>[:<port>][/<app>][/<playpath>]

   md5
       MD5 output protocol.

       Computes the MD5 hash of the data to be written, and on close writes this to the designated output or
       stdout if none is specified. It can be used to test muxers without writing an actual file.

       Some examples follow.

               # Write the MD5 hash of the encoded AVI file to the file output.avi.md5.
               ffmpeg -i input.flv -f avi -y md5:output.avi.md5

               # Write the MD5 hash of the encoded AVI file to stdout.
               ffmpeg -i input.flv -f avi -y md5:

       Note that some formats (typically MOV) require the output protocol to be seekable, so they will fail with
       the MD5 output protocol.

   pipe
       UNIX pipe access protocol.

       Read and write from UNIX pipes.

       The accepted syntax is:

               pipe:[<number>]

       number is the number corresponding to the file descriptor of the pipe (e.g. 0 for stdin, 1 for stdout, 2
       for stderr).  If number is not specified, by default the stdout file descriptor will be used for writing,
       stdin for reading.

       For example to read from stdin with ffmpeg:

               cat test.wav | ffmpeg -i pipe:0
               # ...this is the same as...
               cat test.wav | ffmpeg -i pipe:

       For writing to stdout with ffmpeg:

               ffmpeg -i test.wav -f avi pipe:1 | cat > test.avi
               # ...this is the same as...
               ffmpeg -i test.wav -f avi pipe: | cat > test.avi

       This protocol accepts the following options:

       blocksize
           Set I/O operation maximum block size, in bytes. Default value is "INT_MAX", which results in not
           limiting the requested block size.  Setting this value reasonably low improves user termination
           request reaction time, which is valuable if data transmission is slow.

       Note that some formats (typically MOV), require the output protocol to be seekable, so they will fail
       with the pipe output protocol.

   rtmp
       Real-Time Messaging Protocol.

       The Real-Time Messaging Protocol (RTMP) is used for streaming multimedia content across a TCP/IP network.

       The required syntax is:

               rtmp://[<username>:<password>@]<server>[:<port>][/<app>][/<instance>][/<playpath>]

       The accepted parameters are:

       username
           An optional username (mostly for publishing).

       password
           An optional password (mostly for publishing).

       server
           The address of the RTMP server.

       port
           The number of the TCP port to use (by default is 1935).

       app It is the name of the application to access. It usually corresponds to the path where the application
           is installed on the RTMP server (e.g. /ondemand/, /flash/live/, etc.). You can override the value
           parsed from the URI through the "rtmp_app" option, too.

       playpath
           It is the path or name of the resource to play with reference to the application specified in app,
           may be prefixed by "mp4:". You can override the value parsed from the URI through the "rtmp_playpath"
           option, too.

       listen
           Act as a server, listening for an incoming connection.

       timeout
           Maximum time to wait for the incoming connection. Implies listen.

       Additionally, the following parameters can be set via command line options (or in code via "AVOption"s):

       rtmp_app
           Name of application to connect on the RTMP server. This option overrides the parameter specified in
           the URI.

       rtmp_buffer
           Set the client buffer time in milliseconds. The default is 3000.

       rtmp_conn
           Extra arbitrary AMF connection parameters, parsed from a string, e.g. like "B:1 S:authMe O:1
           NN:code:1.23 NS:flag:ok O:0".  Each value is prefixed by a single character denoting the type, B for
           Boolean, N for number, S for string, O for object, or Z for null, followed by a colon. For Booleans
           the data must be either 0 or 1 for FALSE or TRUE, respectively.  Likewise for Objects the data must
           be 0 or 1 to end or begin an object, respectively. Data items in subobjects may be named, by
           prefixing the type with 'N' and specifying the name before the value (i.e. "NB:myFlag:1"). This
           option may be used multiple times to construct arbitrary AMF sequences.

       rtmp_flashver
           Version of the Flash plugin used to run the SWF player. The default is LNX 9,0,124,2. (When
           publishing, the default is FMLE/3.0 (compatible; <libavformat version>).)

       rtmp_flush_interval
           Number of packets flushed in the same request (RTMPT only). The default is 10.

       rtmp_live
           Specify that the media is a live stream. No resuming or seeking in live streams is possible. The
           default value is "any", which means the subscriber first tries to play the live stream specified in
           the playpath. If a live stream of that name is not found, it plays the recorded stream. The other
           possible values are "live" and "recorded".

       rtmp_pageurl
           URL of the web page in which the media was embedded. By default no value will be sent.

       rtmp_playpath
           Stream identifier to play or to publish. This option overrides the parameter specified in the URI.

       rtmp_subscribe
           Name of live stream to subscribe to. By default no value will be sent.  It is only sent if the option
           is specified or if rtmp_live is set to live.

       rtmp_swfhash
           SHA256 hash of the decompressed SWF file (32 bytes).

       rtmp_swfsize
           Size of the decompressed SWF file, required for SWFVerification.

       rtmp_swfurl
           URL of the SWF player for the media. By default no value will be sent.

       rtmp_swfverify
           URL to player swf file, compute hash/size automatically.

       rtmp_tcurl
           URL of the target stream. Defaults to proto://host[:port]/app.

       For example to read with ffplay a multimedia resource named "sample" from the application "vod" from an
       RTMP server "myserver":

               ffplay rtmp://myserver/vod/sample

       To publish to a password protected server, passing the playpath and app names separately:

               ffmpeg -re -i <input> -f flv -rtmp_playpath some/long/path -rtmp_app long/app/name rtmp://username:password@myserver/

   rtmpe
       Encrypted Real-Time Messaging Protocol.

       The Encrypted Real-Time Messaging Protocol (RTMPE) is used for streaming multimedia content within
       standard cryptographic primitives, consisting of Diffie-Hellman key exchange and HMACSHA256, generating a
       pair of RC4 keys.

   rtmps
       Real-Time Messaging Protocol over a secure SSL connection.

       The Real-Time Messaging Protocol (RTMPS) is used for streaming multimedia content across an encrypted
       connection.

   rtmpt
       Real-Time Messaging Protocol tunneled through HTTP.

       The Real-Time Messaging Protocol tunneled through HTTP (RTMPT) is used for streaming multimedia content
       within HTTP requests to traverse firewalls.

   rtmpte
       Encrypted Real-Time Messaging Protocol tunneled through HTTP.

       The Encrypted Real-Time Messaging Protocol tunneled through HTTP (RTMPTE) is used for streaming
       multimedia content within HTTP requests to traverse firewalls.

   rtmpts
       Real-Time Messaging Protocol tunneled through HTTPS.

       The Real-Time Messaging Protocol tunneled through HTTPS (RTMPTS) is used for streaming multimedia content
       within HTTPS requests to traverse firewalls.

   libsmbclient
       libsmbclient permits one to manipulate CIFS/SMB network resources.

       Following syntax is required.

               smb://[[domain:]user[:password@]]server[/share[/path[/file]]]

       This protocol accepts the following options.

       timeout
           Set timeout in miliseconds of socket I/O operations used by the underlying low level operation. By
           default it is set to -1, which means that the timeout is not specified.

       truncate
           Truncate existing files on write, if set to 1. A value of 0 prevents truncating. Default value is 1.

       workgroup
           Set the workgroup used for making connections. By default workgroup is not specified.

       For more information see: <http://www.samba.org/>.

   libssh
       Secure File Transfer Protocol via libssh

       Read from or write to remote resources using SFTP protocol.

       Following syntax is required.

               sftp://[user[:password]@]server[:port]/path/to/remote/resource.mpeg

       This protocol accepts the following options.

       timeout
           Set timeout of socket I/O operations used by the underlying low level operation. By default it is set
           to -1, which means that the timeout is not specified.

       truncate
           Truncate existing files on write, if set to 1. A value of 0 prevents truncating. Default value is 1.

       private_key
           Specify the path of the file containing private key to use during authorization.  By default libssh
           searches for keys in the ~/.ssh/ directory.

       Example: Play a file stored on remote server.

               ffplay sftp://user:password@server_address:22/home/user/resource.mpeg

   librtmp rtmp, rtmpe, rtmps, rtmpt, rtmpte
       Real-Time Messaging Protocol and its variants supported through librtmp.

       Requires the presence of the librtmp headers and library during configuration. You need to explicitly
       configure the build with "--enable-librtmp". If enabled this will replace the native RTMP protocol.

       This protocol provides most client functions and a few server functions needed to support RTMP, RTMP
       tunneled in HTTP (RTMPT), encrypted RTMP (RTMPE), RTMP over SSL/TLS (RTMPS) and tunneled variants of
       these encrypted types (RTMPTE, RTMPTS).

       The required syntax is:

               <rtmp_proto>://<server>[:<port>][/<app>][/<playpath>] <options>

       where rtmp_proto is one of the strings "rtmp", "rtmpt", "rtmpe", "rtmps", "rtmpte", "rtmpts"
       corresponding to each RTMP variant, and server, port, app and playpath have the same meaning as specified
       for the RTMP native protocol.  options contains a list of space-separated options of the form key=val.

       See the librtmp manual page (man 3 librtmp) for more information.

       For example, to stream a file in real-time to an RTMP server using ffmpeg:

               ffmpeg -re -i myfile -f flv rtmp://myserver/live/mystream

       To play the same stream using ffplay:

               ffplay "rtmp://myserver/live/mystream live=1"

   rtp
       Real-time Transport Protocol.

       The required syntax for an RTP URL is: rtp://hostname[:port][?option=val...]

       port specifies the RTP port to use.

       The following URL options are supported:

       ttl=n
           Set the TTL (Time-To-Live) value (for multicast only).

       rtcpport=n
           Set the remote RTCP port to n.

       localrtpport=n
           Set the local RTP port to n.

       localrtcpport=n'
           Set the local RTCP port to n.

       pkt_size=n
           Set max packet size (in bytes) to n.

       connect=0|1
           Do a "connect()" on the UDP socket (if set to 1) or not (if set to 0).

       sources=ip[,ip]
           List allowed source IP addresses.

       block=ip[,ip]
           List disallowed (blocked) source IP addresses.

       write_to_source=0|1
           Send packets to the source address of the latest received packet (if set to 1) or to a default remote
           address (if set to 0).

       localport=n
           Set the local RTP port to n.

           This is a deprecated option. Instead, localrtpport should be used.

       Important notes:

       1.  If rtcpport is not set the RTCP port will be set to the RTP port value plus 1.

       2.  If localrtpport (the local RTP port) is not set any available port will be used for the local RTP and
           RTCP ports.

       3.  If localrtcpport (the local RTCP port) is not set it will be set to the local RTP port value plus 1.

   rtsp
       Real-Time Streaming Protocol.

       RTSP is not technically a protocol handler in libavformat, it is a demuxer and muxer. The demuxer
       supports both normal RTSP (with data transferred over RTP; this is used by e.g. Apple and Microsoft) and
       Real-RTSP (with data transferred over RDT).

       The muxer can be used to send a stream using RTSP ANNOUNCE to a server supporting it (currently Darwin
       Streaming Server and Mischa Spiegelmock's <https://github.com/revmischa/rtsp-server>).

       The required syntax for a RTSP url is:

               rtsp://<hostname>[:<port>]/<path>

       Options can be set on the ffmpeg/ffplay command line, or set in code via "AVOption"s or in
       "avformat_open_input".

       The following options are supported.

       initial_pause
           Do not start playing the stream immediately if set to 1. Default value is 0.

       rtsp_transport
           Set RTSP transport protocols.

           It accepts the following values:

           udp Use UDP as lower transport protocol.

           tcp Use TCP (interleaving within the RTSP control channel) as lower transport protocol.

           udp_multicast
               Use UDP multicast as lower transport protocol.

           http
               Use HTTP tunneling as lower transport protocol, which is useful for passing proxies.

           Multiple lower transport protocols may be specified, in that case they are tried one at a time (if
           the setup of one fails, the next one is tried).  For the muxer, only the tcp and udp options are
           supported.

       rtsp_flags
           Set RTSP flags.

           The following values are accepted:

           filter_src
               Accept packets only from negotiated peer address and port.

           listen
               Act as a server, listening for an incoming connection.

           prefer_tcp
               Try TCP for RTP transport first, if TCP is available as RTSP RTP transport.

           Default value is none.

       allowed_media_types
           Set media types to accept from the server.

           The following flags are accepted:

           video
           audio
           data

           By default it accepts all media types.

       min_port
           Set minimum local UDP port. Default value is 5000.

       max_port
           Set maximum local UDP port. Default value is 65000.

       timeout
           Set maximum timeout (in seconds) to wait for incoming connections.

           A value of -1 means infinite (default). This option implies the rtsp_flags set to listen.

       reorder_queue_size
           Set number of packets to buffer for handling of reordered packets.

       stimeout
           Set socket TCP I/O timeout in microseconds.

       user-agent
           Override User-Agent header. If not specified, it defaults to the libavformat identifier string.

       When receiving data over UDP, the demuxer tries to reorder received packets (since they may arrive out of
       order, or packets may get lost totally). This can be disabled by setting the maximum demuxing delay to
       zero (via the "max_delay" field of AVFormatContext).

       When watching multi-bitrate Real-RTSP streams with ffplay, the streams to display can be chosen with
       "-vst" n and "-ast" n for video and audio respectively, and can be switched on the fly by pressing "v"
       and "a".

       Examples

       The following examples all make use of the ffplay and ffmpeg tools.

       •   Watch a stream over UDP, with a max reordering delay of 0.5 seconds:

                   ffplay -max_delay 500000 -rtsp_transport udp rtsp://server/video.mp4

       •   Watch a stream tunneled over HTTP:

                   ffplay -rtsp_transport http rtsp://server/video.mp4

       •   Send a stream in realtime to a RTSP server, for others to watch:

                   ffmpeg -re -i <input> -f rtsp -muxdelay 0.1 rtsp://server/live.sdp

       •   Receive a stream in realtime:

                   ffmpeg -rtsp_flags listen -i rtsp://ownaddress/live.sdp <output>

   sap
       Session Announcement Protocol (RFC 2974). This is not technically a protocol handler in libavformat, it
       is a muxer and demuxer.  It is used for signalling of RTP streams, by announcing the SDP for the streams
       regularly on a separate port.

       Muxer

       The syntax for a SAP url given to the muxer is:

               sap://<destination>[:<port>][?<options>]

       The RTP packets are sent to destination on port port, or to port 5004 if no port is specified.  options
       is a "&"-separated list. The following options are supported:

       announce_addr=address
           Specify the destination IP address for sending the announcements to.  If omitted, the announcements
           are sent to the commonly used SAP announcement multicast address 224.2.127.254 (sap.mcast.net), or
           ff0e::2:7ffe if destination is an IPv6 address.

       announce_port=port
           Specify the port to send the announcements on, defaults to 9875 if not specified.

       ttl=ttl
           Specify the time to live value for the announcements and RTP packets, defaults to 255.

       same_port=0|1
           If set to 1, send all RTP streams on the same port pair. If zero (the default), all streams are sent
           on unique ports, with each stream on a port 2 numbers higher than the previous.  VLC/Live555 requires
           this to be set to 1, to be able to receive the stream.  The RTP stack in libavformat for receiving
           requires all streams to be sent on unique ports.

       Example command lines follow.

       To broadcast a stream on the local subnet, for watching in VLC:

               ffmpeg -re -i <input> -f sap sap://224.0.0.255?same_port=1

       Similarly, for watching in ffplay:

               ffmpeg -re -i <input> -f sap sap://224.0.0.255

       And for watching in ffplay, over IPv6:

               ffmpeg -re -i <input> -f sap sap://[ff0e::1:2:3:4]

       Demuxer

       The syntax for a SAP url given to the demuxer is:

               sap://[<address>][:<port>]

       address is the multicast address to listen for announcements on, if omitted, the default 224.2.127.254
       (sap.mcast.net) is used. port is the port that is listened on, 9875 if omitted.

       The demuxers listens for announcements on the given address and port.  Once an announcement is received,
       it tries to receive that particular stream.

       Example command lines follow.

       To play back the first stream announced on the normal SAP multicast address:

               ffplay sap://

       To play back the first stream announced on one the default IPv6 SAP multicast address:

               ffplay sap://[ff0e::2:7ffe]

   sctp
       Stream Control Transmission Protocol.

       The accepted URL syntax is:

               sctp://<host>:<port>[?<options>]

       The protocol accepts the following options:

       listen
           If set to any value, listen for an incoming connection. Outgoing connection is done by default.

       max_streams
           Set the maximum number of streams. By default no limit is set.

   srtp
       Secure Real-time Transport Protocol.

       The accepted options are:

       srtp_in_suite
       srtp_out_suite
           Select input and output encoding suites.

           Supported values:

           AES_CM_128_HMAC_SHA1_80
           SRTP_AES128_CM_HMAC_SHA1_80
           AES_CM_128_HMAC_SHA1_32
           SRTP_AES128_CM_HMAC_SHA1_32
       srtp_in_params
       srtp_out_params
           Set input and output encoding parameters, which are expressed by a base64-encoded representation of a
           binary block. The first 16 bytes of this binary block are used as master key, the following 14 bytes
           are used as master salt.

   subfile
       Virtually extract a segment of a file or another stream.  The underlying stream must be seekable.

       Accepted options:

       start
           Start offset of the extracted segment, in bytes.

       end End offset of the extracted segment, in bytes.

       Examples:

       Extract a chapter from a DVD VOB file (start and end sectors obtained externally and multiplied by 2048):

               subfile,,start,153391104,end,268142592,,:/media/dvd/VIDEO_TS/VTS_08_1.VOB

       Play an AVI file directly from a TAR archive:

               subfile,,start,183241728,end,366490624,,:archive.tar

   tcp
       Transmission Control Protocol.

       The required syntax for a TCP url is:

               tcp://<hostname>:<port>[?<options>]

       options contains a list of &-separated options of the form key=val.

       The list of supported options follows.

       listen=1|0
           Listen for an incoming connection. Default value is 0.

       timeout=microseconds
           Set raise error timeout, expressed in microseconds.

           This option is only relevant in read mode: if no data arrived in more than this time interval, raise
           error.

       listen_timeout=milliseconds
           Set listen timeout, expressed in milliseconds.

       The following example shows how to setup a listening TCP connection with ffmpeg, which is then accessed
       with ffplay:

               ffmpeg -i <input> -f <format> tcp://<hostname>:<port>?listen
               ffplay tcp://<hostname>:<port>

   tls
       Transport Layer Security (TLS) / Secure Sockets Layer (SSL)

       The required syntax for a TLS/SSL url is:

               tls://<hostname>:<port>[?<options>]

       The following parameters can be set via command line options (or in code via "AVOption"s):

       ca_file, cafile=filename
           A file containing certificate authority (CA) root certificates to treat as trusted. If the linked TLS
           library contains a default this might not need to be specified for verification to work, but not all
           libraries and setups have defaults built in.  The file must be in OpenSSL PEM format.

       tls_verify=1|0
           If enabled, try to verify the peer that we are communicating with.  Note, if using OpenSSL, this
           currently only makes sure that the peer certificate is signed by one of the root certificates in the
           CA database, but it does not validate that the certificate actually matches the host name we are
           trying to connect to. (With GnuTLS, the host name is validated as well.)

           This is disabled by default since it requires a CA database to be provided by the caller in many
           cases.

       cert_file, cert=filename
           A file containing a certificate to use in the handshake with the peer.  (When operating as server, in
           listen mode, this is more often required by the peer, while client certificates only are mandated in
           certain setups.)

       key_file, key=filename
           A file containing the private key for the certificate.

       listen=1|0
           If enabled, listen for connections on the provided port, and assume the server role in the handshake
           instead of the client role.

       Example command lines:

       To create a TLS/SSL server that serves an input stream.

               ffmpeg -i <input> -f <format> tls://<hostname>:<port>?listen&cert=<server.crt>&key=<server.key>

       To play back a stream from the TLS/SSL server using ffplay:

               ffplay tls://<hostname>:<port>

   udp
       User Datagram Protocol.

       The required syntax for an UDP URL is:

               udp://<hostname>:<port>[?<options>]

       options contains a list of &-separated options of the form key=val.

       In case threading is enabled on the system, a circular buffer is used to store the incoming data, which
       allows one to reduce loss of data due to UDP socket buffer overruns. The fifo_size and overrun_nonfatal
       options are related to this buffer.

       The list of supported options follows.

       buffer_size=size
           Set the UDP maximum socket buffer size in bytes. This is used to set either the receive or send
           buffer size, depending on what the socket is used for.  Default is 64KB.  See also fifo_size.

       localport=port
           Override the local UDP port to bind with.

       localaddr=addr
           Choose the local IP address. This is useful e.g. if sending multicast and the host has multiple
           interfaces, where the user can choose which interface to send on by specifying the IP address of that
           interface.

       pkt_size=size
           Set the size in bytes of UDP packets.

       reuse=1|0
           Explicitly allow or disallow reusing UDP sockets.

       ttl=ttl
           Set the time to live value (for multicast only).

       connect=1|0
           Initialize the UDP socket with "connect()". In this case, the destination address can't be changed
           with ff_udp_set_remote_url later.  If the destination address isn't known at the start, this option
           can be specified in ff_udp_set_remote_url, too.  This allows finding out the source address for the
           packets with getsockname, and makes writes return with AVERROR(ECONNREFUSED) if "destination
           unreachable" is received.  For receiving, this gives the benefit of only receiving packets from the
           specified peer address/port.

       sources=address[,address]
           Only receive packets sent to the multicast group from one of the specified sender IP addresses.

       block=address[,address]
           Ignore packets sent to the multicast group from the specified sender IP addresses.

       fifo_size=units
           Set the UDP receiving circular buffer size, expressed as a number of packets with size of 188 bytes.
           If not specified defaults to 7*4096.

       overrun_nonfatal=1|0
           Survive in case of UDP receiving circular buffer overrun. Default value is 0.

       timeout=microseconds
           Set raise error timeout, expressed in microseconds.

           This option is only relevant in read mode: if no data arrived in more than this time interval, raise
           error.

       broadcast=1|0
           Explicitly allow or disallow UDP broadcasting.

           Note that broadcasting may not work properly on networks having a broadcast storm protection.

       Examples

       •   Use ffmpeg to stream over UDP to a remote endpoint:

                   ffmpeg -i <input> -f <format> udp://<hostname>:<port>

       •   Use ffmpeg to stream in mpegts format over UDP using 188 sized UDP packets, using a large input
           buffer:

                   ffmpeg -i <input> -f mpegts udp://<hostname>:<port>?pkt_size=188&buffer_size=65535

       •   Use ffmpeg to receive over UDP from a remote endpoint:

                   ffmpeg -i udp://[<multicast-address>]:<port> ...

   unix
       Unix local socket

       The required syntax for a Unix socket URL is:

               unix://<filepath>

       The following parameters can be set via command line options (or in code via "AVOption"s):

       timeout
           Timeout in ms.

       listen
           Create the Unix socket in listening mode.

DEVICE OPTIONS

       The libavdevice library provides the same interface as libavformat. Namely, an input device is considered
       like a demuxer, and an output device like a muxer, and the interface and generic device options are the
       same provided by libavformat (see the ffmpeg-formats manual).

       In addition each input or output device may support so-called private options, which are specific for
       that component.

       Options may be set by specifying -option value in the FFmpeg tools, or by setting the value explicitly in
       the device "AVFormatContext" options or using the libavutil/opt.h API for programmatic use.

INPUT DEVICES

       Input devices are configured elements in FFmpeg which enable accessing the data coming from a multimedia
       device attached to your system.

       When you configure your FFmpeg build, all the supported input devices are enabled by default. You can
       list all available ones using the configure option "--list-indevs".

       You can disable all the input devices using the configure option "--disable-indevs", and selectively
       enable an input device using the option "--enable-indev=INDEV", or you can disable a particular input
       device using the option "--disable-indev=INDEV".

       The option "-devices" of the ff* tools will display the list of supported input devices.

       A description of the currently available input devices follows.

   alsa
       ALSA (Advanced Linux Sound Architecture) input device.

       To enable this input device during configuration you need libasound installed on your system.

       This device allows capturing from an ALSA device. The name of the device to capture has to be an ALSA
       card identifier.

       An ALSA identifier has the syntax:

               hw:<CARD>[,<DEV>[,<SUBDEV>]]

       where the DEV and SUBDEV components are optional.

       The three arguments (in order: CARD,DEV,SUBDEV) specify card number or identifier, device number and
       subdevice number (-1 means any).

       To see the list of cards currently recognized by your system check the files /proc/asound/cards and
       /proc/asound/devices.

       For example to capture with ffmpeg from an ALSA device with card id 0, you may run the command:

               ffmpeg -f alsa -i hw:0 alsaout.wav

       For more information see: <http://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html>

       Options

       sample_rate
           Set the sample rate in Hz. Default is 48000.

       channels
           Set the number of channels. Default is 2.

   avfoundation
       AVFoundation input device.

       AVFoundation is the currently recommended framework by Apple for streamgrabbing on OSX >= 10.7 as well as
       on iOS.  The older QTKit framework has been marked deprecated since OSX version 10.7.

       The input filename has to be given in the following syntax:

               -i "[[VIDEO]:[AUDIO]]"

       The first entry selects the video input while the latter selects the audio input.  The stream has to be
       specified by the device name or the device index as shown by the device list.  Alternatively, the video
       and/or audio input device can be chosen by index using the

           B<-video_device_index E<lt>INDEXE<gt>>

       and/or

           B<-audio_device_index E<lt>INDEXE<gt>>

       , overriding any device name or index given in the input filename.

       All available devices can be enumerated by using -list_devices true, listing all device names and
       corresponding indices.

       There are two device name aliases:

       "default"
           Select the AVFoundation default device of the corresponding type.

       "none"
           Do not record the corresponding media type.  This is equivalent to specifying an empty device name or
           index.

       Options

       AVFoundation supports the following options:

       -list_devices <TRUE|FALSE>
           If set to true, a list of all available input devices is given showing all device names and indices.

       -video_device_index <INDEX>
           Specify the video device by its index. Overrides anything given in the input filename.

       -audio_device_index <INDEX>
           Specify the audio device by its index. Overrides anything given in the input filename.

       -pixel_format <FORMAT>
           Request the video device to use a specific pixel format.  If the specified format is not supported, a
           list of available formats is given und the first one in this list is used instead. Available pixel
           formats are: "monob, rgb555be, rgb555le, rgb565be, rgb565le, rgb24, bgr24, 0rgb, bgr0, 0bgr, rgb0,
            bgr48be, uyvy422, yuva444p, yuva444p16le, yuv444p, yuv422p16, yuv422p10, yuv444p10,
            yuv420p, nv12, yuyv422, gray"

       -framerate
           Set the grabbing frame rate. Default is "ntsc", corresponding to a frame rate of "30000/1001".

       -video_size
           Set the video frame size.

       -capture_cursor
           Capture the mouse pointer. Default is 0.

       -capture_mouse_clicks
           Capture the screen mouse clicks. Default is 0.

       Examples

       •   Print the list of AVFoundation supported devices and exit:

                   $ ffmpeg -f avfoundation -list_devices true -i ""

       •   Record video from video device 0 and audio from audio device 0 into out.avi:

                   $ ffmpeg -f avfoundation -i "0:0" out.avi

       •   Record video from video device 2 and audio from audio device 1 into out.avi:

                   $ ffmpeg -f avfoundation -video_device_index 2 -i ":1" out.avi

       •   Record video from the system default video device using the pixel format bgr0 and do not record any
           audio into out.avi:

                   $ ffmpeg -f avfoundation -pixel_format bgr0 -i "default:none" out.avi

   bktr
       BSD video input device.

       Options

       framerate
           Set the frame rate.

       video_size
           Set the video frame size. Default is "vga".

       standard
           Available values are:

           pal
           ntsc
           secam
           paln
           palm
           ntscj

   decklink
       The decklink input device provides capture capabilities for Blackmagic DeckLink devices.

       To enable this input device, you need the Blackmagic DeckLink SDK and you need to configure with the
       appropriate "--extra-cflags" and "--extra-ldflags".  On Windows, you need to run the IDL files through
       widl.

       DeckLink is very picky about the formats it supports. Pixel format is uyvy422 or v210, framerate and
       video size must be determined for your device with -list_formats 1. Audio sample rate is always 48 kHz
       and the number of channels can be 2, 8 or 16.

       Options

       list_devices
           If set to true, print a list of devices and exit.  Defaults to false.

       list_formats
           If set to true, print a list of supported formats and exit.  Defaults to false.

       bm_v210
           If set to 1, video is captured in 10 bit v210 instead of uyvy422. Not all Blackmagic devices support
           this option.

       Examples

       •   List input devices:

                   ffmpeg -f decklink -list_devices 1 -i dummy

       •   List supported formats:

                   ffmpeg -f decklink -list_formats 1 -i 'Intensity Pro'

       •   Capture video clip at 1080i50 (format 11):

                   ffmpeg -f decklink -i 'Intensity Pro@11' -acodec copy -vcodec copy output.avi

       •   Capture video clip at 1080i50 10 bit:

                   ffmpeg -bm_v210 1 -f decklink -i 'UltraStudio Mini Recorder@11' -acodec copy -vcodec copy output.avi

   dshow
       Windows DirectShow input device.

       DirectShow support is enabled when FFmpeg is built with the mingw-w64 project.  Currently only audio and
       video devices are supported.

       Multiple devices may be opened as separate inputs, but they may also be opened on the same input, which
       should improve synchronism between them.

       The input name should be in the format:

               <TYPE>=<NAME>[:<TYPE>=<NAME>]

       where TYPE can be either audio or video, and NAME is the device's name or alternative name..

       Options

       If no options are specified, the device's defaults are used.  If the device does not support the
       requested options, it will fail to open.

       video_size
           Set the video size in the captured video.

       framerate
           Set the frame rate in the captured video.

       sample_rate
           Set the sample rate (in Hz) of the captured audio.

       sample_size
           Set the sample size (in bits) of the captured audio.

       channels
           Set the number of channels in the captured audio.

       list_devices
           If set to true, print a list of devices and exit.

       list_options
           If set to true, print a list of selected device's options and exit.

       video_device_number
           Set video device number for devices with the same name (starts at 0, defaults to 0).

       audio_device_number
           Set audio device number for devices with the same name (starts at 0, defaults to 0).

       pixel_format
           Select pixel format to be used by DirectShow. This may only be set when the video codec is not set or
           set to rawvideo.

       audio_buffer_size
           Set audio device buffer size in milliseconds (which can directly impact latency, depending on the
           device).  Defaults to using the audio device's default buffer size (typically some multiple of
           500ms).  Setting this value too low can degrade performance.  See also
           <http://msdn.microsoft.com/en-us/library/windows/desktop/dd377582(v=vs.85).aspx>

       video_pin_name
           Select video capture pin to use by name or alternative name.

       audio_pin_name
           Select audio capture pin to use by name or alternative name.

       crossbar_video_input_pin_number
           Select video input pin number for crossbar device. This will be routed to the crossbar device's Video
           Decoder output pin.  Note that changing this value can affect future invocations (sets a new default)
           until system reboot occurs.

       crossbar_audio_input_pin_number
           Select audio input pin number for crossbar device. This will be routed to the crossbar device's Audio
           Decoder output pin.  Note that changing this value can affect future invocations (sets a new default)
           until system reboot occurs.

       show_video_device_dialog
           If set to true, before capture starts, popup a display dialog to the end user, allowing them to
           change video filter properties and configurations manually.  Note that for crossbar devices,
           adjusting values in this dialog may be needed at times to toggle between PAL (25 fps) and NTSC
           (29.97) input frame rates, sizes, interlacing, etc.  Changing these values can enable different scan
           rates/frame rates and avoiding green bars at the bottom, flickering scan lines, etc.  Note that with
           some devices, changing these properties can also affect future invocations (sets new defaults) until
           system reboot occurs.

       show_audio_device_dialog
           If set to true, before capture starts, popup a display dialog to the end user, allowing them to
           change audio filter properties and configurations manually.

       show_video_crossbar_connection_dialog
           If set to true, before capture starts, popup a display dialog to the end user, allowing them to
           manually modify crossbar pin routings, when it opens a video device.

       show_audio_crossbar_connection_dialog
           If set to true, before capture starts, popup a display dialog to the end user, allowing them to
           manually modify crossbar pin routings, when it opens an audio device.

       show_analog_tv_tuner_dialog
           If set to true, before capture starts, popup a display dialog to the end user, allowing them to
           manually modify TV channels and frequencies.

       show_analog_tv_tuner_audio_dialog
           If set to true, before capture starts, popup a display dialog to the end user, allowing them to
           manually modify TV audio (like mono vs. stereo, Language A,B or C).

       audio_device_load
           Load an audio capture filter device from file instead of searching it by name. It may load additional
           parameters too, if the filter supports the serialization of its properties to.  To use this an audio
           capture source has to be specified, but it can be anything even fake one.

       audio_device_save
           Save the currently used audio capture filter device and its parameters (if the filter supports it) to
           a file.  If a file with the same name exists it will be overwritten.

       video_device_load
           Load a video capture filter device from file instead of searching it by name. It may load additional
           parameters too, if the filter supports the serialization of its properties to.  To use this a video
           capture source has to be specified, but it can be anything even fake one.

       video_device_save
           Save the currently used video capture filter device and its parameters (if the filter supports it) to
           a file.  If a file with the same name exists it will be overwritten.

       Examples

       •   Print the list of DirectShow supported devices and exit:

                   $ ffmpeg -list_devices true -f dshow -i dummy

       •   Open video device Camera:

                   $ ffmpeg -f dshow -i video="Camera"

       •   Open second video device with name Camera:

                   $ ffmpeg -f dshow -video_device_number 1 -i video="Camera"

       •   Open video device Camera and audio device Microphone:

                   $ ffmpeg -f dshow -i video="Camera":audio="Microphone"

       •   Print the list of supported options in selected device and exit:

                   $ ffmpeg -list_options true -f dshow -i video="Camera"

       •   Specify pin names to capture by name or alternative name, specify alternative device name:

                   $ ffmpeg -f dshow -audio_pin_name "Audio Out" -video_pin_name 2 -i video=video="@device_pnp_\\?\pci#ven_1a0a&dev_6200&subsys_62021461&rev_01#4&e2c7dd6&0&00e1#{65e8773d-8f56-11d0-a3b9-00a0c9223196}\{ca465100-deb0-4d59-818f-8c477184adf6}":audio="Microphone"

       •   Configure a crossbar device, specifying crossbar pins, allow user to adjust video capture properties
           at startup:

                   $ ffmpeg -f dshow -show_video_device_dialog true -crossbar_video_input_pin_number 0
                        -crossbar_audio_input_pin_number 3 -i video="AVerMedia BDA Analog Capture":audio="AVerMedia BDA Analog Capture"

   dv1394
       Linux DV 1394 input device.

       Options

       framerate
           Set the frame rate. Default is 25.

       standard
           Available values are:

           pal
           ntsc

           Default value is "ntsc".

   fbdev
       Linux framebuffer input device.

       The Linux framebuffer is a graphic hardware-independent abstraction layer to show graphics on a computer
       monitor, typically on the console. It is accessed through a file device node, usually /dev/fb0.

       For more detailed information read the file Documentation/fb/framebuffer.txt included in the Linux source
       tree.

       See also <http://linux-fbdev.sourceforge.net/>, and fbset(1).

       To record from the framebuffer device /dev/fb0 with ffmpeg:

               ffmpeg -f fbdev -framerate 10 -i /dev/fb0 out.avi

       You can take a single screenshot image with the command:

               ffmpeg -f fbdev -framerate 1 -i /dev/fb0 -frames:v 1 screenshot.jpeg

       Options

       framerate
           Set the frame rate. Default is 25.

   gdigrab
       Win32 GDI-based screen capture device.

       This device allows you to capture a region of the display on Windows.

       There are two options for the input filename:

               desktop

       or

               title=<window_title>

       The first option will capture the entire desktop, or a fixed region of the desktop. The second option
       will instead capture the contents of a single window, regardless of its position on the screen.

       For example, to grab the entire desktop using ffmpeg:

               ffmpeg -f gdigrab -framerate 6 -i desktop out.mpg

       Grab a 640x480 region at position "10,20":

               ffmpeg -f gdigrab -framerate 6 -offset_x 10 -offset_y 20 -video_size vga -i desktop out.mpg

       Grab the contents of the window named "Calculator"

               ffmpeg -f gdigrab -framerate 6 -i title=Calculator out.mpg

       Options

       draw_mouse
           Specify whether to draw the mouse pointer. Use the value 0 to not draw the pointer. Default value is
           1.

       framerate
           Set the grabbing frame rate. Default value is "ntsc", corresponding to a frame rate of "30000/1001".

       show_region
           Show grabbed region on screen.

           If show_region is specified with 1, then the grabbing region will be indicated on screen. With this
           option, it is easy to know what is being grabbed if only a portion of the screen is grabbed.

           Note that show_region is incompatible with grabbing the contents of a single window.

           For example:

                   ffmpeg -f gdigrab -show_region 1 -framerate 6 -video_size cif -offset_x 10 -offset_y 20 -i desktop out.mpg

       video_size
           Set the video frame size. The default is to capture the full screen if desktop is selected, or the
           full window size if title=window_title is selected.

       offset_x
           When capturing a region with video_size, set the distance from the left edge of the screen or
           desktop.

           Note that the offset calculation is from the top left corner of the primary monitor on Windows. If
           you have a monitor positioned to the left of your primary monitor, you will need to use a negative
           offset_x value to move the region to that monitor.

       offset_y
           When capturing a region with video_size, set the distance from the top edge of the screen or desktop.

           Note that the offset calculation is from the top left corner of the primary monitor on Windows. If
           you have a monitor positioned above your primary monitor, you will need to use a negative offset_y
           value to move the region to that monitor.

   iec61883
       FireWire DV/HDV input device using libiec61883.

       To enable this input device, you need libiec61883, libraw1394 and libavc1394 installed on your system.
       Use the configure option "--enable-libiec61883" to compile with the device enabled.

       The iec61883 capture device supports capturing from a video device connected via IEEE1394 (FireWire),
       using libiec61883 and the new Linux FireWire stack (juju). This is the default DV/HDV input method in
       Linux Kernel 2.6.37 and later, since the old FireWire stack was removed.

       Specify the FireWire port to be used as input file, or "auto" to choose the first port connected.

       Options

       dvtype
           Override autodetection of DV/HDV. This should only be used if auto detection does not work, or if
           usage of a different device type should be prohibited. Treating a DV device as HDV (or vice versa)
           will not work and result in undefined behavior.  The values auto, dv and hdv are supported.

       dvbuffer
           Set maximum size of buffer for incoming data, in frames. For DV, this is an exact value. For HDV, it
           is not frame exact, since HDV does not have a fixed frame size.

       dvguid
           Select the capture device by specifying it's GUID. Capturing will only be performed from the
           specified device and fails if no device with the given GUID is found. This is useful to select the
           input if multiple devices are connected at the same time.  Look at /sys/bus/firewire/devices to find
           out the GUIDs.

       Examples

       •   Grab and show the input of a FireWire DV/HDV device.

                   ffplay -f iec61883 -i auto

       •   Grab and record the input of a FireWire DV/HDV device, using a packet buffer of 100000 packets if the
           source is HDV.

                   ffmpeg -f iec61883 -i auto -hdvbuffer 100000 out.mpg

   jack
       JACK input device.

       To enable this input device during configuration you need libjack installed on your system.

       A JACK input device creates one or more JACK writable clients, one for each audio channel, with name
       client_name:input_N, where client_name is the name provided by the application, and N is a number which
       identifies the channel.  Each writable client will send the acquired data to the FFmpeg input device.

       Once you have created one or more JACK readable clients, you need to connect them to one or more JACK
       writable clients.

       To connect or disconnect JACK clients you can use the jack_connect and jack_disconnect programs, or do it
       through a graphical interface, for example with qjackctl.

       To list the JACK clients and their properties you can invoke the command jack_lsp.

       Follows an example which shows how to capture a JACK readable client with ffmpeg.

               # Create a JACK writable client with name "ffmpeg".
               $ ffmpeg -f jack -i ffmpeg -y out.wav

               # Start the sample jack_metro readable client.
               $ jack_metro -b 120 -d 0.2 -f 4000

               # List the current JACK clients.
               $ jack_lsp -c
               system:capture_1
               system:capture_2
               system:playback_1
               system:playback_2
               ffmpeg:input_1
               metro:120_bpm

               # Connect metro to the ffmpeg writable client.
               $ jack_connect metro:120_bpm ffmpeg:input_1

       For more information read: <http://jackaudio.org/>

       Options

       channels
           Set the number of channels. Default is 2.

   lavfi
       Libavfilter input virtual device.

       This input device reads data from the open output pads of a libavfilter filtergraph.

       For each filtergraph open output, the input device will create a corresponding stream which is mapped to
       the generated output. Currently only video data is supported. The filtergraph is specified through the
       option graph.

       Options

       graph
           Specify the filtergraph to use as input. Each video open output must be labelled by a unique string
           of the form "outN", where N is a number starting from 0 corresponding to the mapped input stream
           generated by the device.  The first unlabelled output is automatically assigned to the "out0" label,
           but all the others need to be specified explicitly.

           The suffix "+subcc" can be appended to the output label to create an extra stream with the closed
           captions packets attached to that output (experimental; only for EIA-608 / CEA-708 for now).  The
           subcc streams are created after all the normal streams, in the order of the corresponding stream.
           For example, if there is "out19+subcc", "out7+subcc" and up to "out42", the stream #43 is subcc for
           stream #7 and stream #44 is subcc for stream #19.

           If not specified defaults to the filename specified for the input device.

       graph_file
           Set the filename of the filtergraph to be read and sent to the other filters. Syntax of the
           filtergraph is the same as the one specified by the option graph.

       dumpgraph
           Dump graph to stderr.

       Examples

       •   Create a color video stream and play it back with ffplay:

                   ffplay -f lavfi -graph "color=c=pink [out0]" dummy

       •   As the previous example, but use filename for specifying the graph description, and omit the "out0"
           label:

                   ffplay -f lavfi color=c=pink

       •   Create three different video test filtered sources and play them:

                   ffplay -f lavfi -graph "testsrc [out0]; testsrc,hflip [out1]; testsrc,negate [out2]" test3

       •   Read an audio stream from a file using the amovie source and play it back with ffplay:

                   ffplay -f lavfi "amovie=test.wav"

       •   Read an audio stream and a video stream and play it back with ffplay:

                   ffplay -f lavfi "movie=test.avi[out0];amovie=test.wav[out1]"

       •   Dump decoded frames to images and closed captions to a file (experimental):

                   ffmpeg -f lavfi -i "movie=test.ts[out0+subcc]" -map v frame%08d.png -map s -c copy -f rawvideo subcc.bin

   libcdio
       Audio-CD input device based on libcdio.

       To enable this input device during configuration you need libcdio installed on your system. It requires
       the configure option "--enable-libcdio".

       This device allows playing and grabbing from an Audio-CD.

       For example to copy with ffmpeg the entire Audio-CD in /dev/sr0, you may run the command:

               ffmpeg -f libcdio -i /dev/sr0 cd.wav

       Options

       speed
           Set drive reading speed. Default value is 0.

           The speed is specified CD-ROM speed units. The speed is set through the libcdio
           "cdio_cddap_speed_set" function. On many CD-ROM drives, specifying a value too large will result in
           using the fastest speed.

       paranoia_mode
           Set paranoia recovery mode flags. It accepts one of the following values:

           disable
           verify
           overlap
           neverskip
           full

           Default value is disable.

           For more information about the available recovery modes, consult the paranoia project documentation.

   libdc1394
       IIDC1394 input device, based on libdc1394 and libraw1394.

       Requires the configure option "--enable-libdc1394".

   openal
       The OpenAL input device provides audio capture on all systems with a working OpenAL 1.1 implementation.

       To enable this input device during configuration, you need OpenAL headers and libraries installed on your
       system, and need to configure FFmpeg with "--enable-openal".

       OpenAL headers and libraries should be provided as part of your OpenAL implementation, or as an
       additional download (an SDK). Depending on your installation you may need to specify additional flags via
       the "--extra-cflags" and "--extra-ldflags" for allowing the build system to locate the OpenAL headers and
       libraries.

       An incomplete list of OpenAL implementations follows:

       Creative
           The official Windows implementation, providing hardware acceleration with supported devices and
           software fallback.  See <http://openal.org/>.

       OpenAL Soft
           Portable, open source (LGPL) software implementation. Includes backends for the most common sound
           APIs on the Windows, Linux, Solaris, and BSD operating systems.  See
           <http://kcat.strangesoft.net/openal.html>.

       Apple
           OpenAL is part of Core Audio, the official Mac OS X Audio interface.  See
           <http://developer.apple.com/technologies/mac/audio-and-video.html>

       This device allows one to capture from an audio input device handled through OpenAL.

       You need to specify the name of the device to capture in the provided filename. If the empty string is
       provided, the device will automatically select the default device. You can get the list of the supported
       devices by using the option list_devices.

       Options

       channels
           Set the number of channels in the captured audio. Only the values 1 (monaural) and 2 (stereo) are
           currently supported.  Defaults to 2.

       sample_size
           Set the sample size (in bits) of the captured audio. Only the values 8 and 16 are currently
           supported. Defaults to 16.

       sample_rate
           Set the sample rate (in Hz) of the captured audio.  Defaults to 44.1k.

       list_devices
           If set to true, print a list of devices and exit.  Defaults to false.

       Examples

       Print the list of OpenAL supported devices and exit:

               $ ffmpeg -list_devices true -f openal -i dummy out.ogg

       Capture from the OpenAL device DR-BT101 via PulseAudio:

               $ ffmpeg -f openal -i 'DR-BT101 via PulseAudio' out.ogg

       Capture from the default device (note the empty string '' as filename):

               $ ffmpeg -f openal -i '' out.ogg

       Capture from two devices simultaneously, writing to two different files, within the same ffmpeg command:

               $ ffmpeg -f openal -i 'DR-BT101 via PulseAudio' out1.ogg -f openal -i 'ALSA Default' out2.ogg

       Note: not all OpenAL implementations support multiple simultaneous capture - try the latest OpenAL Soft
       if the above does not work.

   oss
       Open Sound System input device.

       The filename to provide to the input device is the device node representing the OSS input device, and is
       usually set to /dev/dsp.

       For example to grab from /dev/dsp using ffmpeg use the command:

               ffmpeg -f oss -i /dev/dsp /tmp/oss.wav

       For more information about OSS see: <http://manuals.opensound.com/usersguide/dsp.html>

       Options

       sample_rate
           Set the sample rate in Hz. Default is 48000.

       channels
           Set the number of channels. Default is 2.

   pulse
       PulseAudio input device.

       To enable this output device you need to configure FFmpeg with "--enable-libpulse".

       The filename to provide to the input device is a source device or the string "default"

       To list the PulseAudio source devices and their properties you can invoke the command pactl list sources.

       More information about PulseAudio can be found on <http://www.pulseaudio.org>.

       Options

       server
           Connect to a specific PulseAudio server, specified by an IP address.  Default server is used when not
           provided.

       name
           Specify the application name PulseAudio will use when showing active clients, by default it is the
           "LIBAVFORMAT_IDENT" string.

       stream_name
           Specify the stream name PulseAudio will use when showing active streams, by default it is "record".

       sample_rate
           Specify the samplerate in Hz, by default 48kHz is used.

       channels
           Specify the channels in use, by default 2 (stereo) is set.

       frame_size
           Specify the number of bytes per frame, by default it is set to 1024.

       fragment_size
           Specify the minimal buffering fragment in PulseAudio, it will affect the audio latency. By default it
           is unset.

       wallclock
           Set the initial PTS using the current time. Default is 1.

       Examples

       Record a stream from default device:

               ffmpeg -f pulse -i default /tmp/pulse.wav

   qtkit
       QTKit input device.

       The filename passed as input is parsed to contain either a device name or index.  The device index can
       also be given by using -video_device_index.  A given device index will override any given device name.
       If the desired device consists of numbers only, use -video_device_index to identify it.  The default
       device will be chosen if an empty string  or the device name "default" is given.  The available devices
       can be enumerated by using -list_devices.

               ffmpeg -f qtkit -i "0" out.mpg

               ffmpeg -f qtkit -video_device_index 0 -i "" out.mpg

               ffmpeg -f qtkit -i "default" out.mpg

               ffmpeg -f qtkit -list_devices true -i ""

       Options

       frame_rate
           Set frame rate. Default is 30.

       list_devices
           If set to "true", print a list of devices and exit. Default is "false".

       video_device_index
           Select the video device by index for devices with the same name (starts at 0).

   sndio
       sndio input device.

       To enable this input device during configuration you need libsndio installed on your system.

       The filename to provide to the input device is the device node representing the sndio input device, and
       is usually set to /dev/audio0.

       For example to grab from /dev/audio0 using ffmpeg use the command:

               ffmpeg -f sndio -i /dev/audio0 /tmp/oss.wav

       Options

       sample_rate
           Set the sample rate in Hz. Default is 48000.

       channels
           Set the number of channels. Default is 2.

   video4linux2, v4l2
       Video4Linux2 input video device.

       "v4l2" can be used as alias for "video4linux2".

       If FFmpeg is built with v4l-utils support (by using the "--enable-libv4l2" configure option), it is
       possible to use it with the "-use_libv4l2" input device option.

       The name of the device to grab is a file device node, usually Linux systems tend to automatically create
       such nodes when the device (e.g. an USB webcam) is plugged into the system, and has a name of the kind
       /dev/videoN, where N is a number associated to the device.

       Video4Linux2 devices usually support a limited set of widthxheight sizes and frame rates. You can check
       which are supported using -list_formats all for Video4Linux2 devices.  Some devices, like TV cards,
       support one or more standards. It is possible to list all the supported standards using -list_standards
       all.

       The time base for the timestamps is 1 microsecond. Depending on the kernel version and configuration, the
       timestamps may be derived from the real time clock (origin at the Unix Epoch) or the monotonic clock
       (origin usually at boot time, unaffected by NTP or manual changes to the clock). The -timestamps abs or
       -ts abs option can be used to force conversion into the real time clock.

       Some usage examples of the video4linux2 device with ffmpeg and ffplay:

       •   List supported formats for a video4linux2 device:

                   ffplay -f video4linux2 -list_formats all /dev/video0

       •   Grab and show the input of a video4linux2 device:

                   ffplay -f video4linux2 -framerate 30 -video_size hd720 /dev/video0

       •   Grab and record the input of a video4linux2 device, leave the frame rate and size as previously set:

                   ffmpeg -f video4linux2 -input_format mjpeg -i /dev/video0 out.mpeg

       For more information about Video4Linux, check <http://linuxtv.org/>.

       Options

       standard
           Set the standard. Must be the name of a supported standard. To get a list of the supported standards,
           use the list_standards option.

       channel
           Set the input channel number. Default to -1, which means using the previously selected channel.

       video_size
           Set the video frame size. The argument must be a string in the form WIDTHxHEIGHT or a valid size
           abbreviation.

       pixel_format
           Select the pixel format (only valid for raw video input).

       input_format
           Set the preferred pixel format (for raw video) or a codec name.  This option allows one to select the
           input format, when several are available.

       framerate
           Set the preferred video frame rate.

       list_formats
           List available formats (supported pixel formats, codecs, and frame sizes) and exit.

           Available values are:

           all Show all available (compressed and non-compressed) formats.

           raw Show only raw video (non-compressed) formats.

           compressed
               Show only compressed formats.

       list_standards
           List supported standards and exit.

           Available values are:

           all Show all supported standards.

       timestamps, ts
           Set type of timestamps for grabbed frames.

           Available values are:

           default
               Use timestamps from the kernel.

           abs Use absolute timestamps (wall clock).

           mono2abs
               Force conversion from monotonic to absolute timestamps.

           Default value is "default".

       use_libv4l2
           Use libv4l2 (v4l-utils) conversion functions. Default is 0.

   vfwcap
       VfW (Video for Windows) capture input device.

       The filename passed as input is the capture driver number, ranging from 0 to 9. You may use "list" as
       filename to print a list of drivers. Any other filename will be interpreted as device number 0.

       Options

       video_size
           Set the video frame size.

       framerate
           Set the grabbing frame rate. Default value is "ntsc", corresponding to a frame rate of "30000/1001".

   x11grab
       X11 video input device.

       To enable this input device during configuration you need libxcb installed on your system. It will be
       automatically detected during configuration.

       Alternatively, the configure option --enable-x11grab exists for legacy Xlib users.

       This device allows one to capture a region of an X11 display.

       The filename passed as input has the syntax:

               [<hostname>]:<display_number>.<screen_number>[+<x_offset>,<y_offset>]

       hostname:display_number.screen_number specifies the X11 display name of the screen to grab from. hostname
       can be omitted, and defaults to "localhost". The environment variable DISPLAY contains the default
       display name.

       x_offset and y_offset specify the offsets of the grabbed area with respect to the top-left border of the
       X11 screen. They default to 0.

       Check the X11 documentation (e.g. man X) for more detailed information.

       Use the xdpyinfo program for getting basic information about the properties of your X11 display (e.g.
       grep for "name" or "dimensions").

       For example to grab from :0.0 using ffmpeg:

               ffmpeg -f x11grab -framerate 25 -video_size cif -i :0.0 out.mpg

       Grab at position "10,20":

               ffmpeg -f x11grab -framerate 25 -video_size cif -i :0.0+10,20 out.mpg

       Options

       draw_mouse
           Specify whether to draw the mouse pointer. A value of 0 specify not to draw the pointer. Default
           value is 1.

       follow_mouse
           Make the grabbed area follow the mouse. The argument can be "centered" or a number of pixels PIXELS.

           When it is specified with "centered", the grabbing region follows the mouse pointer and keeps the
           pointer at the center of region; otherwise, the region follows only when the mouse pointer reaches
           within PIXELS (greater than zero) to the edge of region.

           For example:

                   ffmpeg -f x11grab -follow_mouse centered -framerate 25 -video_size cif -i :0.0 out.mpg

           To follow only when the mouse pointer reaches within 100 pixels to edge:

                   ffmpeg -f x11grab -follow_mouse 100 -framerate 25 -video_size cif -i :0.0 out.mpg

       framerate
           Set the grabbing frame rate. Default value is "ntsc", corresponding to a frame rate of "30000/1001".

       show_region
           Show grabbed region on screen.

           If show_region is specified with 1, then the grabbing region will be indicated on screen. With this
           option, it is easy to know what is being grabbed if only a portion of the screen is grabbed.

       region_border
           Set the region border thickness if -show_region 1 is used.  Range is 1 to 128 and default is 3 (XCB-
           based x11grab only).

           For example:

                   ffmpeg -f x11grab -show_region 1 -framerate 25 -video_size cif -i :0.0+10,20 out.mpg

           With follow_mouse:

                   ffmpeg -f x11grab -follow_mouse centered -show_region 1 -framerate 25 -video_size cif -i :0.0 out.mpg

       video_size
           Set the video frame size. Default value is "vga".

       use_shm
           Use the MIT-SHM extension for shared memory. Default value is 1.  It may be necessary to disable it
           for remote displays (legacy x11grab only).

       grab_x grab_y AVOption

       The syntax is:

               -grab_x <x_offset> -grab_y <y_offset>

       Set the grabbing region coordinates. They are expressed as offset from the top left corner of the X11
       window. The default value is 0.

RESAMPLER OPTIONS

       The audio resampler supports the following named options.

       Options may be set by specifying -option value in the FFmpeg tools, option=value for the aresample
       filter, by setting the value explicitly in the "SwrContext" options or using the libavutil/opt.h API for
       programmatic use.

       ich, in_channel_count
           Set the number of input channels. Default value is 0. Setting this value is not mandatory if the
           corresponding channel layout in_channel_layout is set.

       och, out_channel_count
           Set the number of output channels. Default value is 0. Setting this value is not mandatory if the
           corresponding channel layout out_channel_layout is set.

       uch, used_channel_count
           Set the number of used input channels. Default value is 0. This option is only used for special
           remapping.

       isr, in_sample_rate
           Set the input sample rate. Default value is 0.

       osr, out_sample_rate
           Set the output sample rate. Default value is 0.

       isf, in_sample_fmt
           Specify the input sample format. It is set by default to "none".

       osf, out_sample_fmt
           Specify the output sample format. It is set by default to "none".

       tsf, internal_sample_fmt
           Set the internal sample format. Default value is "none".  This will automatically be chosen when it
           is not explicitly set.

       icl, in_channel_layout
       ocl, out_channel_layout
           Set the input/output channel layout.

           See the Channel Layout section in the ffmpeg-utils(1) manual for the required syntax.

       clev, center_mix_level
           Set the center mix level. It is a value expressed in deciBel, and must be in the interval [-32,32].

       slev, surround_mix_level
           Set the surround mix level. It is a value expressed in deciBel, and must be in the interval [-32,32].

       lfe_mix_level
           Set LFE mix into non LFE level. It is used when there is a LFE input but no LFE output. It is a value
           expressed in deciBel, and must be in the interval [-32,32].

       rmvol, rematrix_volume
           Set rematrix volume. Default value is 1.0.

       rematrix_maxval
           Set maximum output value for rematrixing.  This can be used to prevent clipping vs. preventing volumn
           reduction A value of 1.0 prevents cliping.

       flags, swr_flags
           Set flags used by the converter. Default value is 0.

           It supports the following individual flags:

           res force resampling, this flag forces resampling to be used even when the input and output sample
               rates match.

       dither_scale
           Set the dither scale. Default value is 1.

       dither_method
           Set dither method. Default value is 0.

           Supported values:

           rectangular
               select rectangular dither

           triangular
               select triangular dither

           triangular_hp
               select triangular dither with high pass

           lipshitz
               select lipshitz noise shaping dither

           shibata
               select shibata noise shaping dither

           low_shibata
               select low shibata noise shaping dither

           high_shibata
               select high shibata noise shaping dither

           f_weighted
               select f-weighted noise shaping dither

           modified_e_weighted
               select modified-e-weighted noise shaping dither

           improved_e_weighted
               select improved-e-weighted noise shaping dither

       resampler
           Set resampling engine. Default value is swr.

           Supported values:

           swr select the native SW Resampler; filter options precision and cheby are not applicable in this
               case.

           soxr
               select the SoX Resampler (where available); compensation, and filter options filter_size,
               phase_shift, filter_type & kaiser_beta, are not applicable in this case.

       filter_size
           For swr only, set resampling filter size, default value is 32.

       phase_shift
           For swr only, set resampling phase shift, default value is 10, and must be in the interval [0,30].

       linear_interp
           Use Linear Interpolation if set to 1, default value is 0.

       cutoff
           Set cutoff frequency (swr: 6dB point; soxr: 0dB point) ratio; must be a float value between 0 and 1.
           Default value is 0.97 with swr, and 0.91 with soxr (which, with a sample-rate of 44100, preserves the
           entire audio band to 20kHz).

       precision
           For soxr only, the precision in bits to which the resampled signal will be calculated.  The default
           value of 20 (which, with suitable dithering, is appropriate for a destination bit-depth of 16) gives
           SoX's 'High Quality'; a value of 28 gives SoX's 'Very High Quality'.

       cheby
           For soxr only, selects passband rolloff none (Chebyshev) & higher-precision approximation for
           'irrational' ratios. Default value is 0.

       async
           For swr only, simple 1 parameter audio sync to timestamps using stretching, squeezing, filling and
           trimming. Setting this to 1 will enable filling and trimming, larger values represent the maximum
           amount in samples that the data may be stretched or squeezed for each second.  Default value is 0,
           thus no compensation is applied to make the samples match the audio timestamps.

       first_pts
           For swr only, assume the first pts should be this value. The time unit is 1 / sample rate.  This
           allows for padding/trimming at the start of stream. By default, no assumption is made about the first
           frame's expected pts, so no padding or trimming is done. For example, this could be set to 0 to pad
           the beginning with silence if an audio stream starts after the video stream or to trim any samples
           with a negative pts due to encoder delay.

       min_comp
           For swr only, set the minimum difference between timestamps and audio data (in seconds) to trigger
           stretching/squeezing/filling or trimming of the data to make it match the timestamps. The default is
           that stretching/squeezing/filling and trimming is disabled (min_comp = "FLT_MAX").

       min_hard_comp
           For swr only, set the minimum difference between timestamps and audio data (in seconds) to trigger
           adding/dropping samples to make it match the timestamps.  This option effectively is a threshold to
           select between hard (trim/fill) and soft (squeeze/stretch) compensation. Note that all compensation
           is by default disabled through min_comp.  The default is 0.1.

       comp_duration
           For swr only, set duration (in seconds) over which data is stretched/squeezed to make it match the
           timestamps. Must be a non-negative double float value, default value is 1.0.

       max_soft_comp
           For swr only, set maximum factor by which data is stretched/squeezed to make it match the timestamps.
           Must be a non-negative double float value, default value is 0.

       matrix_encoding
           Select matrixed stereo encoding.

           It accepts the following values:

           none
               select none

           dolby
               select Dolby

           dplii
               select Dolby Pro Logic II

           Default value is "none".

       filter_type
           For swr only, select resampling filter type. This only affects resampling operations.

           It accepts the following values:

           cubic
               select cubic

           blackman_nuttall
               select Blackman Nuttall Windowed Sinc

           kaiser
               select Kaiser Windowed Sinc

       kaiser_beta
           For swr only, set Kaiser Window Beta value. Must be an integer in the interval [2,16], default value
           is 9.

       output_sample_bits
           For swr only, set number of used output sample bits for dithering. Must be an integer in the interval
           [0,64], default value is 0, which means it's not used.

SCALER OPTIONS

       The video scaler supports the following named options.

       Options may be set by specifying -option value in the FFmpeg tools. For programmatic use, they can be set
       explicitly in the "SwsContext" options or through the libavutil/opt.h API.

       sws_flags
           Set the scaler flags. This is also used to set the scaling algorithm. Only a single algorithm should
           be selected.

           It accepts the following values:

           fast_bilinear
               Select fast bilinear scaling algorithm.

           bilinear
               Select bilinear scaling algorithm.

           bicubic
               Select bicubic scaling algorithm.

           experimental
               Select experimental scaling algorithm.

           neighbor
               Select nearest neighbor rescaling algorithm.

           area
               Select averaging area rescaling algorithm.

           bicublin
               Select bicubic scaling algorithm for the luma component, bilinear for chroma components.

           gauss
               Select Gaussian rescaling algorithm.

           sinc
               Select sinc rescaling algorithm.

           lanczos
               Select lanczos rescaling algorithm.

           spline
               Select natural bicubic spline rescaling algorithm.

           print_info
               Enable printing/debug logging.

           accurate_rnd
               Enable accurate rounding.

           full_chroma_int
               Enable full chroma interpolation.

           full_chroma_inp
               Select full chroma input.

           bitexact
               Enable bitexact output.

       srcw
           Set source width.

       srch
           Set source height.

       dstw
           Set destination width.

       dsth
           Set destination height.

       src_format
           Set source pixel format (must be expressed as an integer).

       dst_format
           Set destination pixel format (must be expressed as an integer).

       src_range
           Select source range.

       dst_range
           Select destination range.

       param0, param1
           Set scaling algorithm parameters. The specified values are specific of some scaling algorithms and
           ignored by others. The specified values are floating point number values.

       sws_dither
           Set the dithering algorithm. Accepts one of the following values. Default value is auto.

           auto
               automatic choice

           none
               no dithering

           bayer
               bayer dither

           ed  error diffusion dither

           a_dither
               arithmetic dither, based using addition

           x_dither
               arithmetic dither, based using xor (more random/less apparent patterning that a_dither).

       alphablend
           Set the alpha blending to use when the input has alpha but the output does not.  Default value is
           none.

           uniform_color
               Blend onto a uniform background color

           checkerboard
               Blend onto a checkerboard

           none
               No blending

FILTERING INTRODUCTION

       Filtering in FFmpeg is enabled through the libavfilter library.

       In libavfilter, a filter can have multiple inputs and multiple outputs.  To illustrate the sorts of
       things that are possible, we consider the following filtergraph.

                               [main]
               input --> split ---------------------> overlay --> output
                           |                             ^
                           |[tmp]                  [flip]|
                           +-----> crop --> vflip -------+

       This filtergraph splits the input stream in two streams, then sends one stream through the crop filter
       and the vflip filter, before merging it back with the other stream by overlaying it on top. You can use
       the following command to achieve this:

               ffmpeg -i INPUT -vf "split [main][tmp]; [tmp] crop=iw:ih/2:0:0, vflip [flip]; [main][flip] overlay=0:H/2" OUTPUT

       The result will be that the top half of the video is mirrored onto the bottom half of the output video.

       Filters in the same linear chain are separated by commas, and distinct linear chains of filters are
       separated by semicolons. In our example, crop,vflip are in one linear chain, split and overlay are
       separately in another. The points where the linear chains join are labelled by names enclosed in square
       brackets. In the example, the split filter generates two outputs that are associated to the labels [main]
       and [tmp].

       The stream sent to the second output of split, labelled as [tmp], is processed through the crop filter,
       which crops away the lower half part of the video, and then vertically flipped. The overlay filter takes
       in input the first unchanged output of the split filter (which was labelled as [main]), and overlay on
       its lower half the output generated by the crop,vflip filterchain.

       Some filters take in input a list of parameters: they are specified after the filter name and an equal
       sign, and are separated from each other by a colon.

       There exist so-called source filters that do not have an audio/video input, and sink filters that will
       not have audio/video output.

GRAPH

       The graph2dot program included in the FFmpeg tools directory can be used to parse a filtergraph
       description and issue a corresponding textual representation in the dot language.

       Invoke the command:

               graph2dot -h

       to see how to use graph2dot.

       You can then pass the dot description to the dot program (from the graphviz suite of programs) and obtain
       a graphical representation of the filtergraph.

       For example the sequence of commands:

               echo <GRAPH_DESCRIPTION> | \
               tools/graph2dot -o graph.tmp && \
               dot -Tpng graph.tmp -o graph.png && \
               display graph.png

       can be used to create and display an image representing the graph described by the GRAPH_DESCRIPTION
       string. Note that this string must be a complete self-contained graph, with its inputs and outputs
       explicitly defined.  For example if your command line is of the form:

               ffmpeg -i infile -vf scale=640:360 outfile

       your GRAPH_DESCRIPTION string will need to be of the form:

               nullsrc,scale=640:360,nullsink

       you may also need to set the nullsrc parameters and add a format filter in order to simulate a specific
       input file.

FILTERGRAPH DESCRIPTION

       A filtergraph is a directed graph of connected filters. It can contain cycles, and there can be multiple
       links between a pair of filters. Each link has one input pad on one side connecting it to one filter from
       which it takes its input, and one output pad on the other side connecting it to one filter accepting its
       output.

       Each filter in a filtergraph is an instance of a filter class registered in the application, which
       defines the features and the number of input and output pads of the filter.

       A filter with no input pads is called a "source", and a filter with no output pads is called a "sink".

   Filtergraph syntax
       A filtergraph has a textual representation, which is recognized by the -filter/-vf/-af and
       -filter_complex options in ffmpeg and -vf/-af in ffplay, and by the "avfilter_graph_parse_ptr()" function
       defined in libavfilter/avfilter.h.

       A filterchain consists of a sequence of connected filters, each one connected to the previous one in the
       sequence. A filterchain is represented by a list of ","-separated filter descriptions.

       A filtergraph consists of a sequence of filterchains. A sequence of filterchains is represented by a list
       of ";"-separated filterchain descriptions.

       A filter is represented by a string of the form:
       [in_link_1]...[in_link_N]filter_name=arguments[out_link_1]...[out_link_M]

       filter_name is the name of the filter class of which the described filter is an instance of, and has to
       be the name of one of the filter classes registered in the program.  The name of the filter class is
       optionally followed by a string "=arguments".

       arguments is a string which contains the parameters used to initialize the filter instance. It may have
       one of two forms:

       •   A ':'-separated list of key=value pairs.

       •   A ':'-separated list of value. In this case, the keys are assumed to be the option names in the order
           they are declared. E.g. the "fade" filter declares three options in this order -- type, start_frame
           and nb_frames. Then the parameter list in:0:30 means that the value in is assigned to the option
           type, 0 to start_frame and 30 to nb_frames.

       •   A ':'-separated list of mixed direct value and long key=value pairs. The direct value must precede
           the key=value pairs, and follow the same constraints order of the previous point. The following
           key=value pairs can be set in any preferred order.

       If the option value itself is a list of items (e.g. the "format" filter takes a list of pixel formats),
       the items in the list are usually separated by |.

       The list of arguments can be quoted using the character ' as initial and ending mark, and the character \
       for escaping the characters within the quoted text; otherwise the argument string is considered
       terminated when the next special character (belonging to the set []=;,) is encountered.

       The name and arguments of the filter are optionally preceded and followed by a list of link labels.  A
       link label allows one to name a link and associate it to a filter output or input pad. The preceding
       labels in_link_1 ... in_link_N, are associated to the filter input pads, the following labels out_link_1
       ... out_link_M, are associated to the output pads.

       When two link labels with the same name are found in the filtergraph, a link between the corresponding
       input and output pad is created.

       If an output pad is not labelled, it is linked by default to the first unlabelled input pad of the next
       filter in the filterchain.  For example in the filterchain

               nullsrc, split[L1], [L2]overlay, nullsink

       the split filter instance has two output pads, and the overlay filter instance two input pads. The first
       output pad of split is labelled "L1", the first input pad of overlay is labelled "L2", and the second
       output pad of split is linked to the second input pad of overlay, which are both unlabelled.

       In a filter description, if the input label of the first filter is not specified, "in" is assumed; if the
       output label of the last filter is not specified, "out" is assumed.

       In a complete filterchain all the unlabelled filter input and output pads must be connected. A
       filtergraph is considered valid if all the filter input and output pads of all the filterchains are
       connected.

       Libavfilter will automatically insert scale filters where format conversion is required. It is possible
       to specify swscale flags for those automatically inserted scalers by prepending "sws_flags=flags;" to the
       filtergraph description.

       Here is a BNF description of the filtergraph syntax:

               <NAME>             ::= sequence of alphanumeric characters and '_'
               <LINKLABEL>        ::= "[" <NAME> "]"
               <LINKLABELS>       ::= <LINKLABEL> [<LINKLABELS>]
               <FILTER_ARGUMENTS> ::= sequence of chars (possibly quoted)
               <FILTER>           ::= [<LINKLABELS>] <NAME> ["=" <FILTER_ARGUMENTS>] [<LINKLABELS>]
               <FILTERCHAIN>      ::= <FILTER> [,<FILTERCHAIN>]
               <FILTERGRAPH>      ::= [sws_flags=<flags>;] <FILTERCHAIN> [;<FILTERGRAPH>]

   Notes on filtergraph escaping
       Filtergraph description composition entails several levels of escaping. See the "Quoting and escaping"
       section in the ffmpeg-utils(1) manual for more information about the employed escaping procedure.

       A first level escaping affects the content of each filter option value, which may contain the special
       character ":" used to separate values, or one of the escaping characters "\'".

       A second level escaping affects the whole filter description, which may contain the escaping characters
       "\'" or the special characters "[],;" used by the filtergraph description.

       Finally, when you specify a filtergraph on a shell commandline, you need to perform a third level
       escaping for the shell special characters contained within it.

       For example, consider the following string to be embedded in the drawtext filter description text value:

               this is a 'string': may contain one, or more, special characters

       This string contains the "'" special escaping character, and the ":" special character, so it needs to be
       escaped in this way:

               text=this is a \'string\'\: may contain one, or more, special characters

       A second level of escaping is required when embedding the filter description in a filtergraph
       description, in order to escape all the filtergraph special characters. Thus the example above becomes:

               drawtext=text=this is a \\\'string\\\'\\: may contain one\, or more\, special characters

       (note that in addition to the "\'" escaping special characters, also "," needs to be escaped).

       Finally an additional level of escaping is needed when writing the filtergraph description in a shell
       command, which depends on the escaping rules of the adopted shell. For example, assuming that "\" is
       special and needs to be escaped with another "\", the previous string will finally result in:

               -vf "drawtext=text=this is a \\\\\\'string\\\\\\'\\\\: may contain one\\, or more\\, special characters"

TIMELINE EDITING

       Some filters support a generic enable option. For the filters supporting timeline editing, this option
       can be set to an expression which is evaluated before sending a frame to the filter. If the evaluation is
       non-zero, the filter will be enabled, otherwise the frame will be sent unchanged to the next filter in
       the filtergraph.

       The expression accepts the following values:

       t   timestamp expressed in seconds, NAN if the input timestamp is unknown

       n   sequential number of the input frame, starting from 0

       pos the position in the file of the input frame, NAN if unknown

       w
       h   width and height of the input frame if video

       Additionally, these filters support an enable command that can be used to re-define the expression.

       Like any other filtering option, the enable option follows the same rules.

       For example, to enable a blur filter (smartblur) from 10 seconds to 3 minutes, and a curves filter
       starting at 3 seconds:

               smartblur = enable='between(t,10,3*60)',
               curves    = enable='gte(t,3)' : preset=cross_process

AUDIO FILTERS

       When you configure your FFmpeg build, you can disable any of the existing filters using
       "--disable-filters".  The configure output will show the audio filters included in your build.

       Below is a description of the currently available audio filters.

   acrossfade
       Apply cross fade from one input audio stream to another input audio stream.  The cross fade is applied
       for specified duration near the end of first stream.

       The filter accepts the following options:

       nb_samples, ns
           Specify the number of samples for which the cross fade effect has to last.  At the end of the cross
           fade effect the first input audio will be completely silent. Default is 44100.

       duration, d
           Specify the duration of the cross fade effect. See the Time duration section in the ffmpeg-utils(1)
           manual for the accepted syntax.  By default the duration is determined by nb_samples.  If set this
           option is used instead of nb_samples.

       overlap, o
           Should first stream end overlap with second stream start. Default is enabled.

       curve1
           Set curve for cross fade transition for first stream.

       curve2
           Set curve for cross fade transition for second stream.

           For description of available curve types see afade filter description.

       Examples

       •   Cross fade from one input to another:

                   ffmpeg -i first.flac -i second.flac -filter_complex acrossfade=d=10:c1=exp:c2=exp output.flac

       •   Cross fade from one input to another but without overlapping:

                   ffmpeg -i first.flac -i second.flac -filter_complex acrossfade=d=10:o=0:c1=exp:c2=exp output.flac

   adelay
       Delay one or more audio channels.

       Samples in delayed channel are filled with silence.

       The filter accepts the following option:

       delays
           Set list of delays in milliseconds for each channel separated by '|'.  At least one delay greater
           than 0 should be provided.  Unused delays will be silently ignored. If number of given delays is
           smaller than number of channels all remaining channels will not be delayed.

       Examples

       •   Delay first channel by 1.5 seconds, the third channel by 0.5 seconds and leave the second channel
           (and any other channels that may be present) unchanged.

                   adelay=1500|0|500

   aecho
       Apply echoing to the input audio.

       Echoes are reflected sound and can occur naturally amongst mountains (and sometimes large buildings) when
       talking or shouting; digital echo effects emulate this behaviour and are often used to help fill out the
       sound of a single instrument or vocal. The time difference between the original signal and the reflection
       is the "delay", and the loudness of the reflected signal is the "decay".  Multiple echoes can have
       different delays and decays.

       A description of the accepted parameters follows.

       in_gain
           Set input gain of reflected signal. Default is 0.6.

       out_gain
           Set output gain of reflected signal. Default is 0.3.

       delays
           Set list of time intervals in milliseconds between original signal and reflections separated by '|'.
           Allowed range for each "delay" is "(0 - 90000.0]".  Default is 1000.

       decays
           Set list of loudnesses of reflected signals separated by '|'.  Allowed range for each "decay" is "(0
           - 1.0]".  Default is 0.5.

       Examples

       •   Make it sound as if there are twice as many instruments as are actually playing:

                   aecho=0.8:0.88:60:0.4

       •   If delay is very short, then it sound like a (metallic) robot playing music:

                   aecho=0.8:0.88:6:0.4

       •   A longer delay will sound like an open air concert in the mountains:

                   aecho=0.8:0.9:1000:0.3

       •   Same as above but with one more mountain:

                   aecho=0.8:0.9:1000|1800:0.3|0.25

   aeval
       Modify an audio signal according to the specified expressions.

       This filter accepts one or more expressions (one for each channel), which are evaluated and used to
       modify a corresponding audio signal.

       It accepts the following parameters:

       exprs
           Set the '|'-separated expressions list for each separate channel. If the number of input channels is
           greater than the number of expressions, the last specified expression is used for the remaining
           output channels.

       channel_layout, c
           Set output channel layout. If not specified, the channel layout is specified by the number of
           expressions. If set to same, it will use by default the same input channel layout.

       Each expression in exprs can contain the following constants and functions:

       ch  channel number of the current expression

       n   number of the evaluated sample, starting from 0

       s   sample rate

       t   time of the evaluated sample expressed in seconds

       nb_in_channels
       nb_out_channels
           input and output number of channels

       val(CH)
           the value of input channel with number CH

       Note: this filter is slow. For faster processing you should use a dedicated filter.

       Examples

       •   Half volume:

                   aeval=val(ch)/2:c=same

       •   Invert phase of the second channel:

                   aeval=val(0)|-val(1)

   afade
       Apply fade-in/out effect to input audio.

       A description of the accepted parameters follows.

       type, t
           Specify the effect type, can be either "in" for fade-in, or "out" for a fade-out effect. Default is
           "in".

       start_sample, ss
           Specify the number of the start sample for starting to apply the fade effect. Default is 0.

       nb_samples, ns
           Specify the number of samples for which the fade effect has to last. At the end of the fade-in effect
           the output audio will have the same volume as the input audio, at the end of the fade-out transition
           the output audio will be silence. Default is 44100.

       start_time, st
           Specify the start time of the fade effect. Default is 0.  The value must be specified as a time
           duration; see the Time duration section in the ffmpeg-utils(1) manual for the accepted syntax.  If
           set this option is used instead of start_sample.

       duration, d
           Specify the duration of the fade effect. See the Time duration section in the ffmpeg-utils(1) manual
           for the accepted syntax.  At the end of the fade-in effect the output audio will have the same volume
           as the input audio, at the end of the fade-out transition the output audio will be silence.  By
           default the duration is determined by nb_samples.  If set this option is used instead of nb_samples.

       curve
           Set curve for fade transition.

           It accepts the following values:

           tri select triangular, linear slope (default)

           qsin
               select quarter of sine wave

           hsin
               select half of sine wave

           esin
               select exponential sine wave

           log select logarithmic

           ipar
               select inverted parabola

           qua select quadratic

           cub select cubic

           squ select square root

           cbr select cubic root

           par select parabola

           exp select exponential

           iqsin
               select inverted quarter of sine wave

           ihsin
               select inverted half of sine wave

           dese
               select double-exponential seat

           desi
               select double-exponential sigmoid

       Examples

       •   Fade in first 15 seconds of audio:

                   afade=t=in:ss=0:d=15

       •   Fade out last 25 seconds of a 900 seconds audio:

                   afade=t=out:st=875:d=25

   aformat
       Set output format constraints for the input audio. The framework will negotiate the most appropriate
       format to minimize conversions.

       It accepts the following parameters:

       sample_fmts
           A '|'-separated list of requested sample formats.

       sample_rates
           A '|'-separated list of requested sample rates.

       channel_layouts
           A '|'-separated list of requested channel layouts.

           See the Channel Layout section in the ffmpeg-utils(1) manual for the required syntax.

       If a parameter is omitted, all values are allowed.

       Force the output to either unsigned 8-bit or signed 16-bit stereo

               aformat=sample_fmts=u8|s16:channel_layouts=stereo

   allpass
       Apply a two-pole all-pass filter with central frequency (in Hz) frequency, and filter-width width.  An
       all-pass filter changes the audio's frequency to phase relationship without changing its frequency to
       amplitude relationship.

       The filter accepts the following options:

       frequency, f
           Set frequency in Hz.

       width_type
           Set method to specify band-width of filter.

           h   Hz

           q   Q-Factor

           o   octave

           s   slope

       width, w
           Specify the band-width of a filter in width_type units.

   amerge
       Merge two or more audio streams into a single multi-channel stream.

       The filter accepts the following options:

       inputs
           Set the number of inputs. Default is 2.

       If the channel layouts of the inputs are disjoint, and therefore compatible, the channel layout of the
       output will be set accordingly and the channels will be reordered as necessary. If the channel layouts of
       the inputs are not disjoint, the output will have all the channels of the first input then all the
       channels of the second input, in that order, and the channel layout of the output will be the default
       value corresponding to the total number of channels.

       For example, if the first input is in 2.1 (FL+FR+LF) and the second input is FC+BL+BR, then the output
       will be in 5.1, with the channels in the following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel
       of the first input, b1 is the first channel of the second input).

       On the other hand, if both input are in stereo, the output channels will be in the default order: a1, a2,
       b1, b2, and the channel layout will be arbitrarily set to 4.0, which may or may not be the expected
       value.

       All inputs must have the same sample rate, and format.

       If inputs do not have the same duration, the output will stop with the shortest.

       Examples

       •   Merge two mono files into a stereo stream:

                   amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge

       •   Multiple merges assuming 1 video stream and 6 audio streams in input.mkv:

                   ffmpeg -i input.mkv -filter_complex "[0:1][0:2][0:3][0:4][0:5][0:6] amerge=inputs=6" -c:a pcm_s16le output.mkv

   amix
       Mixes multiple audio inputs into a single output.

       Note that this filter only supports float samples (the amerge and pan audio filters support many
       formats). If the amix input has integer samples then aresample will be automatically inserted to perform
       the conversion to float samples.

       For example

               ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT

       will mix 3 input audio streams to a single output with the same duration as the first input and a dropout
       transition time of 3 seconds.

       It accepts the following parameters:

       inputs
           The number of inputs. If unspecified, it defaults to 2.

       duration
           How to determine the end-of-stream.

           longest
               The duration of the longest input. (default)

           shortest
               The duration of the shortest input.

           first
               The duration of the first input.

       dropout_transition
           The transition time, in seconds, for volume renormalization when an input stream ends. The default
           value is 2 seconds.

   anull
       Pass the audio source unchanged to the output.

   apad
       Pad the end of an audio stream with silence.

       This can be used together with ffmpeg -shortest to extend audio streams to the same length as the video
       stream.

       A description of the accepted options follows.

       packet_size
           Set silence packet size. Default value is 4096.

       pad_len
           Set the number of samples of silence to add to the end. After the value is reached, the stream is
           terminated. This option is mutually exclusive with whole_len.

       whole_len
           Set the minimum total number of samples in the output audio stream. If the value is longer than the
           input audio length, silence is added to the end, until the value is reached. This option is mutually
           exclusive with pad_len.

       If neither the pad_len nor the whole_len option is set, the filter will add silence to the end of the
       input stream indefinitely.

       Examples

       •   Add 1024 samples of silence to the end of the input:

                   apad=pad_len=1024

       •   Make sure the audio output will contain at least 10000 samples, pad the input with silence if
           required:

                   apad=whole_len=10000

       •   Use ffmpeg to pad the audio input with silence, so that the video stream will always result the
           shortest and will be converted until the end in the output file when using the shortest option:

                   ffmpeg -i VIDEO -i AUDIO -filter_complex "[1:0]apad" -shortest OUTPUT

   aphaser
       Add a phasing effect to the input audio.

       A phaser filter creates series of peaks and troughs in the frequency spectrum.  The position of the peaks
       and troughs are modulated so that they vary over time, creating a sweeping effect.

       A description of the accepted parameters follows.

       in_gain
           Set input gain. Default is 0.4.

       out_gain
           Set output gain. Default is 0.74

       delay
           Set delay in milliseconds. Default is 3.0.

       decay
           Set decay. Default is 0.4.

       speed
           Set modulation speed in Hz. Default is 0.5.

       type
           Set modulation type. Default is triangular.

           It accepts the following values:

           triangular, t
           sinusoidal, s

   aresample
       Resample the input audio to the specified parameters, using the libswresample library. If none are
       specified then the filter will automatically convert between its input and output.

       This filter is also able to stretch/squeeze the audio data to make it match the timestamps or to inject
       silence / cut out audio to make it match the timestamps, do a combination of both or do neither.

       The filter accepts the syntax [sample_rate:]resampler_options, where sample_rate expresses a sample rate
       and resampler_options is a list of key=value pairs, separated by ":". See the ffmpeg-resampler manual for
       the complete list of supported options.

       Examples

       •   Resample the input audio to 44100Hz:

                   aresample=44100

       •   Stretch/squeeze samples to the given timestamps, with a maximum of 1000 samples per second
           compensation:

                   aresample=async=1000

   asetnsamples
       Set the number of samples per each output audio frame.

       The last output packet may contain a different number of samples, as the filter will flush all the
       remaining samples when the input audio signal its end.

       The filter accepts the following options:

       nb_out_samples, n
           Set the number of frames per each output audio frame. The number is intended as the number of samples
           per each channel.  Default value is 1024.

       pad, p
           If set to 1, the filter will pad the last audio frame with zeroes, so that the last frame will
           contain the same number of samples as the previous ones. Default value is 1.

       For example, to set the number of per-frame samples to 1234 and disable padding for the last frame, use:

               asetnsamples=n=1234:p=0

   asetrate
       Set the sample rate without altering the PCM data.  This will result in a change of speed and pitch.

       The filter accepts the following options:

       sample_rate, r
           Set the output sample rate. Default is 44100 Hz.

   ashowinfo
       Show a line containing various information for each input audio frame.  The input audio is not modified.

       The shown line contains a sequence of key/value pairs of the form key:value.

       The following values are shown in the output:

       n   The (sequential) number of the input frame, starting from 0.

       pts The presentation timestamp of the input frame, in time base units; the time base depends on the
           filter input pad, and is usually 1/sample_rate.

       pts_time
           The presentation timestamp of the input frame in seconds.

       pos position of the frame in the input stream, -1 if this information in unavailable and/or meaningless
           (for example in case of synthetic audio)

       fmt The sample format.

       chlayout
           The channel layout.

       rate
           The sample rate for the audio frame.

       nb_samples
           The number of samples (per channel) in the frame.

       checksum
           The Adler-32 checksum (printed in hexadecimal) of the audio data. For planar audio, the data is
           treated as if all the planes were concatenated.

       plane_checksums
           A list of Adler-32 checksums for each data plane.

   astats
       Display time domain statistical information about the audio channels.  Statistics are calculated and
       displayed for each audio channel and, where applicable, an overall figure is also given.

       It accepts the following option:

       length
           Short window length in seconds, used for peak and trough RMS measurement.  Default is 0.05 (50
           milliseconds). Allowed range is "[0.1 - 10]".

       metadata
           Set metadata injection. All the metadata keys are prefixed with "lavfi.astats.X", where "X" is
           channel number starting from 1 or string "Overall". Default is disabled.

           Available keys for each channel are: DC_offset Min_level Max_level Min_difference Max_difference
           Mean_difference Peak_level RMS_peak RMS_trough Crest_factor Flat_factor Peak_count Bit_depth

           and for Overall: DC_offset Min_level Max_level Min_difference Max_difference Mean_difference
           Peak_level RMS_level RMS_peak RMS_trough Flat_factor Peak_count Bit_depth Number_of_samples

           For example full key look like this "lavfi.astats.1.DC_offset" or this
           "lavfi.astats.Overall.Peak_count".

           For description what each key means read below.

       reset
           Set number of frame after which stats are going to be recalculated.  Default is disabled.

       A description of each shown parameter follows:

       DC offset
           Mean amplitude displacement from zero.

       Min level
           Minimal sample level.

       Max level
           Maximal sample level.

       Min difference
           Minimal difference between two consecutive samples.

       Max difference
           Maximal difference between two consecutive samples.

       Mean difference
           Mean difference between two consecutive samples.  The average of each difference between two
           consecutive samples.

       Peak level dB
       RMS level dB
           Standard peak and RMS level measured in dBFS.

       RMS peak dB
       RMS trough dB
           Peak and trough values for RMS level measured over a short window.

       Crest factor
           Standard ratio of peak to RMS level (note: not in dB).

       Flat factor
           Flatness (i.e. consecutive samples with the same value) of the signal at its peak levels (i.e. either
           Min level or Max level).

       Peak count
           Number of occasions (not the number of samples) that the signal attained either Min level or Max
           level.

       Bit depth
           Overall bit depth of audio. Number of bits used for each sample.

   astreamsync
       Forward two audio streams and control the order the buffers are forwarded.

       The filter accepts the following options:

       expr, e
           Set the expression deciding which stream should be forwarded next: if the result is negative, the
           first stream is forwarded; if the result is positive or zero, the second stream is forwarded. It can
           use the following variables:

           b1 b2
               number of buffers forwarded so far on each stream

           s1 s2
               number of samples forwarded so far on each stream

           t1 t2
               current timestamp of each stream

           The default value is "t1-t2", which means to always forward the stream that has a smaller timestamp.

       Examples

       Stress-test "amerge" by randomly sending buffers on the wrong input, while avoiding too much of a
       desynchronization:

               amovie=file.ogg [a] ; amovie=file.mp3 [b] ;
               [a] [b] astreamsync=(2*random(1))-1+tanh(5*(t1-t2)) [a2] [b2] ;
               [a2] [b2] amerge

   asyncts
       Synchronize audio data with timestamps by squeezing/stretching it and/or dropping samples/adding silence
       when needed.

       This filter is not built by default, please use aresample to do squeezing/stretching.

       It accepts the following parameters:

       compensate
           Enable stretching/squeezing the data to make it match the timestamps. Disabled by default. When
           disabled, time gaps are covered with silence.

       min_delta
           The minimum difference between timestamps and audio data (in seconds) to trigger adding/dropping
           samples. The default value is 0.1. If you get an imperfect sync with this filter, try setting this
           parameter to 0.

       max_comp
           The maximum compensation in samples per second. Only relevant with compensate=1.  The default value
           is 500.

       first_pts
           Assume that the first PTS should be this value. The time base is 1 / sample rate. This allows for
           padding/trimming at the start of the stream. By default, no assumption is made about the first
           frame's expected PTS, so no padding or trimming is done. For example, this could be set to 0 to pad
           the beginning with silence if an audio stream starts after the video stream or to trim any samples
           with a negative PTS due to encoder delay.

   atempo
       Adjust audio tempo.

       The filter accepts exactly one parameter, the audio tempo. If not specified then the filter will assume
       nominal 1.0 tempo. Tempo must be in the [0.5, 2.0] range.

       Examples

       •   Slow down audio to 80% tempo:

                   atempo=0.8

       •   To speed up audio to 125% tempo:

                   atempo=1.25

   atrim
       Trim the input so that the output contains one continuous subpart of the input.

       It accepts the following parameters:

       start
           Timestamp (in seconds) of the start of the section to keep. I.e. the audio sample with the timestamp
           start will be the first sample in the output.

       end Specify time of the first audio sample that will be dropped, i.e. the audio sample immediately
           preceding the one with the timestamp end will be the last sample in the output.

       start_pts
           Same as start, except this option sets the start timestamp in samples instead of seconds.

       end_pts
           Same as end, except this option sets the end timestamp in samples instead of seconds.

       duration
           The maximum duration of the output in seconds.

       start_sample
           The number of the first sample that should be output.

       end_sample
           The number of the first sample that should be dropped.

       start, end, and duration are expressed as time duration specifications; see the Time duration section in
       the ffmpeg-utils(1) manual.

       Note that the first two sets of the start/end options and the duration option look at the frame
       timestamp, while the _sample options simply count the samples that pass through the filter. So
       start/end_pts and start/end_sample will give different results when the timestamps are wrong, inexact or
       do not start at zero. Also note that this filter does not modify the timestamps. If you wish to have the
       output timestamps start at zero, insert the asetpts filter after the atrim filter.

       If multiple start or end options are set, this filter tries to be greedy and keep all samples that match
       at least one of the specified constraints. To keep only the part that matches all the constraints at
       once, chain multiple atrim filters.

       The defaults are such that all the input is kept. So it is possible to set e.g.  just the end values to
       keep everything before the specified time.

       Examples:

       •   Drop everything except the second minute of input:

                   ffmpeg -i INPUT -af atrim=60:120

       •   Keep only the first 1000 samples:

                   ffmpeg -i INPUT -af atrim=end_sample=1000

   bandpass
       Apply a two-pole Butterworth band-pass filter with central frequency frequency, and (3dB-point) band-
       width width.  The csg option selects a constant skirt gain (peak gain = Q) instead of the default:
       constant 0dB peak gain.  The filter roll off at 6dB per octave (20dB per decade).

       The filter accepts the following options:

       frequency, f
           Set the filter's central frequency. Default is 3000.

       csg Constant skirt gain if set to 1. Defaults to 0.

       width_type
           Set method to specify band-width of filter.

           h   Hz

           q   Q-Factor

           o   octave

           s   slope

       width, w
           Specify the band-width of a filter in width_type units.

   bandreject
       Apply a two-pole Butterworth band-reject filter with central frequency frequency, and (3dB-point) band-
       width width.  The filter roll off at 6dB per octave (20dB per decade).

       The filter accepts the following options:

       frequency, f
           Set the filter's central frequency. Default is 3000.

       width_type
           Set method to specify band-width of filter.

           h   Hz

           q   Q-Factor

           o   octave

           s   slope

       width, w
           Specify the band-width of a filter in width_type units.

   bass
       Boost or cut the bass (lower) frequencies of the audio using a two-pole shelving filter with a response
       similar to that of a standard hi-fi's tone-controls. This is also known as shelving equalisation (EQ).

       The filter accepts the following options:

       gain, g
           Give the gain at 0 Hz. Its useful range is about -20 (for a large cut) to +20 (for a large boost).
           Beware of clipping when using a positive gain.

       frequency, f
           Set the filter's central frequency and so can be used to extend or reduce the frequency range to be
           boosted or cut.  The default value is 100 Hz.

       width_type
           Set method to specify band-width of filter.

           h   Hz

           q   Q-Factor

           o   octave

           s   slope

       width, w
           Determine how steep is the filter's shelf transition.

   biquad
       Apply a biquad IIR filter with the given coefficients.  Where b0, b1, b2 and a0, a1, a2 are the numerator
       and denominator coefficients respectively.

   bs2b
       Bauer stereo to binaural transformation, which improves headphone listening of stereo audio records.

       It accepts the following parameters:

       profile
           Pre-defined crossfeed level.

           default
               Default level (fcut=700, feed=50).

           cmoy
               Chu Moy circuit (fcut=700, feed=60).

           jmeier
               Jan Meier circuit (fcut=650, feed=95).

       fcut
           Cut frequency (in Hz).

       feed
           Feed level (in Hz).

   channelmap
       Remap input channels to new locations.

       It accepts the following parameters:

       channel_layout
           The channel layout of the output stream.

       map Map channels from input to output. The argument is a '|'-separated list of mappings, each in the
           "in_channel-out_channel" or in_channel form. in_channel can be either the name of the input channel
           (e.g. FL for front left) or its index in the input channel layout.  out_channel is the name of the
           output channel or its index in the output channel layout. If out_channel is not given then it is
           implicitly an index, starting with zero and increasing by one for each mapping.

       If no mapping is present, the filter will implicitly map input channels to output channels, preserving
       indices.

       For example, assuming a 5.1+downmix input MOV file,

               ffmpeg -i in.mov -filter 'channelmap=map=DL-FL|DR-FR' out.wav

       will create an output WAV file tagged as stereo from the downmix channels of the input.

       To fix a 5.1 WAV improperly encoded in AAC's native channel order

               ffmpeg -i in.wav -filter 'channelmap=1|2|0|5|3|4:5.1' out.wav

   channelsplit
       Split each channel from an input audio stream into a separate output stream.

       It accepts the following parameters:

       channel_layout
           The channel layout of the input stream. The default is "stereo".

       For example, assuming a stereo input MP3 file,

               ffmpeg -i in.mp3 -filter_complex channelsplit out.mkv

       will create an output Matroska file with two audio streams, one containing only the left channel and the
       other the right channel.

       Split a 5.1 WAV file into per-channel files:

               ffmpeg -i in.wav -filter_complex
               'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
               -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
               front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
               side_right.wav

   chorus
       Add a chorus effect to the audio.

       Can make a single vocal sound like a chorus, but can also be applied to instrumentation.

       Chorus resembles an echo effect with a short delay, but whereas with echo the delay is constant, with
       chorus, it is varied using using sinusoidal or triangular modulation.  The modulation depth defines the
       range the modulated delay is played before or after the delay. Hence the delayed sound will sound slower
       or faster, that is the delayed sound tuned around the original one, like in a chorus where some vocals
       are slightly off key.

       It accepts the following parameters:

       in_gain
           Set input gain. Default is 0.4.

       out_gain
           Set output gain. Default is 0.4.

       delays
           Set delays. A typical delay is around 40ms to 60ms.

       decays
           Set decays.

       speeds
           Set speeds.

       depths
           Set depths.

       Examples

       •   A single delay:

                   chorus=0.7:0.9:55:0.4:0.25:2

       •   Two delays:

                   chorus=0.6:0.9:50|60:0.4|0.32:0.25|0.4:2|1.3

       •   Fuller sounding chorus with three delays:

                   chorus=0.5:0.9:50|60|40:0.4|0.32|0.3:0.25|0.4|0.3:2|2.3|1.3

   compand
       Compress or expand the audio's dynamic range.

       It accepts the following parameters:

       attacks
       decays
           A list of times in seconds for each channel over which the instantaneous level of the input signal is
           averaged to determine its volume. attacks refers to increase of volume and decays refers to decrease
           of volume. For most situations, the attack time (response to the audio getting louder) should be
           shorter than the decay time, because the human ear is more sensitive to sudden loud audio than sudden
           soft audio. A typical value for attack is 0.3 seconds and a typical value for decay is 0.8 seconds.
           If specified number of attacks & decays is lower than number of channels, the last set attack/decay
           will be used for all remaining channels.

       points
           A list of points for the transfer function, specified in dB relative to the maximum possible signal
           amplitude. Each key points list must be defined using the following syntax: "x0/y0|x1/y1|x2/y2|...."
           or "x0/y0 x1/y1 x2/y2 ...."

           The input values must be in strictly increasing order but the transfer function does not have to be
           monotonically rising. The point "0/0" is assumed but may be overridden (by "0/out-dBn"). Typical
           values for the transfer function are "-70/-70|-60/-20".

       soft-knee
           Set the curve radius in dB for all joints. It defaults to 0.01.

       gain
           Set the additional gain in dB to be applied at all points on the transfer function. This allows for
           easy adjustment of the overall gain.  It defaults to 0.

       volume
           Set an initial volume, in dB, to be assumed for each channel when filtering starts. This permits the
           user to supply a nominal level initially, so that, for example, a very large gain is not applied to
           initial signal levels before the companding has begun to operate. A typical value for audio which is
           initially quiet is -90 dB. It defaults to 0.

       delay
           Set a delay, in seconds. The input audio is analyzed immediately, but audio is delayed before being
           fed to the volume adjuster. Specifying a delay approximately equal to the attack/decay times allows
           the filter to effectively operate in predictive rather than reactive mode. It defaults to 0.

       Examples

       •   Make music with both quiet and loud passages suitable for listening to in a noisy environment:

                   compand=.3|.3:1|1:-90/-60|-60/-40|-40/-30|-20/-20:6:0:-90:0.2

           Another example for audio with whisper and explosion parts:

                   compand=0|0:1|1:-90/-900|-70/-70|-30/-9|0/-3:6:0:0:0

       •   A noise gate for when the noise is at a lower level than the signal:

                   compand=.1|.1:.2|.2:-900/-900|-50.1/-900|-50/-50:.01:0:-90:.1

       •   Here is another noise gate, this time for when the noise is at a higher level than the signal (making
           it, in some ways, similar to squelch):

                   compand=.1|.1:.1|.1:-45.1/-45.1|-45/-900|0/-900:.01:45:-90:.1

   dcshift
       Apply a DC shift to the audio.

       This can be useful to remove a DC offset (caused perhaps by a hardware problem in the recording chain)
       from the audio. The effect of a DC offset is reduced headroom and hence volume. The astats filter can be
       used to determine if a signal has a DC offset.

       shift
           Set the DC shift, allowed range is [-1, 1]. It indicates the amount to shift the audio.

       limitergain
           Optional. It should have a value much less than 1 (e.g. 0.05 or 0.02) and is used to prevent
           clipping.

   dynaudnorm
       Dynamic Audio Normalizer.

       This filter applies a certain amount of gain to the input audio in order to bring its peak magnitude to a
       target level (e.g. 0 dBFS). However, in contrast to more "simple" normalization algorithms, the Dynamic
       Audio Normalizer *dynamically* re-adjusts the gain factor to the input audio.  This allows for applying
       extra gain to the "quiet" sections of the audio while avoiding distortions or clipping the "loud"
       sections. In other words: The Dynamic Audio Normalizer will "even out" the volume of quiet and loud
       sections, in the sense that the volume of each section is brought to the same target level. Note,
       however, that the Dynamic Audio Normalizer achieves this goal *without* applying "dynamic range
       compressing". It will retain 100% of the dynamic range *within* each section of the audio file.

       f   Set the frame length in milliseconds. In range from 10 to 8000 milliseconds.  Default is 500
           milliseconds.  The Dynamic Audio Normalizer processes the input audio in small chunks, referred to as
           frames. This is required, because a peak magnitude has no meaning for just a single sample value.
           Instead, we need to determine the peak magnitude for a contiguous sequence of sample values. While a
           "standard" normalizer would simply use the peak magnitude of the complete file, the Dynamic Audio
           Normalizer determines the peak magnitude individually for each frame. The length of a frame is
           specified in milliseconds. By default, the Dynamic Audio Normalizer uses a frame length of 500
           milliseconds, which has been found to give good results with most files.  Note that the exact frame
           length, in number of samples, will be determined automatically, based on the sampling rate of the
           individual input audio file.

       g   Set the Gaussian filter window size. In range from 3 to 301, must be odd number. Default is 31.
           Probably the most important parameter of the Dynamic Audio Normalizer is the "window size" of the
           Gaussian smoothing filter. The filter's window size is specified in frames, centered around the
           current frame. For the sake of simplicity, this must be an odd number. Consequently, the default
           value of 31 takes into account the current frame, as well as the 15 preceding frames and the 15
           subsequent frames. Using a larger window results in a stronger smoothing effect and thus in less gain
           variation, i.e. slower gain adaptation. Conversely, using a smaller window results in a weaker
           smoothing effect and thus in more gain variation, i.e. faster gain adaptation.  In other words, the
           more you increase this value, the more the Dynamic Audio Normalizer will behave like a "traditional"
           normalization filter. On the contrary, the more you decrease this value, the more the Dynamic Audio
           Normalizer will behave like a dynamic range compressor.

       p   Set the target peak value. This specifies the highest permissible magnitude level for the normalized
           audio input. This filter will try to approach the target peak magnitude as closely as possible, but
           at the same time it also makes sure that the normalized signal will never exceed the peak magnitude.
           A frame's maximum local gain factor is imposed directly by the target peak magnitude. The default
           value is 0.95 and thus leaves a headroom of 5%*.  It is not recommended to go above this value.

       m   Set the maximum gain factor. In range from 1.0 to 100.0. Default is 10.0.  The Dynamic Audio
           Normalizer determines the maximum possible (local) gain factor for each input frame, i.e. the maximum
           gain factor that does not result in clipping or distortion. The maximum gain factor is determined by
           the frame's highest magnitude sample. However, the Dynamic Audio Normalizer additionally bounds the
           frame's maximum gain factor by a predetermined (global) maximum gain factor. This is done in order to
           avoid excessive gain factors in "silent" or almost silent frames. By default, the maximum gain factor
           is 10.0, For most inputs the default value should be sufficient and it usually is not recommended to
           increase this value. Though, for input with an extremely low overall volume level, it may be
           necessary to allow even higher gain factors. Note, however, that the Dynamic Audio Normalizer does
           not simply apply a "hard" threshold (i.e. cut off values above the threshold).  Instead, a "sigmoid"
           threshold function will be applied. This way, the gain factors will smoothly approach the threshold
           value, but never exceed that value.

       r   Set the target RMS. In range from 0.0 to 1.0. Default is 0.0 - disabled.  By default, the Dynamic
           Audio Normalizer performs "peak" normalization.  This means that the maximum local gain factor for
           each frame is defined (only) by the frame's highest magnitude sample. This way, the samples can be
           amplified as much as possible without exceeding the maximum signal level, i.e. without clipping.
           Optionally, however, the Dynamic Audio Normalizer can also take into account the frame's root mean
           square, abbreviated RMS. In electrical engineering, the RMS is commonly used to determine the power
           of a time-varying signal. It is therefore considered that the RMS is a better approximation of the
           "perceived loudness" than just looking at the signal's peak magnitude. Consequently, by adjusting all
           frames to a constant RMS value, a uniform "perceived loudness" can be established. If a target RMS
           value has been specified, a frame's local gain factor is defined as the factor that would result in
           exactly that RMS value.  Note, however, that the maximum local gain factor is still restricted by the
           frame's highest magnitude sample, in order to prevent clipping.

       n   Enable channels coupling. By default is enabled.  By default, the Dynamic Audio Normalizer will
           amplify all channels by the same amount. This means the same gain factor will be applied to all
           channels, i.e.  the maximum possible gain factor is determined by the "loudest" channel.  However, in
           some recordings, it may happen that the volume of the different channels is uneven, e.g. one channel
           may be "quieter" than the other one(s).  In this case, this option can be used to disable the channel
           coupling. This way, the gain factor will be determined independently for each channel, depending only
           on the individual channel's highest magnitude sample. This allows for harmonizing the volume of the
           different channels.

       c   Enable DC bias correction. By default is disabled.  An audio signal (in the time domain) is a
           sequence of sample values.  In the Dynamic Audio Normalizer these sample values are represented in
           the -1.0 to 1.0 range, regardless of the original input format. Normally, the audio signal, or
           "waveform", should be centered around the zero point.  That means if we calculate the mean value of
           all samples in a file, or in a single frame, then the result should be 0.0 or at least very close to
           that value. If, however, there is a significant deviation of the mean value from 0.0, in either
           positive or negative direction, this is referred to as a DC bias or DC offset. Since a DC bias is
           clearly undesirable, the Dynamic Audio Normalizer provides optional DC bias correction.  With DC bias
           correction enabled, the Dynamic Audio Normalizer will determine the mean value, or "DC correction"
           offset, of each input frame and subtract that value from all of the frame's sample values which
           ensures those samples are centered around 0.0 again. Also, in order to avoid "gaps" at the frame
           boundaries, the DC correction offset values will be interpolated smoothly between neighbouring
           frames.

       b   Enable alternative boundary mode. By default is disabled.  The Dynamic Audio Normalizer takes into
           account a certain neighbourhood around each frame. This includes the preceding frames as well as the
           subsequent frames. However, for the "boundary" frames, located at the very beginning and at the very
           end of the audio file, not all neighbouring frames are available. In particular, for the first few
           frames in the audio file, the preceding frames are not known. And, similarly, for the last few frames
           in the audio file, the subsequent frames are not known. Thus, the question arises which gain factors
           should be assumed for the missing frames in the "boundary" region. The Dynamic Audio Normalizer
           implements two modes to deal with this situation. The default boundary mode assumes a gain factor of
           exactly 1.0 for the missing frames, resulting in a smooth "fade in" and "fade out" at the beginning
           and at the end of the input, respectively.

       s   Set the compress factor. In range from 0.0 to 30.0. Default is 0.0.  By default, the Dynamic Audio
           Normalizer does not apply "traditional" compression. This means that signal peaks will not be pruned
           and thus the full dynamic range will be retained within each local neighbourhood. However, in some
           cases it may be desirable to combine the Dynamic Audio Normalizer's normalization algorithm with a
           more "traditional" compression.  For this purpose, the Dynamic Audio Normalizer provides an optional
           compression (thresholding) function. If (and only if) the compression feature is enabled, all input
           frames will be processed by a soft knee thresholding function prior to the actual normalization
           process. Put simply, the thresholding function is going to prune all samples whose magnitude exceeds
           a certain threshold value.  However, the Dynamic Audio Normalizer does not simply apply a fixed
           threshold value. Instead, the threshold value will be adjusted for each individual frame.  In
           general, smaller parameters result in stronger compression, and vice versa.  Values below 3.0 are not
           recommended, because audible distortion may appear.

   earwax
       Make audio easier to listen to on headphones.

       This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio so that when listened to on
       headphones the stereo image is moved from inside your head (standard for headphones) to outside and in
       front of the listener (standard for speakers).

       Ported from SoX.

   equalizer
       Apply a two-pole peaking equalisation (EQ) filter. With this filter, the signal-level at and around a
       selected frequency can be increased or decreased, whilst (unlike bandpass and bandreject filters) that at
       all other frequencies is unchanged.

       In order to produce complex equalisation curves, this filter can be given several times, each with a
       different central frequency.

       The filter accepts the following options:

       frequency, f
           Set the filter's central frequency in Hz.

       width_type
           Set method to specify band-width of filter.

           h   Hz

           q   Q-Factor

           o   octave

           s   slope

       width, w
           Specify the band-width of a filter in width_type units.

       gain, g
           Set the required gain or attenuation in dB.  Beware of clipping when using a positive gain.

       Examples

       •   Attenuate 10 dB at 1000 Hz, with a bandwidth of 200 Hz:

                   equalizer=f=1000:width_type=h:width=200:g=-10

       •   Apply 2 dB gain at 1000 Hz with Q 1 and attenuate 5 dB at 100 Hz with Q 2:

                   equalizer=f=1000:width_type=q:width=1:g=2,equalizer=f=100:width_type=q:width=2:g=-5

   flanger
       Apply a flanging effect to the audio.

       The filter accepts the following options:

       delay
           Set base delay in milliseconds. Range from 0 to 30. Default value is 0.

       depth
           Set added swep delay in milliseconds. Range from 0 to 10. Default value is 2.

       regen
           Set percentage regeneration (delayed signal feedback). Range from -95 to 95.  Default value is 0.

       width
           Set percentage of delayed signal mixed with original. Range from 0 to 100.  Default value is 71.

       speed
           Set sweeps per second (Hz). Range from 0.1 to 10. Default value is 0.5.

       shape
           Set swept wave shape, can be triangular or sinusoidal.  Default value is sinusoidal.

       phase
           Set swept wave percentage-shift for multi channel. Range from 0 to 100.  Default value is 25.

       interp
           Set delay-line interpolation, linear or quadratic.  Default is linear.

   highpass
       Apply a high-pass filter with 3dB point frequency.  The filter can be either single-pole, or double-pole
       (the default).  The filter roll off at 6dB per pole per octave (20dB per pole per decade).

       The filter accepts the following options:

       frequency, f
           Set frequency in Hz. Default is 3000.

       poles, p
           Set number of poles. Default is 2.

       width_type
           Set method to specify band-width of filter.

           h   Hz

           q   Q-Factor

           o   octave

           s   slope

       width, w
           Specify the band-width of a filter in width_type units.  Applies only to double-pole filter.  The
           default is 0.707q and gives a Butterworth response.

   join
       Join multiple input streams into one multi-channel stream.

       It accepts the following parameters:

       inputs
           The number of input streams. It defaults to 2.

       channel_layout
           The desired output channel layout. It defaults to stereo.

       map Map channels from inputs to output. The argument is a '|'-separated list of mappings, each in the
           "input_idx.in_channel-out_channel" form. input_idx is the 0-based index of the input stream.
           in_channel can be either the name of the input channel (e.g. FL for front left) or its index in the
           specified input stream. out_channel is the name of the output channel.

       The filter will attempt to guess the mappings when they are not specified explicitly. It does so by first
       trying to find an unused matching input channel and if that fails it picks the first unused input
       channel.

       Join 3 inputs (with properly set channel layouts):

               ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT

       Build a 5.1 output from 6 single-channel streams:

               ffmpeg -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
               'join=inputs=6:channel_layout=5.1:map=0.0-FL|1.0-FR|2.0-FC|3.0-SL|4.0-SR|5.0-LFE'
               out

   ladspa
       Load a LADSPA (Linux Audio Developer's Simple Plugin API) plugin.

       To enable compilation of this filter you need to configure FFmpeg with "--enable-ladspa".

       file, f
           Specifies the name of LADSPA plugin library to load. If the environment variable LADSPA_PATH is
           defined, the LADSPA plugin is searched in each one of the directories specified by the colon
           separated list in LADSPA_PATH, otherwise in the standard LADSPA paths, which are in this order:
           HOME/.ladspa/lib/, /usr/local/lib/ladspa/, /usr/lib/ladspa/.

       plugin, p
           Specifies the plugin within the library. Some libraries contain only one plugin, but others contain
           many of them. If this is not set filter will list all available plugins within the specified library.

       controls, c
           Set the '|' separated list of controls which are zero or more floating point values that determine
           the behavior of the loaded plugin (for example delay, threshold or gain).  Controls need to be
           defined using the following syntax: c0=value0|c1=value1|c2=value2|..., where valuei is the value set
           on the i-th control.  If controls is set to "help", all available controls and their valid ranges are
           printed.

       sample_rate, s
           Specify the sample rate, default to 44100. Only used if plugin have zero inputs.

       nb_samples, n
           Set the number of samples per channel per each output frame, default is 1024. Only used if plugin
           have zero inputs.

       duration, d
           Set the minimum duration of the sourced audio. See the Time duration section in the ffmpeg-utils(1)
           manual for the accepted syntax.  Note that the resulting duration may be greater than the specified
           duration, as the generated audio is always cut at the end of a complete frame.  If not specified, or
           the expressed duration is negative, the audio is supposed to be generated forever.  Only used if
           plugin have zero inputs.

       Examples

       •   List all available plugins within amp (LADSPA example plugin) library:

                   ladspa=file=amp

       •   List all available controls and their valid ranges for "vcf_notch" plugin from "VCF" library:

                   ladspa=f=vcf:p=vcf_notch:c=help

       •   Simulate low quality audio equipment using "Computer Music Toolkit" (CMT) plugin library:

                   ladspa=file=cmt:plugin=lofi:controls=c0=22|c1=12|c2=12

       •   Add reverberation to the audio using TAP-plugins (Tom's Audio Processing plugins):

                   ladspa=file=tap_reverb:tap_reverb

       •   Generate white noise, with 0.2 amplitude:

                   ladspa=file=cmt:noise_source_white:c=c0=.2

       •   Generate 20 bpm clicks using plugin "C* Click - Metronome" from the "C* Audio Plugin Suite" (CAPS)
           library:

                   ladspa=file=caps:Click:c=c1=20'

       •   Apply "C* Eq10X2 - Stereo 10-band equaliser" effect:

                   ladspa=caps:Eq10X2:c=c0=-48|c9=-24|c3=12|c4=2

       Commands

       This filter supports the following commands:

       cN  Modify the N-th control value.

           If the specified value is not valid, it is ignored and prior one is kept.

   lowpass
       Apply a low-pass filter with 3dB point frequency.  The filter can be either single-pole or double-pole
       (the default).  The filter roll off at 6dB per pole per octave (20dB per pole per decade).

       The filter accepts the following options:

       frequency, f
           Set frequency in Hz. Default is 500.

       poles, p
           Set number of poles. Default is 2.

       width_type
           Set method to specify band-width of filter.

           h   Hz

           q   Q-Factor

           o   octave

           s   slope

       width, w
           Specify the band-width of a filter in width_type units.  Applies only to double-pole filter.  The
           default is 0.707q and gives a Butterworth response.

   pan
       Mix channels with specific gain levels. The filter accepts the output channel layout followed by a set of
       channels definitions.

       This filter is also designed to efficiently remap the channels of an audio stream.

       The filter accepts parameters of the form: "l|outdef|outdef|..."

       l   output channel layout or number of channels

       outdef
           output channel specification, of the form: "out_name=[gain*]in_name[+[gain*]in_name...]"

       out_name
           output channel to define, either a channel name (FL, FR, etc.) or a channel number (c0, c1, etc.)

       gain
           multiplicative coefficient for the channel, 1 leaving the volume unchanged

       in_name
           input channel to use, see out_name for details; it is not possible to mix named and numbered input
           channels

       If the `=' in a channel specification is replaced by `<', then the gains for that specification will be
       renormalized so that the total is 1, thus avoiding clipping noise.

       Mixing examples

       For example, if you want to down-mix from stereo to mono, but with a bigger factor for the left channel:

               pan=1c|c0=0.9*c0+0.1*c1

       A customized down-mix to stereo that works automatically for 3-, 4-, 5- and 7-channels surround:

               pan=stereo| FL < FL + 0.5*FC + 0.6*BL + 0.6*SL | FR < FR + 0.5*FC + 0.6*BR + 0.6*SR

       Note that ffmpeg integrates a default down-mix (and up-mix) system that should be preferred (see "-ac"
       option) unless you have very specific needs.

       Remapping examples

       The channel remapping will be effective if, and only if:

       *<gain coefficients are zeroes or ones,>
       *<only one input per channel output,>

       If all these conditions are satisfied, the filter will notify the user ("Pure channel mapping detected"),
       and use an optimized and lossless method to do the remapping.

       For example, if you have a 5.1 source and want a stereo audio stream by dropping the extra channels:

               pan="stereo| c0=FL | c1=FR"

       Given the same source, you can also switch front left and front right channels and keep the input channel
       layout:

               pan="5.1| c0=c1 | c1=c0 | c2=c2 | c3=c3 | c4=c4 | c5=c5"

       If the input is a stereo audio stream, you can mute the front left channel (and still keep the stereo
       channel layout) with:

               pan="stereo|c1=c1"

       Still with a stereo audio stream input, you can copy the right channel in both front left and right:

               pan="stereo| c0=FR | c1=FR"

   replaygain
       ReplayGain scanner filter. This filter takes an audio stream as an input and outputs it unchanged.  At
       end of filtering it displays "track_gain" and "track_peak".

   resample
       Convert the audio sample format, sample rate and channel layout. It is not meant to be used directly.

   sidechaincompress
       This filter acts like normal compressor but has the ability to compress detected signal using second
       input signal.  It needs two input streams and returns one output stream.  First input stream will be
       processed depending on second stream signal.  The filtered signal then can be filtered with other filters
       in later stages of processing. See pan and amerge filter.

       The filter accepts the following options:

       threshold
           If a signal of second stream raises above this level it will affect the gain reduction of first
           stream.  By default is 0.125. Range is between 0.00097563 and 1.

       ratio
           Set a ratio about which the signal is reduced. 1:2 means that if the level raised 4dB above the
           threshold, it will be only 2dB above after the reduction.  Default is 2. Range is between 1 and 20.

       attack
           Amount of milliseconds the signal has to rise above the threshold before gain reduction starts.
           Default is 20. Range is between 0.01 and 2000.

       release
           Amount of milliseconds the signal has to fall below the threshold before reduction is decreased
           again. Default is 250. Range is between 0.01 and 9000.

       makeup
           Set the amount by how much signal will be amplified after processing.  Default is 2. Range is from 1
           and 64.

       knee
           Curve the sharp knee around the threshold to enter gain reduction more softly.  Default is 2.82843.
           Range is between 1 and 8.

       link
           Choose if the "average" level between all channels of side-chain stream or the louder("maximum")
           channel of side-chain stream affects the reduction. Default is "average".

       detection
           Should the exact signal be taken in case of "peak" or an RMS one in case of "rms". Default is "rms"
           which is mainly smoother.

       Examples

       •   Full ffmpeg example taking 2 audio inputs, 1st input to be compressed depending on the signal of 2nd
           input and later compressed signal to be merged with 2nd input:

                   ffmpeg -i main.flac -i sidechain.flac -filter_complex "[1:a]asplit=2[sc][mix];[0:a][sc]sidechaincompress[compr];[compr][mix]amerge"

   silencedetect
       Detect silence in an audio stream.

       This filter logs a message when it detects that the input audio volume is less or equal to a noise
       tolerance value for a duration greater or equal to the minimum detected noise duration.

       The printed times and duration are expressed in seconds.

       The filter accepts the following options:

       duration, d
           Set silence duration until notification (default is 2 seconds).

       noise, n
           Set noise tolerance. Can be specified in dB (in case "dB" is appended to the specified value) or
           amplitude ratio. Default is -60dB, or 0.001.

       Examples

       •   Detect 5 seconds of silence with -50dB noise tolerance:

                   silencedetect=n=-50dB:d=5

       •   Complete example with ffmpeg to detect silence with 0.0001 noise tolerance in silence.mp3:

                   ffmpeg -i silence.mp3 -af silencedetect=noise=0.0001 -f null -

   silenceremove
       Remove silence from the beginning, middle or end of the audio.

       The filter accepts the following options:

       start_periods
           This value is used to indicate if audio should be trimmed at beginning of the audio. A value of zero
           indicates no silence should be trimmed from the beginning. When specifying a non-zero value, it trims
           audio up until it finds non-silence. Normally, when trimming silence from beginning of audio the
           start_periods will be 1 but it can be increased to higher values to trim all audio up to specific
           count of non-silence periods.  Default value is 0.

       start_duration
           Specify the amount of time that non-silence must be detected before it stops trimming audio. By
           increasing the duration, bursts of noises can be treated as silence and trimmed off. Default value is
           0.

       start_threshold
           This indicates what sample value should be treated as silence. For digital audio, a value of 0 may be
           fine but for audio recorded from analog, you may wish to increase the value to account for background
           noise.  Can be specified in dB (in case "dB" is appended to the specified value) or amplitude ratio.
           Default value is 0.

       stop_periods
           Set the count for trimming silence from the end of audio.  To remove silence from the middle of a
           file, specify a stop_periods that is negative. This value is then treated as a positive value and is
           used to indicate the effect should restart processing as specified by start_periods, making it
           suitable for removing periods of silence in the middle of the audio.  Default value is 0.

       stop_duration
           Specify a duration of silence that must exist before audio is not copied any more. By specifying a
           higher duration, silence that is wanted can be left in the audio.  Default value is 0.

       stop_threshold
           This is the same as start_threshold but for trimming silence from the end of audio.  Can be specified
           in dB (in case "dB" is appended to the specified value) or amplitude ratio. Default value is 0.

       leave_silence
           This indicate that stop_duration length of audio should be left intact at the beginning of each
           period of silence.  For example, if you want to remove long pauses between words but do not want to
           remove the pauses completely. Default value is 0.

       Examples

       •   The following example shows how this filter can be used to start a recording that does not contain
           the delay at the start which usually occurs between pressing the record button and the start of the
           performance:

                   silenceremove=1:5:0.02

   treble
       Boost or cut treble (upper) frequencies of the audio using a two-pole shelving filter with a response
       similar to that of a standard hi-fi's tone-controls. This is also known as shelving equalisation (EQ).

       The filter accepts the following options:

       gain, g
           Give the gain at whichever is the lower of ~22 kHz and the Nyquist frequency. Its useful range is
           about -20 (for a large cut) to +20 (for a large boost). Beware of clipping when using a positive
           gain.

       frequency, f
           Set the filter's central frequency and so can be used to extend or reduce the frequency range to be
           boosted or cut.  The default value is 3000 Hz.

       width_type
           Set method to specify band-width of filter.

           h   Hz

           q   Q-Factor

           o   octave

           s   slope

       width, w
           Determine how steep is the filter's shelf transition.

   volume
       Adjust the input audio volume.

       It accepts the following parameters:

       volume
           Set audio volume expression.

           Output values are clipped to the maximum value.

           The output audio volume is given by the relation:

                   <output_volume> = <volume> * <input_volume>

           The default value for volume is "1.0".

       precision
           This parameter represents the mathematical precision.

           It determines which input sample formats will be allowed, which affects the precision of the volume
           scaling.

           fixed
               8-bit fixed-point; this limits input sample format to U8, S16, and S32.

           float
               32-bit floating-point; this limits input sample format to FLT. (default)

           double
               64-bit floating-point; this limits input sample format to DBL.

       replaygain
           Choose the behaviour on encountering ReplayGain side data in input frames.

           drop
               Remove ReplayGain side data, ignoring its contents (the default).

           ignore
               Ignore ReplayGain side data, but leave it in the frame.

           track
               Prefer the track gain, if present.

           album
               Prefer the album gain, if present.

       replaygain_preamp
           Pre-amplification gain in dB to apply to the selected replaygain gain.

           Default value for replaygain_preamp is 0.0.

       eval
           Set when the volume expression is evaluated.

           It accepts the following values:

           once
               only evaluate expression once during the filter initialization, or when the volume command is
               sent

           frame
               evaluate expression for each incoming frame

           Default value is once.

       The volume expression can contain the following parameters.

       n   frame number (starting at zero)

       nb_channels
           number of channels

       nb_consumed_samples
           number of samples consumed by the filter

       nb_samples
           number of samples in the current frame

       pos original frame position in the file

       pts frame PTS

       sample_rate
           sample rate

       startpts
           PTS at start of stream

       startt
           time at start of stream

       t   frame time

       tb  timestamp timebase

       volume
           last set volume value

       Note that when eval is set to once only the sample_rate and tb variables are available, all other
       variables will evaluate to NAN.

       Commands

       This filter supports the following commands:

       volume
           Modify the volume expression.  The command accepts the same syntax of the corresponding option.

           If the specified expression is not valid, it is kept at its current value.

       replaygain_noclip
           Prevent clipping by limiting the gain applied.

           Default value for replaygain_noclip is 1.

       Examples

       •   Halve the input audio volume:

                   volume=volume=0.5
                   volume=volume=1/2
                   volume=volume=-6.0206dB

           In all the above example the named key for volume can be omitted, for example like in:

                   volume=0.5

       •   Increase input audio power by 6 decibels using fixed-point precision:

                   volume=volume=6dB:precision=fixed

       •   Fade volume after time 10 with an annihilation period of 5 seconds:

                   volume='if(lt(t,10),1,max(1-(t-10)/5,0))':eval=frame

   volumedetect
       Detect the volume of the input video.

       The filter has no parameters. The input is not modified. Statistics about the volume will be printed in
       the log when the input stream end is reached.

       In particular it will show the mean volume (root mean square), maximum volume (on a per-sample basis),
       and the beginning of a histogram of the registered volume values (from the maximum value to a cumulated
       1/1000 of the samples).

       All volumes are in decibels relative to the maximum PCM value.

       Examples

       Here is an excerpt of the output:

               [Parsed_volumedetect_0  0xa23120] mean_volume: -27 dB
               [Parsed_volumedetect_0  0xa23120] max_volume: -4 dB
               [Parsed_volumedetect_0  0xa23120] histogram_4db: 6
               [Parsed_volumedetect_0  0xa23120] histogram_5db: 62
               [Parsed_volumedetect_0  0xa23120] histogram_6db: 286
               [Parsed_volumedetect_0  0xa23120] histogram_7db: 1042
               [Parsed_volumedetect_0  0xa23120] histogram_8db: 2551
               [Parsed_volumedetect_0  0xa23120] histogram_9db: 4609
               [Parsed_volumedetect_0  0xa23120] histogram_10db: 8409

       It means that:

       •   The mean square energy is approximately -27 dB, or 10^-2.7.

       •   The largest sample is at -4 dB, or more precisely between -4 dB and -5 dB.

       •   There are 6 samples at -4 dB, 62 at -5 dB, 286 at -6 dB, etc.

       In other words, raising the volume by +4 dB does not cause any clipping, raising it by +5 dB causes
       clipping for 6 samples, etc.

AUDIO SOURCES

       Below is a description of the currently available audio sources.

   abuffer
       Buffer audio frames, and make them available to the filter chain.

       This source is mainly intended for a programmatic use, in particular through the interface defined in
       libavfilter/asrc_abuffer.h.

       It accepts the following parameters:

       time_base
           The timebase which will be used for timestamps of submitted frames. It must be either a floating-
           point number or in numerator/denominator form.

       sample_rate
           The sample rate of the incoming audio buffers.

       sample_fmt
           The sample format of the incoming audio buffers.  Either a sample format name or its corresponding
           integer representation from the enum AVSampleFormat in libavutil/samplefmt.h

       channel_layout
           The channel layout of the incoming audio buffers.  Either a channel layout name from
           channel_layout_map in libavutil/channel_layout.c or its corresponding integer representation from the
           AV_CH_LAYOUT_* macros in libavutil/channel_layout.h

       channels
           The number of channels of the incoming audio buffers.  If both channels and channel_layout are
           specified, then they must be consistent.

       Examples

               abuffer=sample_rate=44100:sample_fmt=s16p:channel_layout=stereo

       will instruct the source to accept planar 16bit signed stereo at 44100Hz.  Since the sample format with
       name "s16p" corresponds to the number 6 and the "stereo" channel layout corresponds to the value 0x3,
       this is equivalent to:

               abuffer=sample_rate=44100:sample_fmt=6:channel_layout=0x3

   aevalsrc
       Generate an audio signal specified by an expression.

       This source accepts in input one or more expressions (one for each channel), which are evaluated and used
       to generate a corresponding audio signal.

       This source accepts the following options:

       exprs
           Set the '|'-separated expressions list for each separate channel. In case the channel_layout option
           is not specified, the selected channel layout depends on the number of provided expressions.
           Otherwise the last specified expression is applied to the remaining output channels.

       channel_layout, c
           Set the channel layout. The number of channels in the specified layout must be equal to the number of
           specified expressions.

       duration, d
           Set the minimum duration of the sourced audio. See the Time duration section in the ffmpeg-utils(1)
           manual for the accepted syntax.  Note that the resulting duration may be greater than the specified
           duration, as the generated audio is always cut at the end of a complete frame.

           If not specified, or the expressed duration is negative, the audio is supposed to be generated
           forever.

       nb_samples, n
           Set the number of samples per channel per each output frame, default to 1024.

       sample_rate, s
           Specify the sample rate, default to 44100.

       Each expression in exprs can contain the following constants:

       n   number of the evaluated sample, starting from 0

       t   time of the evaluated sample expressed in seconds, starting from 0

       s   sample rate

       Examples

       •   Generate silence:

                   aevalsrc=0

       •   Generate a sin signal with frequency of 440 Hz, set sample rate to 8000 Hz:

                   aevalsrc="sin(440*2*PI*t):s=8000"

       •   Generate a two channels signal, specify the channel layout (Front Center + Back Center) explicitly:

                   aevalsrc="sin(420*2*PI*t)|cos(430*2*PI*t):c=FC|BC"

       •   Generate white noise:

                   aevalsrc="-2+random(0)"

       •   Generate an amplitude modulated signal:

                   aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"

       •   Generate 2.5 Hz binaural beats on a 360 Hz carrier:

                   aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) | 0.1*sin(2*PI*(360+2.5/2)*t)"

   anullsrc
       The null audio source, return unprocessed audio frames. It is mainly useful as a template and to be
       employed in analysis / debugging tools, or as the source for filters which ignore the input data (for
       example the sox synth filter).

       This source accepts the following options:

       channel_layout, cl
           Specifies the channel layout, and can be either an integer or a string representing a channel layout.
           The default value of channel_layout is "stereo".

           Check the channel_layout_map definition in libavutil/channel_layout.c for the mapping between strings
           and channel layout values.

       sample_rate, r
           Specifies the sample rate, and defaults to 44100.

       nb_samples, n
           Set the number of samples per requested frames.

       Examples

       •   Set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.

                   anullsrc=r=48000:cl=4

       •   Do the same operation with a more obvious syntax:

                   anullsrc=r=48000:cl=mono

       All the parameters need to be explicitly defined.

   flite
       Synthesize a voice utterance using the libflite library.

       To enable compilation of this filter you need to configure FFmpeg with "--enable-libflite".

       Note that the flite library is not thread-safe.

       The filter accepts the following options:

       list_voices
           If set to 1, list the names of the available voices and exit immediately. Default value is 0.

       nb_samples, n
           Set the maximum number of samples per frame. Default value is 512.

       textfile
           Set the filename containing the text to speak.

       text
           Set the text to speak.

       voice, v
           Set the voice to use for the speech synthesis. Default value is "kal". See also the list_voices
           option.

       Examples

       •   Read from file speech.txt, and synthesize the text using the standard flite voice:

                   flite=textfile=speech.txt

       •   Read the specified text selecting the "slt" voice:

                   flite=text='So fare thee well, poor devil of a Sub-Sub, whose commentator I am':voice=slt

       •   Input text to ffmpeg:

                   ffmpeg -f lavfi -i flite=text='So fare thee well, poor devil of a Sub-Sub, whose commentator I am':voice=slt

       •   Make ffplay speak the specified text, using "flite" and the "lavfi" device:

                   ffplay -f lavfi flite=text='No more be grieved for which that thou hast done.'

       For more information about libflite, check: <http://www.speech.cs.cmu.edu/flite/>

   sine
       Generate an audio signal made of a sine wave with amplitude 1/8.

       The audio signal is bit-exact.

       The filter accepts the following options:

       frequency, f
           Set the carrier frequency. Default is 440 Hz.

       beep_factor, b
           Enable a periodic beep every second with frequency beep_factor times the carrier frequency. Default
           is 0, meaning the beep is disabled.

       sample_rate, r
           Specify the sample rate, default is 44100.

       duration, d
           Specify the duration of the generated audio stream.

       samples_per_frame
           Set the number of samples per output frame, default is 1024.

       Examples

       •   Generate a simple 440 Hz sine wave:

                   sine

       •   Generate a 220 Hz sine wave with a 880 Hz beep each second, for 5 seconds:

                   sine=220:4:d=5
                   sine=f=220:b=4:d=5
                   sine=frequency=220:beep_factor=4:duration=5

AUDIO SINKS

       Below is a description of the currently available audio sinks.

   abuffersink
       Buffer audio frames, and make them available to the end of filter chain.

       This sink is mainly intended for programmatic use, in particular through the interface defined in
       libavfilter/buffersink.h or the options system.

       It accepts a pointer to an AVABufferSinkContext structure, which defines the incoming buffers' formats,
       to be passed as the opaque parameter to "avfilter_init_filter" for initialization.

   anullsink
       Null audio sink; do absolutely nothing with the input audio. It is mainly useful as a template and for
       use in analysis / debugging tools.

VIDEO FILTERS

       When you configure your FFmpeg build, you can disable any of the existing filters using
       "--disable-filters".  The configure output will show the video filters included in your build.

       Below is a description of the currently available video filters.

   alphaextract
       Extract the alpha component from the input as a grayscale video. This is especially useful with the
       alphamerge filter.

   alphamerge
       Add or replace the alpha component of the primary input with the grayscale value of a second input. This
       is intended for use with alphaextract to allow the transmission or storage of frame sequences that have
       alpha in a format that doesn't support an alpha channel.

       For example, to reconstruct full frames from a normal YUV-encoded video and a separate video created with
       alphaextract, you might use:

               movie=in_alpha.mkv [alpha]; [in][alpha] alphamerge [out]

       Since this filter is designed for reconstruction, it operates on frame sequences without considering
       timestamps, and terminates when either input reaches end of stream. This will cause problems if your
       encoding pipeline drops frames. If you're trying to apply an image as an overlay to a video stream,
       consider the overlay filter instead.

   ass
       Same as the subtitles filter, except that it doesn't require libavcodec and libavformat to work. On the
       other hand, it is limited to ASS (Advanced Substation Alpha) subtitles files.

       This filter accepts the following option in addition to the common options from the subtitles filter:

       shaping
           Set the shaping engine

           Available values are:

           auto
               The default libass shaping engine, which is the best available.

           simple
               Fast, font-agnostic shaper that can do only substitutions

           complex
               Slower shaper using OpenType for substitutions and positioning

           The default is "auto".

   atadenoise
       Apply an Adaptive Temporal Averaging Denoiser to the video input.

       The filter accepts the following options:

       0a  Set threshold A for 1st plane. Default is 0.02.  Valid range is 0 to 0.3.

       0b  Set threshold B for 1st plane. Default is 0.04.  Valid range is 0 to 5.

       1a  Set threshold A for 2nd plane. Default is 0.02.  Valid range is 0 to 0.3.

       1b  Set threshold B for 2nd plane. Default is 0.04.  Valid range is 0 to 5.

       2a  Set threshold A for 3rd plane. Default is 0.02.  Valid range is 0 to 0.3.

       2b  Set threshold B for 3rd plane. Default is 0.04.  Valid range is 0 to 5.

           Threshold A is designed to react on abrupt changes in the input signal and threshold B is designed to
           react on continuous changes in the input signal.

       s   Set number of frames filter will use for averaging. Default is 33. Must be odd number in range [5,
           129].

   bbox
       Compute the bounding box for the non-black pixels in the input frame luminance plane.

       This filter computes the bounding box containing all the pixels with a luminance value greater than the
       minimum allowed value.  The parameters describing the bounding box are printed on the filter log.

       The filter accepts the following option:

       min_val
           Set the minimal luminance value. Default is 16.

   blackdetect
       Detect video intervals that are (almost) completely black. Can be useful to detect chapter transitions,
       commercials, or invalid recordings. Output lines contains the time for the start, end and duration of the
       detected black interval expressed in seconds.

       In order to display the output lines, you need to set the loglevel at least to the AV_LOG_INFO value.

       The filter accepts the following options:

       black_min_duration, d
           Set the minimum detected black duration expressed in seconds. It must be a non-negative floating
           point number.

           Default value is 2.0.

       picture_black_ratio_th, pic_th
           Set the threshold for considering a picture "black".  Express the minimum value for the ratio:

                   <nb_black_pixels> / <nb_pixels>

           for which a picture is considered black.  Default value is 0.98.

       pixel_black_th, pix_th
           Set the threshold for considering a pixel "black".

           The threshold expresses the maximum pixel luminance value for which a pixel is considered "black".
           The provided value is scaled according to the following equation:

                   <absolute_threshold> = <luminance_minimum_value> + <pixel_black_th> * <luminance_range_size>

           luminance_range_size and luminance_minimum_value depend on the input video format, the range is
           [0-255] for YUV full-range formats and [16-235] for YUV non full-range formats.

           Default value is 0.10.

       The following example sets the maximum pixel threshold to the minimum value, and detects only black
       intervals of 2 or more seconds:

               blackdetect=d=2:pix_th=0.00

   blackframe
       Detect frames that are (almost) completely black. Can be useful to detect chapter transitions or
       commercials. Output lines consist of the frame number of the detected frame, the percentage of blackness,
       the position in the file if known or -1 and the timestamp in seconds.

       In order to display the output lines, you need to set the loglevel at least to the AV_LOG_INFO value.

       It accepts the following parameters:

       amount
           The percentage of the pixels that have to be below the threshold; it defaults to 98.

       threshold, thresh
           The threshold below which a pixel value is considered black; it defaults to 32.

   blend, tblend
       Blend two video frames into each other.

       The "blend" filter takes two input streams and outputs one stream, the first input is the "top" layer and
       second input is "bottom" layer.  Output terminates when shortest input terminates.

       The "tblend" (time blend) filter takes two consecutive frames from one single stream, and outputs the
       result obtained by blending the new frame on top of the old frame.

       A description of the accepted options follows.

       c0_mode
       c1_mode
       c2_mode
       c3_mode
       all_mode
           Set blend mode for specific pixel component or all pixel components in case of all_mode. Default
           value is "normal".

           Available values for component modes are:

           addition
           and
           average
           burn
           darken
           difference
           difference128
           divide
           dodge
           exclusion
           glow
           hardlight
           hardmix
           lighten
           linearlight
           multiply
           negation
           normal
           or
           overlay
           phoenix
           pinlight
           reflect
           screen
           softlight
           subtract
           vividlight
           xor
       c0_opacity
       c1_opacity
       c2_opacity
       c3_opacity
       all_opacity
           Set blend opacity for specific pixel component or all pixel components in case of all_opacity. Only
           used in combination with pixel component blend modes.

       c0_expr
       c1_expr
       c2_expr
       c3_expr
       all_expr
           Set blend expression for specific pixel component or all pixel components in case of all_expr. Note
           that related mode options will be ignored if those are set.

           The expressions can use the following variables:

           N   The sequential number of the filtered frame, starting from 0.

           X
           Y   the coordinates of the current sample

           W
           H   the width and height of currently filtered plane

           SW
           SH  Width and height scale depending on the currently filtered plane. It is the ratio between the
               corresponding luma plane number of pixels and the current plane ones. E.g. for YUV4:2:0 the
               values are "1,1" for the luma plane, and "0.5,0.5" for chroma planes.

           T   Time of the current frame, expressed in seconds.

           TOP, A
               Value of pixel component at current location for first video frame (top layer).

           BOTTOM, B
               Value of pixel component at current location for second video frame (bottom layer).

       shortest
           Force termination when the shortest input terminates. Default is 0. This option is only defined for
           the "blend" filter.

       repeatlast
           Continue applying the last bottom frame after the end of the stream. A value of 0 disable the filter
           after the last frame of the bottom layer is reached.  Default is 1. This option is only defined for
           the "blend" filter.

       Examples

       •   Apply transition from bottom layer to top layer in first 10 seconds:

                   blend=all_expr='A*(if(gte(T,10),1,T/10))+B*(1-(if(gte(T,10),1,T/10)))'

       •   Apply 1x1 checkerboard effect:

                   blend=all_expr='if(eq(mod(X,2),mod(Y,2)),A,B)'

       •   Apply uncover left effect:

                   blend=all_expr='if(gte(N*SW+X,W),A,B)'

       •   Apply uncover down effect:

                   blend=all_expr='if(gte(Y-N*SH,0),A,B)'

       •   Apply uncover up-left effect:

                   blend=all_expr='if(gte(T*SH*40+Y,H)*gte((T*40*SW+X)*W/H,W),A,B)'

       •   Display differences between the current and the previous frame:

                   tblend=all_mode=difference128

   boxblur
       Apply a boxblur algorithm to the input video.

       It accepts the following parameters:

       luma_radius, lr
       luma_power, lp
       chroma_radius, cr
       chroma_power, cp
       alpha_radius, ar
       alpha_power, ap

       A description of the accepted options follows.

       luma_radius, lr
       chroma_radius, cr
       alpha_radius, ar
           Set an expression for the box radius in pixels used for blurring the corresponding input plane.

           The radius value must be a non-negative number, and must not be greater than the value of the
           expression "min(w,h)/2" for the luma and alpha planes, and of "min(cw,ch)/2" for the chroma planes.

           Default value for luma_radius is "2". If not specified, chroma_radius and alpha_radius default to the
           corresponding value set for luma_radius.

           The expressions can contain the following constants:

           w
           h   The input width and height in pixels.

           cw
           ch  The input chroma image width and height in pixels.

           hsub
           vsub
               The horizontal and vertical chroma subsample values. For example, for the pixel format "yuv422p",
               hsub is 2 and vsub is 1.

       luma_power, lp
       chroma_power, cp
       alpha_power, ap
           Specify how many times the boxblur filter is applied to the corresponding plane.

           Default value for luma_power is 2. If not specified, chroma_power and alpha_power default to the
           corresponding value set for luma_power.

           A value of 0 will disable the effect.

       Examples

       •   Apply a boxblur filter with the luma, chroma, and alpha radii set to 2:

                   boxblur=luma_radius=2:luma_power=1
                   boxblur=2:1

       •   Set the luma radius to 2, and alpha and chroma radius to 0:

                   boxblur=2:1:cr=0:ar=0

       •   Set the luma and chroma radii to a fraction of the video dimension:

                   boxblur=luma_radius=min(h\,w)/10:luma_power=1:chroma_radius=min(cw\,ch)/10:chroma_power=1

   codecview
       Visualize information exported by some codecs.

       Some codecs can export information through frames using side-data or other means. For example, some MPEG
       based codecs export motion vectors through the export_mvs flag in the codec flags2 option.

       The filter accepts the following option:

       mv  Set motion vectors to visualize.

           Available flags for mv are:

           pf  forward predicted MVs of P-frames

           bf  forward predicted MVs of B-frames

           bb  backward predicted MVs of B-frames

       Examples

       •   Visualizes multi-directionals MVs from P and B-Frames using ffplay:

                   ffplay -flags2 +export_mvs input.mpg -vf codecview=mv=pf+bf+bb

   colorbalance
       Modify intensity of primary colors (red, green and blue) of input frames.

       The filter allows an input frame to be adjusted in the shadows, midtones or highlights regions for the
       red-cyan, green-magenta or blue-yellow balance.

       A positive adjustment value shifts the balance towards the primary color, a negative value towards the
       complementary color.

       The filter accepts the following options:

       rs
       gs
       bs  Adjust red, green and blue shadows (darkest pixels).

       rm
       gm
       bm  Adjust red, green and blue midtones (medium pixels).

       rh
       gh
       bh  Adjust red, green and blue highlights (brightest pixels).

           Allowed ranges for options are "[-1.0, 1.0]". Defaults are 0.

       Examples

       •   Add red color cast to shadows:

                   colorbalance=rs=.3

   colorkey
       RGB colorspace color keying.

       The filter accepts the following options:

       color
           The color which will be replaced with transparency.

       similarity
           Similarity percentage with the key color.

           0.01 matches only the exact key color, while 1.0 matches everything.

       blend
           Blend percentage.

           0.0 makes pixels either fully transparent, or not transparent at all.

           Higher values result in semi-transparent pixels, with a higher transparency the more similar the
           pixels color is to the key color.

       Examples

       •   Make every green pixel in the input image transparent:

                   ffmpeg -i input.png -vf colorkey=green out.png

       •   Overlay a greenscreen-video on top of a static background image.

                   ffmpeg -i background.png -i video.mp4 -filter_complex "[1:v]colorkey=0x3BBD1E:0.3:0.2[ckout];[0:v][ckout]overlay[out]" -map "[out]" output.flv

   colorlevels
       Adjust video input frames using levels.

       The filter accepts the following options:

       rimin
       gimin
       bimin
       aimin
           Adjust red, green, blue and alpha input black point.  Allowed ranges for options are "[-1.0, 1.0]".
           Defaults are 0.

       rimax
       gimax
       bimax
       aimax
           Adjust red, green, blue and alpha input white point.  Allowed ranges for options are "[-1.0, 1.0]".
           Defaults are 1.

           Input levels are used to lighten highlights (bright tones), darken shadows (dark tones), change the
           balance of bright and dark tones.

       romin
       gomin
       bomin
       aomin
           Adjust red, green, blue and alpha output black point.  Allowed ranges for options are "[0, 1.0]".
           Defaults are 0.

       romax
       gomax
       bomax
       aomax
           Adjust red, green, blue and alpha output white point.  Allowed ranges for options are "[0, 1.0]".
           Defaults are 1.

           Output levels allows manual selection of a constrained output level range.

       Examples

       •   Make video output darker:

                   colorlevels=rimin=0.058:gimin=0.058:bimin=0.058

       •   Increase contrast:

                   colorlevels=rimin=0.039:gimin=0.039:bimin=0.039:rimax=0.96:gimax=0.96:bimax=0.96

       •   Make video output lighter:

                   colorlevels=rimax=0.902:gimax=0.902:bimax=0.902

       •   Increase brightness:

                   colorlevels=romin=0.5:gomin=0.5:bomin=0.5

   colorchannelmixer
       Adjust video input frames by re-mixing color channels.

       This filter modifies a color channel by adding the values associated to the other channels of the same
       pixels. For example if the value to modify is red, the output value will be:

               <red>=<red>*<rr> + <blue>*<rb> + <green>*<rg> + <alpha>*<ra>

       The filter accepts the following options:

       rr
       rg
       rb
       ra  Adjust contribution of input red, green, blue and alpha channels for output red channel.  Default is
           1 for rr, and 0 for rg, rb and ra.

       gr
       gg
       gb
       ga  Adjust contribution of input red, green, blue and alpha channels for output green channel.  Default
           is 1 for gg, and 0 for gr, gb and ga.

       br
       bg
       bb
       ba  Adjust contribution of input red, green, blue and alpha channels for output blue channel.  Default is
           1 for bb, and 0 for br, bg and ba.

       ar
       ag
       ab
       aa  Adjust contribution of input red, green, blue and alpha channels for output alpha channel.  Default
           is 1 for aa, and 0 for ar, ag and ab.

           Allowed ranges for options are "[-2.0, 2.0]".

       Examples

       •   Convert source to grayscale:

                   colorchannelmixer=.3:.4:.3:0:.3:.4:.3:0:.3:.4:.3

       •   Simulate sepia tones:

                   colorchannelmixer=.393:.769:.189:0:.349:.686:.168:0:.272:.534:.131

   colormatrix
       Convert color matrix.

       The filter accepts the following options:

       src
       dst Specify the source and destination color matrix. Both values must be specified.

           The accepted values are:

           bt709
               BT.709

           bt601
               BT.601

           smpte240m
               SMPTE-240M

           fcc FCC

       For example to convert from BT.601 to SMPTE-240M, use the command:

               colormatrix=bt601:smpte240m

   copy
       Copy the input source unchanged to the output. This is mainly useful for testing purposes.

   crop
       Crop the input video to given dimensions.

       It accepts the following parameters:

       w, out_w
           The width of the output video. It defaults to "iw".  This expression is evaluated only once during
           the filter configuration, or when the w or out_w command is sent.

       h, out_h
           The height of the output video. It defaults to "ih".  This expression is evaluated only once during
           the filter configuration, or when the h or out_h command is sent.

       x   The horizontal position, in the input video, of the left edge of the output video. It defaults to
           "(in_w-out_w)/2".  This expression is evaluated per-frame.

       y   The vertical position, in the input video, of the top edge of the output video.  It defaults to
           "(in_h-out_h)/2".  This expression is evaluated per-frame.

       keep_aspect
           If set to 1 will force the output display aspect ratio to be the same of the input, by changing the
           output sample aspect ratio. It defaults to 0.

       The out_w, out_h, x, y parameters are expressions containing the following constants:

       x
       y   The computed values for x and y. They are evaluated for each new frame.

       in_w
       in_h
           The input width and height.

       iw
       ih  These are the same as in_w and in_h.

       out_w
       out_h
           The output (cropped) width and height.

       ow
       oh  These are the same as out_w and out_h.

       a   same as iw / ih

       sar input sample aspect ratio

       dar input display aspect ratio, it is the same as (iw / ih) * sar

       hsub
       vsub
           horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is 2
           and vsub is 1.

       n   The number of the input frame, starting from 0.

       pos the position in the file of the input frame, NAN if unknown

       t   The timestamp expressed in seconds. It's NAN if the input timestamp is unknown.

       The expression for out_w may depend on the value of out_h, and the expression for out_h may depend on
       out_w, but they cannot depend on x and y, as x and y are evaluated after out_w and out_h.

       The x and y parameters specify the expressions for the position of the top-left corner of the output
       (non-cropped) area. They are evaluated for each frame. If the evaluated value is not valid, it is
       approximated to the nearest valid value.

       The expression for x may depend on y, and the expression for y may depend on x.

       Examples

       •   Crop area with size 100x100 at position (12,34).

                   crop=100:100:12:34

           Using named options, the example above becomes:

                   crop=w=100:h=100:x=12:y=34

       •   Crop the central input area with size 100x100:

                   crop=100:100

       •   Crop the central input area with size 2/3 of the input video:

                   crop=2/3*in_w:2/3*in_h

       •   Crop the input video central square:

                   crop=out_w=in_h
                   crop=in_h

       •   Delimit the rectangle with the top-left corner placed at position 100:100 and the right-bottom corner
           corresponding to the right-bottom corner of the input image.

                   crop=in_w-100:in_h-100:100:100

       •   Crop 10 pixels from the left and right borders, and 20 pixels from the top and bottom borders

                   crop=in_w-2*10:in_h-2*20

       •   Keep only the bottom right quarter of the input image:

                   crop=in_w/2:in_h/2:in_w/2:in_h/2

       •   Crop height for getting Greek harmony:

                   crop=in_w:1/PHI*in_w

       •   Apply trembling effect:

                   crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)

       •   Apply erratic camera effect depending on timestamp:

                   crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"

       •   Set x depending on the value of y:

                   crop=in_w/2:in_h/2:y:10+10*sin(n/10)

       Commands

       This filter supports the following commands:

       w, out_w
       h, out_h
       x
       y   Set width/height of the output video and the horizontal/vertical position in the input video.  The
           command accepts the same syntax of the corresponding option.

           If the specified expression is not valid, it is kept at its current value.

   cropdetect
       Auto-detect the crop size.

       It calculates the necessary cropping parameters and prints the recommended parameters via the logging
       system. The detected dimensions correspond to the non-black area of the input video.

       It accepts the following parameters:

       limit
           Set higher black value threshold, which can be optionally specified from nothing (0) to everything
           (255 for 8bit based formats). An intensity value greater to the set value is considered non-black. It
           defaults to 24.  You can also specify a value between 0.0 and 1.0 which will be scaled depending on
           the bitdepth of the pixel format.

       round
           The value which the width/height should be divisible by. It defaults to 16. The offset is
           automatically adjusted to center the video. Use 2 to get only even dimensions (needed for 4:2:2
           video). 16 is best when encoding to most video codecs.

       reset_count, reset
           Set the counter that determines after how many frames cropdetect will reset the previously detected
           largest video area and start over to detect the current optimal crop area. Default value is 0.

           This can be useful when channel logos distort the video area. 0 indicates 'never reset', and returns
           the largest area encountered during playback.

   curves
       Apply color adjustments using curves.

       This filter is similar to the Adobe Photoshop and GIMP curves tools. Each component (red, green and blue)
       has its values defined by N key points tied from each other using a smooth curve. The x-axis represents
       the pixel values from the input frame, and the y-axis the new pixel values to be set for the output
       frame.

       By default, a component curve is defined by the two points (0;0) and (1;1). This creates a straight line
       where each original pixel value is "adjusted" to its own value, which means no change to the image.

       The filter allows you to redefine these two points and add some more. A new curve (using a natural cubic
       spline interpolation) will be define to pass smoothly through all these new coordinates. The new defined
       points needs to be strictly increasing over the x-axis, and their x and y values must be in the [0;1]
       interval.  If the computed curves happened to go outside the vector spaces, the values will be clipped
       accordingly.

       If there is no key point defined in "x=0", the filter will automatically insert a (0;0) point. In the
       same way, if there is no key point defined in "x=1", the filter will automatically insert a (1;1) point.

       The filter accepts the following options:

       preset
           Select one of the available color presets. This option can be used in addition to the r, g, b
           parameters; in this case, the later options takes priority on the preset values.  Available presets
           are:

           none
           color_negative
           cross_process
           darker
           increase_contrast
           lighter
           linear_contrast
           medium_contrast
           negative
           strong_contrast
           vintage

           Default is "none".

       master, m
           Set the master key points. These points will define a second pass mapping. It is sometimes called a
           "luminance" or "value" mapping. It can be used with r, g, b or all since it acts like a post-
           processing LUT.

       red, r
           Set the key points for the red component.

       green, g
           Set the key points for the green component.

       blue, b
           Set the key points for the blue component.

       all Set the key points for all components (not including master).  Can be used in addition to the other
           key points component options. In this case, the unset component(s) will fallback on this all setting.

       psfile
           Specify a Photoshop curves file (".asv") to import the settings from.

       To avoid some filtergraph syntax conflicts, each key points list need to be defined using the following
       syntax: "x0/y0 x1/y1 x2/y2 ...".

       Examples

       •   Increase slightly the middle level of blue:

                   curves=blue='0.5/0.58'

       •   Vintage effect:

                   curves=r='0/0.11 .42/.51 1/0.95':g='0.50/0.48':b='0/0.22 .49/.44 1/0.8'

           Here we obtain the following coordinates for each components:

           red "(0;0.11) (0.42;0.51) (1;0.95)"

           green
               "(0;0) (0.50;0.48) (1;1)"

           blue
               "(0;0.22) (0.49;0.44) (1;0.80)"

       •   The previous example can also be achieved with the associated built-in preset:

                   curves=preset=vintage

       •   Or simply:

                   curves=vintage

       •   Use a Photoshop preset and redefine the points of the green component:

                   curves=psfile='MyCurvesPresets/purple.asv':green='0.45/0.53'

   dctdnoiz
       Denoise frames using 2D DCT (frequency domain filtering).

       This filter is not designed for real time.

       The filter accepts the following options:

       sigma, s
           Set the noise sigma constant.

           This sigma defines a hard threshold of "3 * sigma"; every DCT coefficient (absolute value) below this
           threshold with be dropped.

           If you need a more advanced filtering, see expr.

           Default is 0.

       overlap
           Set number overlapping pixels for each block. Since the filter can be slow, you may want to reduce
           this value, at the cost of a less effective filter and the risk of various artefacts.

           If the overlapping value doesn't permit processing the whole input width or height, a warning will be
           displayed and according borders won't be denoised.

           Default value is blocksize-1, which is the best possible setting.

       expr, e
           Set the coefficient factor expression.

           For each coefficient of a DCT block, this expression will be evaluated as a multiplier value for the
           coefficient.

           If this is option is set, the sigma option will be ignored.

           The absolute value of the coefficient can be accessed through the c variable.

       n   Set the blocksize using the number of bits. "1<<n" defines the blocksize, which is the width and
           height of the processed blocks.

           The default value is 3 (8x8) and can be raised to 4 for a blocksize of 16x16. Note that changing this
           setting has huge consequences on the speed processing. Also, a larger block size does not necessarily
           means a better de-noising.

       Examples

       Apply a denoise with a sigma of 4.5:

               dctdnoiz=4.5

       The same operation can be achieved using the expression system:

               dctdnoiz=e='gte(c, 4.5*3)'

       Violent denoise using a block size of "16x16":

               dctdnoiz=15:n=4

   deband
       Remove banding artifacts from input video.  It works by replacing banded pixels with average value of
       referenced pixels.

       The filter accepts the following options:

       1thr
       2thr
       3thr
       4thr
           Set banding detection threshold for each plane. Default is 0.02.  Valid range is 0.00003 to 0.5.  If
           difference between current pixel and reference pixel is less than threshold, it will be considered as
           banded.

       range, r
           Banding detection range in pixels. Default is 16. If positive, random number in range 0 to set value
           will be used. If negative, exact absolute value will be used.  The range defines square of four
           pixels around current pixel.

       direction, d
           Set direction in radians from which four pixel will be compared. If positive, random direction from 0
           to set direction will be picked. If negative, exact of absolute value will be picked. For example
           direction 0, -PI or -2*PI radians will pick only pixels on same row and -PI/2 will pick only pixels
           on same column.

       blur
           If enabled, current pixel is compared with average value of all four surrounding pixels. The default
           is enabled. If disabled current pixel is compared with all four surrounding pixels. The pixel is
           considered banded if only all four differences with surrounding pixels are less than threshold.

   decimate
       Drop duplicated frames at regular intervals.

       The filter accepts the following options:

       cycle
           Set the number of frames from which one will be dropped. Setting this to N means one frame in every
           batch of N frames will be dropped.  Default is 5.

       dupthresh
           Set the threshold for duplicate detection. If the difference metric for a frame is less than or equal
           to this value, then it is declared as duplicate. Default is 1.1

       scthresh
           Set scene change threshold. Default is 15.

       blockx
       blocky
           Set the size of the x and y-axis blocks used during metric calculations.  Larger blocks give better
           noise suppression, but also give worse detection of small movements. Must be a power of two. Default
           is 32.

       ppsrc
           Mark main input as a pre-processed input and activate clean source input stream. This allows the
           input to be pre-processed with various filters to help the metrics calculation while keeping the
           frame selection lossless. When set to 1, the first stream is for the pre-processed input, and the
           second stream is the clean source from where the kept frames are chosen. Default is 0.

       chroma
           Set whether or not chroma is considered in the metric calculations. Default is 1.

   deflate
       Apply deflate effect to the video.

       This filter replaces the pixel by the local(3x3) average by taking into account only values lower than
       the pixel.

       It accepts the following options:

       threshold0
       threshold1
       threshold2
       threshold3
           Limit the maximum change for each plane, default is 65535.  If 0, plane will remain unchanged.

   dejudder
       Remove judder produced by partially interlaced telecined content.

       Judder can be introduced, for instance, by pullup filter. If the original source was partially telecined
       content then the output of "pullup,dejudder" will have a variable frame rate. May change the recorded
       frame rate of the container. Aside from that change, this filter will not affect constant frame rate
       video.

       The option available in this filter is:

       cycle
           Specify the length of the window over which the judder repeats.

           Accepts any integer greater than 1. Useful values are:

           4   If the original was telecined from 24 to 30 fps (Film to NTSC).

           5   If the original was telecined from 25 to 30 fps (PAL to NTSC).

           20  If a mixture of the two.

           The default is 4.

   delogo
       Suppress a TV station logo by a simple interpolation of the surrounding pixels. Just set a rectangle
       covering the logo and watch it disappear (and sometimes something even uglier appear - your mileage may
       vary).

       It accepts the following parameters:

       x
       y   Specify the top left corner coordinates of the logo. They must be specified.

       w
       h   Specify the width and height of the logo to clear. They must be specified.

       band, t
           Specify the thickness of the fuzzy edge of the rectangle (added to w and h). The default value is 4.

       show
           When set to 1, a green rectangle is drawn on the screen to simplify finding the right x, y, w, and h
           parameters.  The default value is 0.

           The rectangle is drawn on the outermost pixels which will be (partly) replaced with interpolated
           values. The values of the next pixels immediately outside this rectangle in each direction will be
           used to compute the interpolated pixel values inside the rectangle.

       Examples

       •   Set a rectangle covering the area with top left corner coordinates 0,0 and size 100x77, and a band of
           size 10:

                   delogo=x=0:y=0:w=100:h=77:band=10

   deshake
       Attempt to fix small changes in horizontal and/or vertical shift. This filter helps remove camera shake
       from hand-holding a camera, bumping a tripod, moving on a vehicle, etc.

       The filter accepts the following options:

       x
       y
       w
       h   Specify a rectangular area where to limit the search for motion vectors.  If desired the search for
           motion vectors can be limited to a rectangular area of the frame defined by its top left corner,
           width and height. These parameters have the same meaning as the drawbox filter which can be used to
           visualise the position of the bounding box.

           This is useful when simultaneous movement of subjects within the frame might be confused for camera
           motion by the motion vector search.

           If any or all of x, y, w and h are set to -1 then the full frame is used. This allows later options
           to be set without specifying the bounding box for the motion vector search.

           Default - search the whole frame.

       rx
       ry  Specify the maximum extent of movement in x and y directions in the range 0-64 pixels. Default 16.

       edge
           Specify how to generate pixels to fill blanks at the edge of the frame. Available values are:

           blank, 0
               Fill zeroes at blank locations

           original, 1
               Original image at blank locations

           clamp, 2
               Extruded edge value at blank locations

           mirror, 3
               Mirrored edge at blank locations

           Default value is mirror.

       blocksize
           Specify the blocksize to use for motion search. Range 4-128 pixels, default 8.

       contrast
           Specify the contrast threshold for blocks. Only blocks with more than the specified contrast
           (difference between darkest and lightest pixels) will be considered. Range 1-255, default 125.

       search
           Specify the search strategy. Available values are:

           exhaustive, 0
               Set exhaustive search

           less, 1
               Set less exhaustive search.

           Default value is exhaustive.

       filename
           If set then a detailed log of the motion search is written to the specified file.

       opencl
           If set to 1, specify using OpenCL capabilities, only available if FFmpeg was configured with
           "--enable-opencl". Default value is 0.

   detelecine
       Apply an exact inverse of the telecine operation. It requires a predefined pattern specified using the
       pattern option which must be the same as that passed to the telecine filter.

       This filter accepts the following options:

       first_field
           top, t
               top field first

           bottom, b
               bottom field first The default value is "top".

       pattern
           A string of numbers representing the pulldown pattern you wish to apply.  The default value is 23.

       start_frame
           A number representing position of the first frame with respect to the telecine pattern. This is to be
           used if the stream is cut. The default value is 0.

   dilation
       Apply dilation effect to the video.

       This filter replaces the pixel by the local(3x3) maximum.

       It accepts the following options:

       threshold0
       threshold1
       threshold2
       threshold3
           Limit the maximum change for each plane, default is 65535.  If 0, plane will remain unchanged.

       coordinates
           Flag which specifies the pixel to refer to. Default is 255 i.e. all eight pixels are used.

           Flags to local 3x3 coordinates maps like this:

               1 2 3
               4   5
               6 7 8

   drawbox
       Draw a colored box on the input image.

       It accepts the following parameters:

       x
       y   The expressions which specify the top left corner coordinates of the box. It defaults to 0.

       width, w
       height, h
           The expressions which specify the width and height of the box; if 0 they are interpreted as the input
           width and height. It defaults to 0.

       color, c
           Specify the color of the box to write. For the general syntax of this option, check the "Color"
           section in the ffmpeg-utils manual. If the special value "invert" is used, the box edge color is the
           same as the video with inverted luma.

       thickness, t
           The expression which sets the thickness of the box edge. Default value is 3.

           See below for the list of accepted constants.

       The parameters for x, y, w and h and t are expressions containing the following constants:

       dar The input display aspect ratio, it is the same as (w / h) * sar.

       hsub
       vsub
           horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is 2
           and vsub is 1.

       in_h, ih
       in_w, iw
           The input width and height.

       sar The input sample aspect ratio.

       x
       y   The x and y offset coordinates where the box is drawn.

       w
       h   The width and height of the drawn box.

       t   The thickness of the drawn box.

           These constants allow the x, y, w, h and t expressions to refer to each other, so you may for example
           specify "y=x/dar" or "h=w/dar".

       Examples

       •   Draw a black box around the edge of the input image:

                   drawbox

       •   Draw a box with color red and an opacity of 50%:

                   drawbox=10:20:200:60:red@0.5

           The previous example can be specified as:

                   drawbox=x=10:y=20:w=200:h=60:color=red@0.5

       •   Fill the box with pink color:

                   drawbox=x=10:y=10:w=100:h=100:color=pink@0.5:t=max

       •   Draw a 2-pixel red 2.40:1 mask:

                   drawbox=x=-t:y=0.5*(ih-iw/2.4)-t:w=iw+t*2:h=iw/2.4+t*2:t=2:c=red

   drawgraph, adrawgraph
       Draw a graph using input video or audio metadata.

       It accepts the following parameters:

       m1  Set 1st frame metadata key from which metadata values will be used to draw a graph.

       fg1 Set 1st foreground color expression.

       m2  Set 2nd frame metadata key from which metadata values will be used to draw a graph.

       fg2 Set 2nd foreground color expression.

       m3  Set 3rd frame metadata key from which metadata values will be used to draw a graph.

       fg3 Set 3rd foreground color expression.

       m4  Set 4th frame metadata key from which metadata values will be used to draw a graph.

       fg4 Set 4th foreground color expression.

       min Set minimal value of metadata value.

       max Set maximal value of metadata value.

       bg  Set graph background color. Default is white.

       mode
           Set graph mode.

           Available values for mode is:

           bar
           dot
           line

           Default is "line".

       slide
           Set slide mode.

           Available values for slide is:

           frame
               Draw new frame when right border is reached.

           replace
               Replace old columns with new ones.

           scroll
               Scroll from right to left.

           rscroll
               Scroll from left to right.

           Default is "frame".

       size
           Set size of graph video. For the syntax of this option, check the "Video size" section in the ffmpeg-
           utils manual.  The default value is "900x256".

           The foreground color expressions can use the following variables:

           MIN Minimal value of metadata value.

           MAX Maximal value of metadata value.

           VAL Current metadata key value.

           The color is defined as 0xAABBGGRR.

       Example using metadata from signalstats filter:

               signalstats,drawgraph=lavfi.signalstats.YAVG:min=0:max=255

       Example using metadata from ebur128 filter:

               ebur128=metadata=1,adrawgraph=lavfi.r128.M:min=-120:max=5

   drawgrid
       Draw a grid on the input image.

       It accepts the following parameters:

       x
       y   The expressions which specify the coordinates of some point of grid intersection (meant to configure
           offset). Both default to 0.

       width, w
       height, h
           The expressions which specify the width and height of the grid cell, if 0 they are interpreted as the
           input width and height, respectively, minus "thickness", so image gets framed. Default to 0.

       color, c
           Specify the color of the grid. For the general syntax of this option, check the "Color" section in
           the ffmpeg-utils manual. If the special value "invert" is used, the grid color is the same as the
           video with inverted luma.

       thickness, t
           The expression which sets the thickness of the grid line. Default value is 1.

           See below for the list of accepted constants.

       The parameters for x, y, w and h and t are expressions containing the following constants:

       dar The input display aspect ratio, it is the same as (w / h) * sar.

       hsub
       vsub
           horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is 2
           and vsub is 1.

       in_h, ih
       in_w, iw
           The input grid cell width and height.

       sar The input sample aspect ratio.

       x
       y   The x and y coordinates of some point of grid intersection (meant to configure offset).

       w
       h   The width and height of the drawn cell.

       t   The thickness of the drawn cell.

           These constants allow the x, y, w, h and t expressions to refer to each other, so you may for example
           specify "y=x/dar" or "h=w/dar".

       Examples

       •   Draw a grid with cell 100x100 pixels, thickness 2 pixels, with color red and an opacity of 50%:

                   drawgrid=width=100:height=100:thickness=2:color=red@0.5

       •   Draw a white 3x3 grid with an opacity of 50%:

                   drawgrid=w=iw/3:h=ih/3:t=2:c=white@0.5

   drawtext
       Draw a text string or text from a specified file on top of a video, using the libfreetype library.

       To enable compilation of this filter, you need to configure FFmpeg with "--enable-libfreetype".  To
       enable default font fallback and the font option you need to configure FFmpeg with
       "--enable-libfontconfig".  To enable the text_shaping option, you need to configure FFmpeg with
       "--enable-libfribidi".

       Syntax

       It accepts the following parameters:

       box Used to draw a box around text using the background color.  The value must be either 1 (enable) or 0
           (disable).  The default value of box is 0.

       boxborderw
           Set the width of the border to be drawn around the box using boxcolor.  The default value of
           boxborderw is 0.

       boxcolor
           The color to be used for drawing box around text. For the syntax of this option, check the "Color"
           section in the ffmpeg-utils manual.

           The default value of boxcolor is "white".

       borderw
           Set the width of the border to be drawn around the text using bordercolor.  The default value of
           borderw is 0.

       bordercolor
           Set the color to be used for drawing border around text. For the syntax of this option, check the
           "Color" section in the ffmpeg-utils manual.

           The default value of bordercolor is "black".

       expansion
           Select how the text is expanded. Can be either "none", "strftime" (deprecated) or "normal" (default).
           See the drawtext_expansion, Text expansion section below for details.

       fix_bounds
           If true, check and fix text coords to avoid clipping.

       fontcolor
           The color to be used for drawing fonts. For the syntax of this option, check the "Color" section in
           the ffmpeg-utils manual.

           The default value of fontcolor is "black".

       fontcolor_expr
           String which is expanded the same way as text to obtain dynamic fontcolor value. By default this
           option has empty value and is not processed. When this option is set, it overrides fontcolor option.

       font
           The font family to be used for drawing text. By default Sans.

       fontfile
           The font file to be used for drawing text. The path must be included.  This parameter is mandatory if
           the fontconfig support is disabled.

       draw
           This option does not exist, please see the timeline system

       alpha
           Draw the text applying alpha blending. The value can be either a number between 0.0 and 1.0 The
           expression accepts the same variables x, y do.  The default value is 1.  Please see fontcolor_expr

       fontsize
           The font size to be used for drawing text.  The default value of fontsize is 16.

       text_shaping
           If set to 1, attempt to shape the text (for example, reverse the order of right-to-left text and join
           Arabic characters) before drawing it.  Otherwise, just draw the text exactly as given.  By default 1
           (if supported).

       ft_load_flags
           The flags to be used for loading the fonts.

           The flags map the corresponding flags supported by libfreetype, and are a combination of the
           following values:

           default
           no_scale
           no_hinting
           render
           no_bitmap
           vertical_layout
           force_autohint
           crop_bitmap
           pedantic
           ignore_global_advance_width
           no_recurse
           ignore_transform
           monochrome
           linear_design
           no_autohint

           Default value is "default".

           For more information consult the documentation for the FT_LOAD_* libfreetype flags.

       shadowcolor
           The color to be used for drawing a shadow behind the drawn text. For the syntax of this option, check
           the "Color" section in the ffmpeg-utils manual.

           The default value of shadowcolor is "black".

       shadowx
       shadowy
           The x and y offsets for the text shadow position with respect to the position of the text. They can
           be either positive or negative values. The default value for both is "0".

       start_number
           The starting frame number for the n/frame_num variable. The default value is "0".

       tabsize
           The size in number of spaces to use for rendering the tab.  Default value is 4.

       timecode
           Set the initial timecode representation in "hh:mm:ss[:;.]ff" format. It can be used with or without
           text parameter. timecode_rate option must be specified.

       timecode_rate, rate, r
           Set the timecode frame rate (timecode only).

       text
           The text string to be drawn. The text must be a sequence of UTF-8 encoded characters.  This parameter
           is mandatory if no file is specified with the parameter textfile.

       textfile
           A text file containing text to be drawn. The text must be a sequence of UTF-8 encoded characters.

           This parameter is mandatory if no text string is specified with the parameter text.

           If both text and textfile are specified, an error is thrown.

       reload
           If set to 1, the textfile will be reloaded before each frame.  Be sure to update it atomically, or it
           may be read partially, or even fail.

       x
       y   The expressions which specify the offsets where text will be drawn within the video frame. They are
           relative to the top/left border of the output image.

           The default value of x and y is "0".

           See below for the list of accepted constants and functions.

       The parameters for x and y are expressions containing the following constants and functions:

       dar input display aspect ratio, it is the same as (w / h) * sar

       hsub
       vsub
           horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is 2
           and vsub is 1.

       line_h, lh
           the height of each text line

       main_h, h, H
           the input height

       main_w, w, W
           the input width

       max_glyph_a, ascent
           the maximum distance from the baseline to the highest/upper grid coordinate used to place a glyph
           outline point, for all the rendered glyphs.  It is a positive value, due to the grid's orientation
           with the Y axis upwards.

       max_glyph_d, descent
           the maximum distance from the baseline to the lowest grid coordinate used to place a glyph outline
           point, for all the rendered glyphs.  This is a negative value, due to the grid's orientation, with
           the Y axis upwards.

       max_glyph_h
           maximum glyph height, that is the maximum height for all the glyphs contained in the rendered text,
           it is equivalent to ascent - descent.

       max_glyph_w
           maximum glyph width, that is the maximum width for all the glyphs contained in the rendered text

       n   the number of input frame, starting from 0

       rand(min, max)
           return a random number included between min and max

       sar The input sample aspect ratio.

       t   timestamp expressed in seconds, NAN if the input timestamp is unknown

       text_h, th
           the height of the rendered text

       text_w, tw
           the width of the rendered text

       x
       y   the x and y offset coordinates where the text is drawn.

           These parameters allow the x and y expressions to refer each other, so you can for example specify
           "y=x/dar".

       Text expansion

       If expansion is set to "strftime", the filter recognizes strftime() sequences in the provided text and
       expands them accordingly. Check the documentation of strftime(). This feature is deprecated.

       If expansion is set to "none", the text is printed verbatim.

       If expansion is set to "normal" (which is the default), the following expansion mechanism is used.

       The backslash character \, followed by any character, always expands to the second character.

       Sequence of the form "%{...}" are expanded. The text between the braces is a function name, possibly
       followed by arguments separated by ':'.  If the arguments contain special characters or delimiters (':'
       or '}'), they should be escaped.

       Note that they probably must also be escaped as the value for the text option in the filter argument
       string and as the filter argument in the filtergraph description, and possibly also for the shell, that
       makes up to four levels of escaping; using a text file avoids these problems.

       The following functions are available:

       expr, e
           The expression evaluation result.

           It must take one argument specifying the expression to be evaluated, which accepts the same constants
           and functions as the x and y values. Note that not all constants should be used, for example the text
           size is not known when evaluating the expression, so the constants text_w and text_h will have an
           undefined value.

       expr_int_format, eif
           Evaluate the expression's value and output as formatted integer.

           The first argument is the expression to be evaluated, just as for the expr function.  The second
           argument specifies the output format. Allowed values are x, X, d and u. They are treated exactly as
           in the "printf" function.  The third parameter is optional and sets the number of positions taken by
           the output.  It can be used to add padding with zeros from the left.

       gmtime
           The time at which the filter is running, expressed in UTC.  It can accept an argument: a strftime()
           format string.

       localtime
           The time at which the filter is running, expressed in the local time zone.  It can accept an
           argument: a strftime() format string.

       metadata
           Frame metadata. It must take one argument specifying metadata key.

       n, frame_num
           The frame number, starting from 0.

       pict_type
           A 1 character description of the current picture type.

       pts The timestamp of the current frame.  It can take up to two arguments.

           The first argument is the format of the timestamp; it defaults to "flt" for seconds as a decimal
           number with microsecond accuracy; "hms" stands for a formatted [-]HH:MM:SS.mmm timestamp with
           millisecond accuracy.

           The second argument is an offset added to the timestamp.

       Examples

       •   Draw "Test Text" with font FreeSerif, using the default values for the optional parameters.

                   drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"

       •   Draw 'Test Text' with font FreeSerif of size 24 at position x=100 and y=50 (counting from the top-
           left corner of the screen), text is yellow with a red box around it. Both the text and the box have
           an opacity of 20%.

                   drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
                             x=100: y=50: fontsize=24: fontcolor=yellow@0.2: box=1: boxcolor=red@0.2"

           Note that the double quotes are not necessary if spaces are not used within the parameter list.

       •   Show the text at the center of the video frame:

                   drawtext="fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h)/2"

       •   Show a text line sliding from right to left in the last row of the video frame. The file LONG_LINE is
           assumed to contain a single line with no newlines.

                   drawtext="fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t"

       •   Show the content of file CREDITS off the bottom of the frame and scroll up.

                   drawtext="fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"

       •   Draw a single green letter "g", at the center of the input video.  The glyph baseline is placed at
           half screen height.

                   drawtext="fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent"

       •   Show text for 1 second every 3 seconds:

                   drawtext="fontfile=FreeSerif.ttf:fontcolor=white:x=100:y=x/dar:enable=lt(mod(t\,3)\,1):text='blink'"

       •   Use fontconfig to set the font. Note that the colons need to be escaped.

                   drawtext='fontfile=Linux Libertine O-40\:style=Semibold:text=FFmpeg'

       •   Print the date of a real-time encoding (see strftime(3)):

                   drawtext='fontfile=FreeSans.ttf:text=%{localtime\:%a %b %d %Y}'

       •   Show text fading in and out (appearing/disappearing):

                   #!/bin/sh
                   DS=1.0 # display start
                   DE=10.0 # display end
                   FID=1.5 # fade in duration
                   FOD=5 # fade out duration
                   ffplay -f lavfi "color,drawtext=text=TEST:fontsize=50:fontfile=FreeSerif.ttf:fontcolor_expr=ff0000%{eif\\\\: clip(255*(1*between(t\\, $DS + $FID\\, $DE - $FOD) + ((t - $DS)/$FID)*between(t\\, $DS\\, $DS + $FID) + (-(t - $DE)/$FOD)*between(t\\, $DE - $FOD\\, $DE) )\\, 0\\, 255) \\\\: x\\\\: 2 }"

       For more information about libfreetype, check: <http://www.freetype.org/>.

       For more information about fontconfig, check:
       <http://freedesktop.org/software/fontconfig/fontconfig-user.html>.

       For more information about libfribidi, check: <http://fribidi.org/>.

   edgedetect
       Detect and draw edges. The filter uses the Canny Edge Detection algorithm.

       The filter accepts the following options:

       low
       high
           Set low and high threshold values used by the Canny thresholding algorithm.

           The high threshold selects the "strong" edge pixels, which are then connected through 8-connectivity
           with the "weak" edge pixels selected by the low threshold.

           low and high threshold values must be chosen in the range [0,1], and low should be lesser or equal to
           high.

           Default value for low is "20/255", and default value for high is "50/255".

       mode
           Define the drawing mode.

           wires
               Draw white/gray wires on black background.

           colormix
               Mix the colors to create a paint/cartoon effect.

           Default value is wires.

       Examples

       •   Standard edge detection with custom values for the hysteresis thresholding:

                   edgedetect=low=0.1:high=0.4

       •   Painting effect without thresholding:

                   edgedetect=mode=colormix:high=0

   eq
       Set brightness, contrast, saturation and approximate gamma adjustment.

       The filter accepts the following options:

       contrast
           Set the contrast expression. The value must be a float value in range "-2.0" to 2.0. The default
           value is "0".

       brightness
           Set the brightness expression. The value must be a float value in range "-1.0" to 1.0. The default
           value is "0".

       saturation
           Set the saturation expression. The value must be a float in range 0.0 to 3.0. The default value is
           "1".

       gamma
           Set the gamma expression. The value must be a float in range 0.1 to 10.0.  The default value is "1".

       gamma_r
           Set the gamma expression for red. The value must be a float in range 0.1 to 10.0. The default value
           is "1".

       gamma_g
           Set the gamma expression for green. The value must be a float in range 0.1 to 10.0. The default value
           is "1".

       gamma_b
           Set the gamma expression for blue. The value must be a float in range 0.1 to 10.0. The default value
           is "1".

       gamma_weight
           Set the gamma weight expression. It can be used to reduce the effect of a high gamma value on bright
           image areas, e.g. keep them from getting overamplified and just plain white. The value must be a
           float in range 0.0 to 1.0. A value of 0.0 turns the gamma correction all the way down while 1.0
           leaves it at its full strength. Default is "1".

       eval
           Set when the expressions for brightness, contrast, saturation and gamma expressions are evaluated.

           It accepts the following values:

           init
               only evaluate expressions once during the filter initialization or when a command is processed

           frame
               evaluate expressions for each incoming frame

           Default value is init.

       The expressions accept the following parameters:

       n   frame count of the input frame starting from 0

       pos byte position of the corresponding packet in the input file, NAN if unspecified

       r   frame rate of the input video, NAN if the input frame rate is unknown

       t   timestamp expressed in seconds, NAN if the input timestamp is unknown

       Commands

       The filter supports the following commands:

       contrast
           Set the contrast expression.

       brightness
           Set the brightness expression.

       saturation
           Set the saturation expression.

       gamma
           Set the gamma expression.

       gamma_r
           Set the gamma_r expression.

       gamma_g
           Set gamma_g expression.

       gamma_b
           Set gamma_b expression.

       gamma_weight
           Set gamma_weight expression.

           The command accepts the same syntax of the corresponding option.

           If the specified expression is not valid, it is kept at its current value.

   erosion
       Apply erosion effect to the video.

       This filter replaces the pixel by the local(3x3) minimum.

       It accepts the following options:

       threshold0
       threshold1
       threshold2
       threshold3
           Limit the maximum change for each plane, default is 65535.  If 0, plane will remain unchanged.

       coordinates
           Flag which specifies the pixel to refer to. Default is 255 i.e. all eight pixels are used.

           Flags to local 3x3 coordinates maps like this:

               1 2 3
               4   5
               6 7 8

   extractplanes
       Extract color channel components from input video stream into separate grayscale video streams.

       The filter accepts the following option:

       planes
           Set plane(s) to extract.

           Available values for planes are:

           y
           u
           v
           a
           r
           g
           b

           Choosing planes not available in the input will result in an error.  That means you cannot select
           "r", "g", "b" planes with "y", "u", "v" planes at same time.

       Examples

       •   Extract luma, u and v color channel component from input video frame into 3 grayscale outputs:

                   ffmpeg -i video.avi -filter_complex 'extractplanes=y+u+v[y][u][v]' -map '[y]' y.avi -map '[u]' u.avi -map '[v]' v.avi

   elbg
       Apply a posterize effect using the ELBG (Enhanced LBG) algorithm.

       For each input image, the filter will compute the optimal mapping from the input to the output given the
       codebook length, that is the number of distinct output colors.

       This filter accepts the following options.

       codebook_length, l
           Set codebook length. The value must be a positive integer, and represents the number of distinct
           output colors. Default value is 256.

       nb_steps, n
           Set the maximum number of iterations to apply for computing the optimal mapping. The higher the value
           the better the result and the higher the computation time. Default value is 1.

       seed, s
           Set a random seed, must be an integer included between 0 and UINT32_MAX. If not specified, or if
           explicitly set to -1, the filter will try to use a good random seed on a best effort basis.

       pal8
           Set pal8 output pixel format. This option does not work with codebook length greater than 256.

   fade
       Apply a fade-in/out effect to the input video.

       It accepts the following parameters:

       type, t
           The effect type can be either "in" for a fade-in, or "out" for a fade-out effect.  Default is "in".

       start_frame, s
           Specify the number of the frame to start applying the fade effect at. Default is 0.

       nb_frames, n
           The number of frames that the fade effect lasts. At the end of the fade-in effect, the output video
           will have the same intensity as the input video.  At the end of the fade-out transition, the output
           video will be filled with the selected color.  Default is 25.

       alpha
           If set to 1, fade only alpha channel, if one exists on the input.  Default value is 0.

       start_time, st
           Specify the timestamp (in seconds) of the frame to start to apply the fade effect. If both
           start_frame and start_time are specified, the fade will start at whichever comes last.  Default is 0.

       duration, d
           The number of seconds for which the fade effect has to last. At the end of the fade-in effect the
           output video will have the same intensity as the input video, at the end of the fade-out transition
           the output video will be filled with the selected color.  If both duration and nb_frames are
           specified, duration is used. Default is 0 (nb_frames is used by default).

       color, c
           Specify the color of the fade. Default is "black".

       Examples

       •   Fade in the first 30 frames of video:

                   fade=in:0:30

           The command above is equivalent to:

                   fade=t=in:s=0:n=30

       •   Fade out the last 45 frames of a 200-frame video:

                   fade=out:155:45
                   fade=type=out:start_frame=155:nb_frames=45

       •   Fade in the first 25 frames and fade out the last 25 frames of a 1000-frame video:

                   fade=in:0:25, fade=out:975:25

       •   Make the first 5 frames yellow, then fade in from frame 5-24:

                   fade=in:5:20:color=yellow

       •   Fade in alpha over first 25 frames of video:

                   fade=in:0:25:alpha=1

       •   Make the first 5.5 seconds black, then fade in for 0.5 seconds:

                   fade=t=in:st=5.5:d=0.5

   fftfilt
       Apply arbitrary expressions to samples in frequency domain

       dc_Y
           Adjust the dc value (gain) of the luma plane of the image. The filter accepts an integer value in
           range 0 to 1000. The default value is set to 0.

       dc_U
           Adjust the dc value (gain) of the 1st chroma plane of the image. The filter accepts an integer value
           in range 0 to 1000. The default value is set to 0.

       dc_V
           Adjust the dc value (gain) of the 2nd chroma plane of the image. The filter accepts an integer value
           in range 0 to 1000. The default value is set to 0.

       weight_Y
           Set the frequency domain weight expression for the luma plane.

       weight_U
           Set the frequency domain weight expression for the 1st chroma plane.

       weight_V
           Set the frequency domain weight expression for the 2nd chroma plane.

           The filter accepts the following variables:

       X
       Y   The coordinates of the current sample.

       W
       H   The width and height of the image.

       Examples

       •   High-pass:

                   fftfilt=dc_Y=128:weight_Y='squish(1-(Y+X)/100)'

       •   Low-pass:

                   fftfilt=dc_Y=0:weight_Y='squish((Y+X)/100-1)'

       •   Sharpen:

                   fftfilt=dc_Y=0:weight_Y='1+squish(1-(Y+X)/100)'

   field
       Extract a single field from an interlaced image using stride arithmetic to avoid wasting CPU time. The
       output frames are marked as non-interlaced.

       The filter accepts the following options:

       type
           Specify whether to extract the top (if the value is 0 or "top") or the bottom field (if the value is
           1 or "bottom").

   fieldmatch
       Field matching filter for inverse telecine. It is meant to reconstruct the progressive frames from a
       telecined stream. The filter does not drop duplicated frames, so to achieve a complete inverse telecine
       "fieldmatch" needs to be followed by a decimation filter such as decimate in the filtergraph.

       The separation of the field matching and the decimation is notably motivated by the possibility of
       inserting a de-interlacing filter fallback between the two.  If the source has mixed telecined and real
       interlaced content, "fieldmatch" will not be able to match fields for the interlaced parts.  But these
       remaining combed frames will be marked as interlaced, and thus can be de-interlaced by a later filter
       such as yadif before decimation.

       In addition to the various configuration options, "fieldmatch" can take an optional second stream,
       activated through the ppsrc option. If enabled, the frames reconstruction will be based on the fields and
       frames from this second stream. This allows the first input to be pre-processed in order to help the
       various algorithms of the filter, while keeping the output lossless (assuming the fields are matched
       properly). Typically, a field-aware denoiser, or brightness/contrast adjustments can help.

       Note that this filter uses the same algorithms as TIVTC/TFM (AviSynth project) and VIVTC/VFM (VapourSynth
       project). The later is a light clone of TFM from which "fieldmatch" is based on. While the semantic and
       usage are very close, some behaviour and options names can differ.

       The decimate filter currently only works for constant frame rate input.  If your input has mixed
       telecined (30fps) and progressive content with a lower framerate like 24fps use the following filterchain
       to produce the necessary cfr stream: "dejudder,fps=30000/1001,fieldmatch,decimate".

       The filter accepts the following options:

       order
           Specify the assumed field order of the input stream. Available values are:

           auto
               Auto detect parity (use FFmpeg's internal parity value).

           bff Assume bottom field first.

           tff Assume top field first.

           Note that it is sometimes recommended not to trust the parity announced by the stream.

           Default value is auto.

       mode
           Set the matching mode or strategy to use. pc mode is the safest in the sense that it won't risk
           creating jerkiness due to duplicate frames when possible, but if there are bad edits or blended
           fields it will end up outputting combed frames when a good match might actually exist. On the other
           hand, pcn_ub mode is the most risky in terms of creating jerkiness, but will almost always find a
           good frame if there is one. The other values are all somewhere in between pc and pcn_ub in terms of
           risking jerkiness and creating duplicate frames versus finding good matches in sections with bad
           edits, orphaned fields, blended fields, etc.

           More details about p/c/n/u/b are available in p/c/n/u/b meaning section.

           Available values are:

           pc  2-way matching (p/c)

           pc_n
               2-way matching, and trying 3rd match if still combed (p/c + n)

           pc_u
               2-way matching, and trying 3rd match (same order) if still combed (p/c + u)

           pc_n_ub
               2-way matching, trying 3rd match if still combed, and trying 4th/5th matches if still combed (p/c
               + n + u/b)

           pcn 3-way matching (p/c/n)

           pcn_ub
               3-way matching, and trying 4th/5th matches if all 3 of the original matches are detected as
               combed (p/c/n + u/b)

           The parenthesis at the end indicate the matches that would be used for that mode assuming order=tff
           (and field on auto or top).

           In terms of speed pc mode is by far the fastest and pcn_ub is the slowest.

           Default value is pc_n.

       ppsrc
           Mark the main input stream as a pre-processed input, and enable the secondary input stream as the
           clean source to pick the fields from. See the filter introduction for more details. It is similar to
           the clip2 feature from VFM/TFM.

           Default value is 0 (disabled).

       field
           Set the field to match from. It is recommended to set this to the same value as order unless you
           experience matching failures with that setting. In certain circumstances changing the field that is
           used to match from can have a large impact on matching performance. Available values are:

           auto
               Automatic (same value as order).

           bottom
               Match from the bottom field.

           top Match from the top field.

           Default value is auto.

       mchroma
           Set whether or not chroma is included during the match comparisons. In most cases it is recommended
           to leave this enabled. You should set this to 0 only if your clip has bad chroma problems such as
           heavy rainbowing or other artifacts. Setting this to 0 could also be used to speed things up at the
           cost of some accuracy.

           Default value is 1.

       y0
       y1  These define an exclusion band which excludes the lines between y0 and y1 from being included in the
           field matching decision. An exclusion band can be used to ignore subtitles, a logo, or other things
           that may interfere with the matching. y0 sets the starting scan line and y1 sets the ending line; all
           lines in between y0 and y1 (including y0 and y1) will be ignored. Setting y0 and y1 to the same value
           will disable the feature.  y0 and y1 defaults to 0.

       scthresh
           Set the scene change detection threshold as a percentage of maximum change on the luma plane. Good
           values are in the "[8.0, 14.0]" range. Scene change detection is only relevant in case combmatch=sc.
           The range for scthresh is "[0.0, 100.0]".

           Default value is 12.0.

       combmatch
           When combatch is not none, "fieldmatch" will take into account the combed scores of matches when
           deciding what match to use as the final match. Available values are:

           none
               No final matching based on combed scores.

           sc  Combed scores are only used when a scene change is detected.

           full
               Use combed scores all the time.

           Default is sc.

       combdbg
           Force "fieldmatch" to calculate the combed metrics for certain matches and print them. This setting
           is known as micout in TFM/VFM vocabulary.  Available values are:

           none
               No forced calculation.

           pcn Force p/c/n calculations.

           pcnub
               Force p/c/n/u/b calculations.

           Default value is none.

       cthresh
           This is the area combing threshold used for combed frame detection. This essentially controls how
           "strong" or "visible" combing must be to be detected.  Larger values mean combing must be more
           visible and smaller values mean combing can be less visible or strong and still be detected. Valid
           settings are from "-1" (every pixel will be detected as combed) to 255 (no pixel will be detected as
           combed). This is basically a pixel difference value. A good range is "[8, 12]".

           Default value is 9.

       chroma
           Sets whether or not chroma is considered in the combed frame decision.  Only disable this if your
           source has chroma problems (rainbowing, etc.) that are causing problems for the combed frame
           detection with chroma enabled. Actually, using chroma=0 is usually more reliable, except for the case
           where there is chroma only combing in the source.

           Default value is 0.

       blockx
       blocky
           Respectively set the x-axis and y-axis size of the window used during combed frame detection. This
           has to do with the size of the area in which combpel pixels are required to be detected as combed for
           a frame to be declared combed. See the combpel parameter description for more info.  Possible values
           are any number that is a power of 2 starting at 4 and going up to 512.

           Default value is 16.

       combpel
           The number of combed pixels inside any of the blocky by blockx size blocks on the frame for the frame
           to be detected as combed. While cthresh controls how "visible" the combing must be, this setting
           controls "how much" combing there must be in any localized area (a window defined by the blockx and
           blocky settings) on the frame. Minimum value is 0 and maximum is "blocky x blockx" (at which point no
           frames will ever be detected as combed). This setting is known as MI in TFM/VFM vocabulary.

           Default value is 80.

       p/c/n/u/b meaning

       p/c/n

       We assume the following telecined stream:

               Top fields:     1 2 2 3 4
               Bottom fields:  1 2 3 4 4

       The numbers correspond to the progressive frame the fields relate to. Here, the first two frames are
       progressive, the 3rd and 4th are combed, and so on.

       When "fieldmatch" is configured to run a matching from bottom (field=bottom) this is how this input
       stream get transformed:

               Input stream:
                               T     1 2 2 3 4
                               B     1 2 3 4 4   <-- matching reference

               Matches:              c c n n c

               Output stream:
                               T     1 2 3 4 4
                               B     1 2 3 4 4

       As a result of the field matching, we can see that some frames get duplicated.  To perform a complete
       inverse telecine, you need to rely on a decimation filter after this operation. See for instance the
       decimate filter.

       The same operation now matching from top fields (field=top) looks like this:

               Input stream:
                               T     1 2 2 3 4   <-- matching reference
                               B     1 2 3 4 4

               Matches:              c c p p c

               Output stream:
                               T     1 2 2 3 4
                               B     1 2 2 3 4

       In these examples, we can see what p, c and n mean; basically, they refer to the frame and field of the
       opposite parity:

       *<p matches the field of the opposite parity in the previous frame>
       *<c matches the field of the opposite parity in the current frame>
       *<n matches the field of the opposite parity in the next frame>

       u/b

       The u and b matching are a bit special in the sense that they match from the opposite parity flag. In the
       following examples, we assume that we are currently matching the 2nd frame (Top:2, bottom:2). According
       to the match, a 'x' is placed above and below each matched fields.

       With bottom matching (field=bottom):

               Match:           c         p           n          b          u

                                x       x               x        x          x
                 Top          1 2 2     1 2 2       1 2 2      1 2 2      1 2 2
                 Bottom       1 2 3     1 2 3       1 2 3      1 2 3      1 2 3
                                x         x           x        x              x

               Output frames:
                                2          1          2          2          2
                                2          2          2          1          3

       With top matching (field=top):

               Match:           c         p           n          b          u

                                x         x           x        x              x
                 Top          1 2 2     1 2 2       1 2 2      1 2 2      1 2 2
                 Bottom       1 2 3     1 2 3       1 2 3      1 2 3      1 2 3
                                x       x               x        x          x

               Output frames:
                                2          2          2          1          2
                                2          1          3          2          2

       Examples

       Simple IVTC of a top field first telecined stream:

               fieldmatch=order=tff:combmatch=none, decimate

       Advanced IVTC, with fallback on yadif for still combed frames:

               fieldmatch=order=tff:combmatch=full, yadif=deint=interlaced, decimate

   fieldorder
       Transform the field order of the input video.

       It accepts the following parameters:

       order
           The output field order. Valid values are tff for top field first or bff for bottom field first.

       The default value is tff.

       The transformation is done by shifting the picture content up or down by one line, and filling the
       remaining line with appropriate picture content.  This method is consistent with most broadcast field
       order converters.

       If the input video is not flagged as being interlaced, or it is already flagged as being of the required
       output field order, then this filter does not alter the incoming video.

       It is very useful when converting to or from PAL DV material, which is bottom field first.

       For example:

               ffmpeg -i in.vob -vf "fieldorder=bff" out.dv

   fifo
       Buffer input images and send them when they are requested.

       It is mainly useful when auto-inserted by the libavfilter framework.

       It does not take parameters.

   find_rect
       Find a rectangular object

       It accepts the following options:

       object
           Filepath of the object image, needs to be in gray8.

       threshold
           Detection threshold, default is 0.5.

       mipmaps
           Number of mipmaps, default is 3.

       xmin, ymin, xmax, ymax
           Specifies the rectangle in which to search.

       Examples

       •   Generate a representative palette of a given video using ffmpeg:

                   ffmpeg -i file.ts -vf find_rect=newref.pgm,cover_rect=cover.jpg:mode=cover new.mkv

   cover_rect
       Cover a rectangular object

       It accepts the following options:

       cover
           Filepath of the optional cover image, needs to be in yuv420.

       mode
           Set covering mode.

           It accepts the following values:

           cover
               cover it by the supplied image

           blur
               cover it by interpolating the surrounding pixels

           Default value is blur.

       Examples

       •   Generate a representative palette of a given video using ffmpeg:

                   ffmpeg -i file.ts -vf find_rect=newref.pgm,cover_rect=cover.jpg:mode=cover new.mkv

   format
       Convert the input video to one of the specified pixel formats.  Libavfilter will try to pick one that is
       suitable as input to the next filter.

       It accepts the following parameters:

       pix_fmts
           A '|'-separated list of pixel format names, such as "pix_fmts=yuv420p|monow|rgb24".

       Examples

       •   Convert the input video to the yuv420p format

                   format=pix_fmts=yuv420p

           Convert the input video to any of the formats in the list

                   format=pix_fmts=yuv420p|yuv444p|yuv410p

   fps
       Convert the video to specified constant frame rate by duplicating or dropping frames as necessary.

       It accepts the following parameters:

       fps The desired output frame rate. The default is 25.

       round
           Rounding method.

           Possible values are:

           zero
               zero round towards 0

           inf round away from 0

           down
               round towards -infinity

           up  round towards +infinity

           near
               round to nearest

           The default is "near".

       start_time
           Assume the first PTS should be the given value, in seconds. This allows for padding/trimming at the
           start of stream. By default, no assumption is made about the first frame's expected PTS, so no
           padding or trimming is done.  For example, this could be set to 0 to pad the beginning with
           duplicates of the first frame if a video stream starts after the audio stream or to trim any frames
           with a negative PTS.

       Alternatively, the options can be specified as a flat string: fps[:round].

       See also the setpts filter.

       Examples

       •   A typical usage in order to set the fps to 25:

                   fps=fps=25

       •   Sets the fps to 24, using abbreviation and rounding method to round to nearest:

                   fps=fps=film:round=near

   framepack
       Pack two different video streams into a stereoscopic video, setting proper metadata on supported codecs.
       The two views should have the same size and framerate and processing will stop when the shorter video
       ends. Please note that you may conveniently adjust view properties with the scale and fps filters.

       It accepts the following parameters:

       format
           The desired packing format. Supported values are:

           sbs The views are next to each other (default).

           tab The views are on top of each other.

           lines
               The views are packed by line.

           columns
               The views are packed by column.

           frameseq
               The views are temporally interleaved.

       Some examples:

               # Convert left and right views into a frame-sequential video
               ffmpeg -i LEFT -i RIGHT -filter_complex framepack=frameseq OUTPUT

               # Convert views into a side-by-side video with the same output resolution as the input
               ffmpeg -i LEFT -i RIGHT -filter_complex [0:v]scale=w=iw/2[left],[1:v]scale=w=iw/2[right],[left][right]framepack=sbs OUTPUT

   framerate
       Change the frame rate by interpolating new video output frames from the source frames.

       This filter is not designed to function correctly with interlaced media. If you wish to change the frame
       rate of interlaced media then you are required to deinterlace before this filter and re-interlace after
       this filter.

       A description of the accepted options follows.

       fps Specify the output frames per second. This option can also be specified as a value alone. The default
           is 50.

       interp_start
           Specify the start of a range where the output frame will be created as a linear interpolation of two
           frames. The range is [0-255], the default is 15.

       interp_end
           Specify the end of a range where the output frame will be created as a linear interpolation of two
           frames. The range is [0-255], the default is 240.

       scene
           Specify the level at which a scene change is detected as a value between 0 and 100 to indicate a new
           scene; a low value reflects a low probability for the current frame to introduce a new scene, while a
           higher value means the current frame is more likely to be one.  The default is 7.

       flags
           Specify flags influencing the filter process.

           Available value for flags is:

           scene_change_detect, scd
               Enable scene change detection using the value of the option scene.  This flag is enabled by
               default.

   framestep
       Select one frame every N-th frame.

       This filter accepts the following option:

       step
           Select frame after every "step" frames.  Allowed values are positive integers higher than 0. Default
           value is 1.

   frei0r
       Apply a frei0r effect to the input video.

       To enable the compilation of this filter, you need to install the frei0r header and configure FFmpeg with
       "--enable-frei0r".

       It accepts the following parameters:

       filter_name
           The name of the frei0r effect to load. If the environment variable FREI0R_PATH is defined, the frei0r
           effect is searched for in each of the directories specified by the colon-separated list in
           FREI0R_PATH.  Otherwise, the standard frei0r paths are searched, in this order: HOME/.frei0r-1/lib/,
           /usr/local/lib/frei0r-1/, /usr/lib/frei0r-1/.

       filter_params
           A '|'-separated list of parameters to pass to the frei0r effect.

       A frei0r effect parameter can be a boolean (its value is either "y" or "n"), a double, a color (specified
       as R/G/B, where R, G, and B are floating point numbers between 0.0 and 1.0, inclusive) or by a color
       description specified in the "Color" section in the ffmpeg-utils manual), a position (specified as X/Y,
       where X and Y are floating point numbers) and/or a string.

       The number and types of parameters depend on the loaded effect. If an effect parameter is not specified,
       the default value is set.

       Examples

       •   Apply the distort0r effect, setting the first two double parameters:

                   frei0r=filter_name=distort0r:filter_params=0.5|0.01

       •   Apply the colordistance effect, taking a color as the first parameter:

                   frei0r=colordistance:0.2/0.3/0.4
                   frei0r=colordistance:violet
                   frei0r=colordistance:0x112233

       •   Apply the perspective effect, specifying the top left and top right image positions:

                   frei0r=perspective:0.2/0.2|0.8/0.2

       For more information, see <http://frei0r.dyne.org>

   fspp
       Apply fast and simple postprocessing. It is a faster version of spp.

       It splits (I)DCT into horizontal/vertical passes. Unlike the simple post- processing filter, one of them
       is performed once per block, not per pixel.  This allows for much higher speed.

       The filter accepts the following options:

       quality
           Set quality. This option defines the number of levels for averaging. It accepts an integer in the
           range 4-5. Default value is 4.

       qp  Force a constant quantization parameter. It accepts an integer in range 0-63.  If not set, the filter
           will use the QP from the video stream (if available).

       strength
           Set filter strength. It accepts an integer in range -15 to 32. Lower values mean more details but
           also more artifacts, while higher values make the image smoother but also blurrier. Default value is
           0 X PSNR optimal.

       use_bframe_qp
           Enable the use of the QP from the B-Frames if set to 1. Using this option may cause flicker since the
           B-Frames have often larger QP. Default is 0 (not enabled).

   geq
       The filter accepts the following options:

       lum_expr, lum
           Set the luminance expression.

       cb_expr, cb
           Set the chrominance blue expression.

       cr_expr, cr
           Set the chrominance red expression.

       alpha_expr, a
           Set the alpha expression.

       red_expr, r
           Set the red expression.

       green_expr, g
           Set the green expression.

       blue_expr, b
           Set the blue expression.

       The colorspace is selected according to the specified options. If one of the lum_expr, cb_expr, or
       cr_expr options is specified, the filter will automatically select a YCbCr colorspace. If one of the
       red_expr, green_expr, or blue_expr options is specified, it will select an RGB colorspace.

       If one of the chrominance expression is not defined, it falls back on the other one. If no alpha
       expression is specified it will evaluate to opaque value.  If none of chrominance expressions are
       specified, they will evaluate to the luminance expression.

       The expressions can use the following variables and functions:

       N   The sequential number of the filtered frame, starting from 0.

       X
       Y   The coordinates of the current sample.

       W
       H   The width and height of the image.

       SW
       SH  Width and height scale depending on the currently filtered plane. It is the ratio between the
           corresponding luma plane number of pixels and the current plane ones. E.g. for YUV4:2:0 the values
           are "1,1" for the luma plane, and "0.5,0.5" for chroma planes.

       T   Time of the current frame, expressed in seconds.

       p(x, y)
           Return the value of the pixel at location (x,y) of the current plane.

       lum(x, y)
           Return the value of the pixel at location (x,y) of the luminance plane.

       cb(x, y)
           Return the value of the pixel at location (x,y) of the blue-difference chroma plane. Return 0 if
           there is no such plane.

       cr(x, y)
           Return the value of the pixel at location (x,y) of the red-difference chroma plane. Return 0 if there
           is no such plane.

       r(x, y)
       g(x, y)
       b(x, y)
           Return the value of the pixel at location (x,y) of the red/green/blue component. Return 0 if there is
           no such component.

       alpha(x, y)
           Return the value of the pixel at location (x,y) of the alpha plane. Return 0 if there is no such
           plane.

       For functions, if x and y are outside the area, the value will be automatically clipped to the closer
       edge.

       Examples

       •   Flip the image horizontally:

                   geq=p(W-X\,Y)

       •   Generate a bidimensional sine wave, with angle "PI/3" and a wavelength of 100 pixels:

                   geq=128 + 100*sin(2*(PI/100)*(cos(PI/3)*(X-50*T) + sin(PI/3)*Y)):128:128

       •   Generate a fancy enigmatic moving light:

                   nullsrc=s=256x256,geq=random(1)/hypot(X-cos(N*0.07)*W/2-W/2\,Y-sin(N*0.09)*H/2-H/2)^2*1000000*sin(N*0.02):128:128

       •   Generate a quick emboss effect:

                   format=gray,geq=lum_expr='(p(X,Y)+(256-p(X-4,Y-4)))/2'

       •   Modify RGB components depending on pixel position:

                   geq=r='X/W*r(X,Y)':g='(1-X/W)*g(X,Y)':b='(H-Y)/H*b(X,Y)'

       •   Create a radial gradient that is the same size as the input (also see the vignette filter):

                   geq=lum=255*gauss((X/W-0.5)*3)*gauss((Y/H-0.5)*3)/gauss(0)/gauss(0),format=gray

       •   Create a linear gradient to use as a mask for another filter, then compose with overlay. In this
           example the video will gradually become more blurry from the top to the bottom of the y-axis as
           defined by the linear gradient:

                   ffmpeg -i input.mp4 -filter_complex "geq=lum=255*(Y/H),format=gray[grad];[0:v]boxblur=4[blur];[blur][grad]alphamerge[alpha];[0:v][alpha]overlay" output.mp4

   gradfun
       Fix the banding artifacts that are sometimes introduced into nearly flat regions by truncation to 8bit
       color depth.  Interpolate the gradients that should go where the bands are, and dither them.

       It is designed for playback only.  Do not use it prior to lossy compression, because compression tends to
       lose the dither and bring back the bands.

       It accepts the following parameters:

       strength
           The maximum amount by which the filter will change any one pixel. This is also the threshold for
           detecting nearly flat regions. Acceptable values range from .51 to 64; the default value is 1.2. Out-
           of-range values will be clipped to the valid range.

       radius
           The neighborhood to fit the gradient to. A larger radius makes for smoother gradients, but also
           prevents the filter from modifying the pixels near detailed regions. Acceptable values are 8-32; the
           default value is 16. Out-of-range values will be clipped to the valid range.

       Alternatively, the options can be specified as a flat string: strength[:radius]

       Examples

       •   Apply the filter with a 3.5 strength and radius of 8:

                   gradfun=3.5:8

       •   Specify radius, omitting the strength (which will fall-back to the default value):

                   gradfun=radius=8

   haldclut
       Apply a Hald CLUT to a video stream.

       First input is the video stream to process, and second one is the Hald CLUT.  The Hald CLUT input can be
       a simple picture or a complete video stream.

       The filter accepts the following options:

       shortest
           Force termination when the shortest input terminates. Default is 0.

       repeatlast
           Continue applying the last CLUT after the end of the stream. A value of 0 disable the filter after
           the last frame of the CLUT is reached.  Default is 1.

       "haldclut" also has the same interpolation options as lut3d (both filters share the same internals).

       More information about the Hald CLUT can be found on Eskil Steenberg's website (Hald CLUT author) at
       <http://www.quelsolaar.com/technology/clut.html>.

       Workflow examples

       Hald CLUT video stream

       Generate an identity Hald CLUT stream altered with various effects:

               ffmpeg -f lavfi -i B<haldclutsrc>=8 -vf "hue=H=2*PI*t:s=sin(2*PI*t)+1, curves=cross_process" -t 10 -c:v ffv1 clut.nut

       Note: make sure you use a lossless codec.

       Then use it with "haldclut" to apply it on some random stream:

               ffmpeg -f lavfi -i mandelbrot -i clut.nut -filter_complex '[0][1] haldclut' -t 20 mandelclut.mkv

       The Hald CLUT will be applied to the 10 first seconds (duration of clut.nut), then the latest picture of
       that CLUT stream will be applied to the remaining frames of the "mandelbrot" stream.

       Hald CLUT with preview

       A Hald CLUT is supposed to be a squared image of "Level*Level*Level" by "Level*Level*Level" pixels. For a
       given Hald CLUT, FFmpeg will select the biggest possible square starting at the top left of the picture.
       The remaining padding pixels (bottom or right) will be ignored. This area can be used to add a preview of
       the Hald CLUT.

       Typically, the following generated Hald CLUT will be supported by the "haldclut" filter:

               ffmpeg -f lavfi -i B<haldclutsrc>=8 -vf "
                  pad=iw+320 [padded_clut];
                  smptebars=s=320x256, split [a][b];
                  [padded_clut][a] overlay=W-320:h, curves=color_negative [main];
                  [main][b] overlay=W-320" -frames:v 1 clut.png

       It contains the original and a preview of the effect of the CLUT: SMPTE color bars are displayed on the
       right-top, and below the same color bars processed by the color changes.

       Then, the effect of this Hald CLUT can be visualized with:

               ffplay input.mkv -vf "movie=clut.png, [in] haldclut"

   hflip
       Flip the input video horizontally.

       For example, to horizontally flip the input video with ffmpeg:

               ffmpeg -i in.avi -vf "hflip" out.avi

   histeq
       This filter applies a global color histogram equalization on a per-frame basis.

       It can be used to correct video that has a compressed range of pixel intensities.  The filter
       redistributes the pixel intensities to equalize their distribution across the intensity range. It may be
       viewed as an "automatically adjusting contrast filter". This filter is useful only for correcting
       degraded or poorly captured source video.

       The filter accepts the following options:

       strength
           Determine the amount of equalization to be applied.  As the strength is reduced, the distribution of
           pixel intensities more-and-more approaches that of the input frame. The value must be a float number
           in the range [0,1] and defaults to 0.200.

       intensity
           Set the maximum intensity that can generated and scale the output values appropriately.  The strength
           should be set as desired and then the intensity can be limited if needed to avoid washing-out. The
           value must be a float number in the range [0,1] and defaults to 0.210.

       antibanding
           Set the antibanding level. If enabled the filter will randomly vary the luminance of output pixels by
           a small amount to avoid banding of the histogram. Possible values are "none", "weak" or "strong". It
           defaults to "none".

   histogram
       Compute and draw a color distribution histogram for the input video.

       The computed histogram is a representation of the color component distribution in an image.

       The filter accepts the following options:

       mode
           Set histogram mode.

           It accepts the following values:

           levels
               Standard histogram that displays the color components distribution in an image. Displays color
               graph for each color component. Shows distribution of the Y, U, V, A or R, G, B components,
               depending on input format, in the current frame. Below each graph a color component scale meter
               is shown.

           color
               Displays chroma values (U/V color placement) in a two dimensional graph (which is called a
               vectorscope). The brighter a pixel in the vectorscope, the more pixels of the input frame
               correspond to that pixel (i.e., more pixels have this chroma value). The V component is displayed
               on the horizontal (X) axis, with the leftmost side being V = 0 and the rightmost side being V =
               255. The U component is displayed on the vertical (Y) axis, with the top representing U = 0 and
               the bottom representing U = 255.

               The position of a white pixel in the graph corresponds to the chroma value of a pixel of the
               input clip. The graph can therefore be used to read the hue (color flavor) and the saturation
               (the dominance of the hue in the color). As the hue of a color changes, it moves around the
               square. At the center of the square the saturation is zero, which means that the corresponding
               pixel has no color. If the amount of a specific color is increased (while leaving the other
               colors unchanged) the saturation increases, and the indicator moves towards the edge of the
               square.

           color2
               Chroma values in vectorscope, similar as "color" but actual chroma values are displayed.

           waveform
               Per row/column color component graph. In row mode, the graph on the left side represents color
               component value 0 and the right side represents value = 255.  In column mode, the top side
               represents color component value = 0 and bottom side represents value = 255.

           Default value is "levels".

       level_height
           Set height of level in "levels". Default value is 200.  Allowed range is [50, 2048].

       scale_height
           Set height of color scale in "levels". Default value is 12.  Allowed range is [0, 40].

       step
           Set step for "waveform" mode. Smaller values are useful to find out how many values of the same
           luminance are distributed across input rows/columns.  Default value is 10. Allowed range is [1, 255].

       waveform_mode
           Set mode for "waveform". Can be either "row", or "column".  Default is "row".

       waveform_mirror
           Set mirroring mode for "waveform". 0 means unmirrored, 1 means mirrored. In mirrored mode, higher
           values will be represented on the left side for "row" mode and at the top for "column" mode. Default
           is 0 (unmirrored).

       display_mode
           Set display mode for "waveform" and "levels".  It accepts the following values:

           parade
               Display separate graph for the color components side by side in "row" waveform mode or one below
               the other in "column" waveform mode for "waveform" histogram mode. For "levels" histogram mode,
               per color component graphs are placed below each other.

               Using this display mode in "waveform" histogram mode makes it easy to spot color casts in the
               highlights and shadows of an image, by comparing the contours of the top and the bottom graphs of
               each waveform. Since whites, grays, and blacks are characterized by exactly equal amounts of red,
               green, and blue, neutral areas of the picture should display three waveforms of roughly equal
               width/height. If not, the correction is easy to perform by making level adjustments the three
               waveforms.

           overlay
               Presents information identical to that in the "parade", except that the graphs representing color
               components are superimposed directly over one another.

               This display mode in "waveform" histogram mode makes it easier to spot relative differences or
               similarities in overlapping areas of the color components that are supposed to be identical, such
               as neutral whites, grays, or blacks.

           Default is "parade".

       levels_mode
           Set mode for "levels". Can be either "linear", or "logarithmic".  Default is "linear".

       components
           Set what color components to display for mode "levels".  Default is 7.

       Examples

       •   Calculate and draw histogram:

                   ffplay -i input -vf histogram

   hqdn3d
       This is a high precision/quality 3d denoise filter. It aims to reduce image noise, producing smooth
       images and making still images really still. It should enhance compressibility.

       It accepts the following optional parameters:

       luma_spatial
           A non-negative floating point number which specifies spatial luma strength.  It defaults to 4.0.

       chroma_spatial
           A non-negative floating point number which specifies spatial chroma strength.  It defaults to
           3.0*luma_spatial/4.0.

       luma_tmp
           A floating point number which specifies luma temporal strength. It defaults to 6.0*luma_spatial/4.0.

       chroma_tmp
           A floating point number which specifies chroma temporal strength. It defaults to
           luma_tmp*chroma_spatial/luma_spatial.

   hqx
       Apply a high-quality magnification filter designed for pixel art. This filter was originally created by
       Maxim Stepin.

       It accepts the following option:

       n   Set the scaling dimension: 2 for "hq2x", 3 for "hq3x" and 4 for "hq4x".  Default is 3.

   hstack
       Stack input videos horizontally.

       All streams must be of same pixel format and of same height.

       Note that this filter is faster than using overlay and pad filter to create same output.

       The filter accept the following option:

       nb_inputs
           Set number of input streams. Default is 2.

   hue
       Modify the hue and/or the saturation of the input.

       It accepts the following parameters:

       h   Specify the hue angle as a number of degrees. It accepts an expression, and defaults to "0".

       s   Specify the saturation in the [-10,10] range. It accepts an expression and defaults to "1".

       H   Specify the hue angle as a number of radians. It accepts an expression, and defaults to "0".

       b   Specify the brightness in the [-10,10] range. It accepts an expression and defaults to "0".

       h and H are mutually exclusive, and can't be specified at the same time.

       The b, h, H and s option values are expressions containing the following constants:

       n   frame count of the input frame starting from 0

       pts presentation timestamp of the input frame expressed in time base units

       r   frame rate of the input video, NAN if the input frame rate is unknown

       t   timestamp expressed in seconds, NAN if the input timestamp is unknown

       tb  time base of the input video

       Examples

       •   Set the hue to 90 degrees and the saturation to 1.0:

                   hue=h=90:s=1

       •   Same command but expressing the hue in radians:

                   hue=H=PI/2:s=1

       •   Rotate hue and make the saturation swing between 0 and 2 over a period of 1 second:

                   hue="H=2*PI*t: s=sin(2*PI*t)+1"

       •   Apply a 3 seconds saturation fade-in effect starting at 0:

                   hue="s=min(t/3\,1)"

           The general fade-in expression can be written as:

                   hue="s=min(0\, max((t-START)/DURATION\, 1))"

       •   Apply a 3 seconds saturation fade-out effect starting at 5 seconds:

                   hue="s=max(0\, min(1\, (8-t)/3))"

           The general fade-out expression can be written as:

                   hue="s=max(0\, min(1\, (START+DURATION-t)/DURATION))"

       Commands

       This filter supports the following commands:

       b
       s
       h
       H   Modify the hue and/or the saturation and/or brightness of the input video.  The command accepts the
           same syntax of the corresponding option.

           If the specified expression is not valid, it is kept at its current value.

   idet
       Detect video interlacing type.

       This filter tries to detect if the input frames as interlaced, progressive, top or bottom field first. It
       will also try and detect fields that are repeated between adjacent frames (a sign of telecine).

       Single frame detection considers only immediately adjacent frames when classifying each frame.  Multiple
       frame detection incorporates the classification history of previous frames.

       The filter will log these metadata values:

       single.current_frame
           Detected type of current frame using single-frame detection. One of: ``tff'' (top field first),
           ``bff'' (bottom field first), ``progressive'', or ``undetermined''

       single.tff
           Cumulative number of frames detected as top field first using single-frame detection.

       multiple.tff
           Cumulative number of frames detected as top field first using multiple-frame detection.

       single.bff
           Cumulative number of frames detected as bottom field first using single-frame detection.

       multiple.current_frame
           Detected type of current frame using multiple-frame detection. One of: ``tff'' (top field first),
           ``bff'' (bottom field first), ``progressive'', or ``undetermined''

       multiple.bff
           Cumulative number of frames detected as bottom field first using multiple-frame detection.

       single.progressive
           Cumulative number of frames detected as progressive using single-frame detection.

       multiple.progressive
           Cumulative number of frames detected as progressive using multiple-frame detection.

       single.undetermined
           Cumulative number of frames that could not be classified using single-frame detection.

       multiple.undetermined
           Cumulative number of frames that could not be classified using multiple-frame detection.

       repeated.current_frame
           Which field in the current frame is repeated from the last. One of ``neither'', ``top'', or
           ``bottom''.

       repeated.neither
           Cumulative number of frames with no repeated field.

       repeated.top
           Cumulative number of frames with the top field repeated from the previous frame's top field.

       repeated.bottom
           Cumulative number of frames with the bottom field repeated from the previous frame's bottom field.

       The filter accepts the following options:

       intl_thres
           Set interlacing threshold.

       prog_thres
           Set progressive threshold.

       repeat_thres
           Threshold for repeated field detection.

       half_life
           Number of frames after which a given frame's contribution to the statistics is halved (i.e., it
           contributes only 0.5 to it's classification). The default of 0 means that all frames seen are given
           full weight of 1.0 forever.

       analyze_interlaced_flag
           When this is not 0 then idet will use the specified number of frames to determine if the interlaced
           flag is accurate, it will not count undetermined frames.  If the flag is found to be accurate it will
           be used without any further computations, if it is found to be inaccurate it will be cleared without
           any further computations. This allows inserting the idet filter as a low computational method to
           clean up the interlaced flag

   il
       Deinterleave or interleave fields.

       This filter allows one to process interlaced images fields without deinterlacing them. Deinterleaving
       splits the input frame into 2 fields (so called half pictures). Odd lines are moved to the top half of
       the output image, even lines to the bottom half.  You can process (filter) them independently and then
       re-interleave them.

       The filter accepts the following options:

       luma_mode, l
       chroma_mode, c
       alpha_mode, a
           Available values for luma_mode, chroma_mode and alpha_mode are:

           none
               Do nothing.

           deinterleave, d
               Deinterleave fields, placing one above the other.

           interleave, i
               Interleave fields. Reverse the effect of deinterleaving.

           Default value is "none".

       luma_swap, ls
       chroma_swap, cs
       alpha_swap, as
           Swap luma/chroma/alpha fields. Exchange even & odd lines. Default value is 0.

   inflate
       Apply inflate effect to the video.

       This filter replaces the pixel by the local(3x3) average by taking into account only values higher than
       the pixel.

       It accepts the following options:

       threshold0
       threshold1
       threshold2
       threshold3
           Limit the maximum change for each plane, default is 65535.  If 0, plane will remain unchanged.

   interlace
       Simple interlacing filter from progressive contents. This interleaves upper (or lower) lines from odd
       frames with lower (or upper) lines from even frames, halving the frame rate and preserving image height.

                  Original        Original             New Frame
                  Frame 'j'      Frame 'j+1'             (tff)
                 ==========      ===========       ==================
                   Line 0  -------------------->    Frame 'j' Line 0
                   Line 1          Line 1  ---->   Frame 'j+1' Line 1
                   Line 2 --------------------->    Frame 'j' Line 2
                   Line 3          Line 3  ---->   Frame 'j+1' Line 3
                    ...             ...                   ...
               New Frame + 1 will be generated by Frame 'j+2' and Frame 'j+3' and so on

       It accepts the following optional parameters:

       scan
           This determines whether the interlaced frame is taken from the even (tff - default) or odd (bff)
           lines of the progressive frame.

       lowpass
           Enable (default) or disable the vertical lowpass filter to avoid twitter interlacing and reduce moire
           patterns.

   kerndeint
       Deinterlace input video by applying Donald Graft's adaptive kernel deinterling. Work on interlaced parts
       of a video to produce progressive frames.

       The description of the accepted parameters follows.

       thresh
           Set the threshold which affects the filter's tolerance when determining if a pixel line must be
           processed. It must be an integer in the range [0,255] and defaults to 10. A value of 0 will result in
           applying the process on every pixels.

       map Paint pixels exceeding the threshold value to white if set to 1.  Default is 0.

       order
           Set the fields order. Swap fields if set to 1, leave fields alone if 0. Default is 0.

       sharp
           Enable additional sharpening if set to 1. Default is 0.

       twoway
           Enable twoway sharpening if set to 1. Default is 0.

       Examples

       •   Apply default values:

                   kerndeint=thresh=10:map=0:order=0:sharp=0:twoway=0

       •   Enable additional sharpening:

                   kerndeint=sharp=1

       •   Paint processed pixels in white:

                   kerndeint=map=1

   lenscorrection
       Correct radial lens distortion

       This filter can be used to correct for radial distortion as can result from the use of wide angle lenses,
       and thereby re-rectify the image. To find the right parameters one can use tools available for example as
       part of opencv or simply trial-and-error.  To use opencv use the calibration sample (under samples/cpp)
       from the opencv sources and extract the k1 and k2 coefficients from the resulting matrix.

       Note that effectively the same filter is available in the open-source tools Krita and Digikam from the
       KDE project.

       In contrast to the vignette filter, which can also be used to compensate lens errors, this filter
       corrects the distortion of the image, whereas vignette corrects the brightness distribution, so you may
       want to use both filters together in certain cases, though you will have to take care of ordering, i.e.
       whether vignetting should be applied before or after lens correction.

       Options

       The filter accepts the following options:

       cx  Relative x-coordinate of the focal point of the image, and thereby the center of the distortion. This
           value has a range [0,1] and is expressed as fractions of the image width.

       cy  Relative y-coordinate of the focal point of the image, and thereby the center of the distortion. This
           value has a range [0,1] and is expressed as fractions of the image height.

       k1  Coefficient of the quadratic correction term. 0.5 means no correction.

       k2  Coefficient of the double quadratic correction term. 0.5 means no correction.

       The formula that generates the correction is:

       r_src = r_tgt * (1 + k1 * (r_tgt / r_0)^2 + k2 * (r_tgt / r_0)^4)

       where r_0 is halve of the image diagonal and r_src and r_tgt are the distances from the focal point in
       the source and target images, respectively.

   lut3d
       Apply a 3D LUT to an input video.

       The filter accepts the following options:

       file
           Set the 3D LUT file name.

           Currently supported formats:

           3dl AfterEffects

           cube
               Iridas

           dat DaVinci

           m3d Pandora

       interp
           Select interpolation mode.

           Available values are:

           nearest
               Use values from the nearest defined point.

           trilinear
               Interpolate values using the 8 points defining a cube.

           tetrahedral
               Interpolate values using a tetrahedron.

   lut, lutrgb, lutyuv
       Compute a look-up table for binding each pixel component input value to an output value, and apply it to
       the input video.

       lutyuv applies a lookup table to a YUV input video, lutrgb to an RGB input video.

       These filters accept the following parameters:

       c0  set first pixel component expression

       c1  set second pixel component expression

       c2  set third pixel component expression

       c3  set fourth pixel component expression, corresponds to the alpha component

       r   set red component expression

       g   set green component expression

       b   set blue component expression

       a   alpha component expression

       y   set Y/luminance component expression

       u   set U/Cb component expression

       v   set V/Cr component expression

       Each of them specifies the expression to use for computing the lookup table for the corresponding pixel
       component values.

       The exact component associated to each of the c* options depends on the format in input.

       The lut filter requires either YUV or RGB pixel formats in input, lutrgb requires RGB pixel formats in
       input, and lutyuv requires YUV.

       The expressions can contain the following constants and functions:

       w
       h   The input width and height.

       val The input value for the pixel component.

       clipval
           The input value, clipped to the minval-maxval range.

       maxval
           The maximum value for the pixel component.

       minval
           The minimum value for the pixel component.

       negval
           The negated value for the pixel component value, clipped to the minval-maxval range; it corresponds
           to the expression "maxval-clipval+minval".

       clip(val)
           The computed value in val, clipped to the minval-maxval range.

       gammaval(gamma)
           The computed gamma correction value of the pixel component value, clipped to the minval-maxval range.
           It corresponds to the expression
           "pow((clipval-minval)/(maxval-minval)\,gamma)*(maxval-minval)+minval"

       All expressions default to "val".

       Examples

       •   Negate input video:

                   lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
                   lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"

           The above is the same as:

                   lutrgb="r=negval:g=negval:b=negval"
                   lutyuv="y=negval:u=negval:v=negval"

       •   Negate luminance:

                   lutyuv=y=negval

       •   Remove chroma components, turning the video into a graytone image:

                   lutyuv="u=128:v=128"

       •   Apply a luma burning effect:

                   lutyuv="y=2*val"

       •   Remove green and blue components:

                   lutrgb="g=0:b=0"

       •   Set a constant alpha channel value on input:

                   format=rgba,lutrgb=a="maxval-minval/2"

       •   Correct luminance gamma by a factor of 0.5:

                   lutyuv=y=gammaval(0.5)

       •   Discard least significant bits of luma:

                   lutyuv=y='bitand(val, 128+64+32)'

   mergeplanes
       Merge color channel components from several video streams.

       The filter accepts up to 4 input streams, and merge selected input planes to the output video.

       This filter accepts the following options:

       mapping
           Set input to output plane mapping. Default is 0.

           The mappings is specified as a bitmap. It should be specified as a hexadecimal number in the form
           0xAa[Bb[Cc[Dd]]]. 'Aa' describes the mapping for the first plane of the output stream. 'A' sets the
           number of the input stream to use (from 0 to 3), and 'a' the plane number of the corresponding input
           to use (from 0 to 3). The rest of the mappings is similar, 'Bb' describes the mapping for the output
           stream second plane, 'Cc' describes the mapping for the output stream third plane and 'Dd' describes
           the mapping for the output stream fourth plane.

       format
           Set output pixel format. Default is "yuva444p".

       Examples

       •   Merge three gray video streams of same width and height into single video stream:

                   [a0][a1][a2]mergeplanes=0x001020:yuv444p

       •   Merge 1st yuv444p stream and 2nd gray video stream into yuva444p video stream:

                   [a0][a1]mergeplanes=0x00010210:yuva444p

       •   Swap Y and A plane in yuva444p stream:

                   format=yuva444p,mergeplanes=0x03010200:yuva444p

       •   Swap U and V plane in yuv420p stream:

                   format=yuv420p,mergeplanes=0x000201:yuv420p

       •   Cast a rgb24 clip to yuv444p:

                   format=rgb24,mergeplanes=0x000102:yuv444p

   mcdeint
       Apply motion-compensation deinterlacing.

       It needs one field per frame as input and must thus be used together with yadif=1/3 or equivalent.

       This filter accepts the following options:

       mode
           Set the deinterlacing mode.

           It accepts one of the following values:

           fast
           medium
           slow
               use iterative motion estimation

           extra_slow
               like slow, but use multiple reference frames.

           Default value is fast.

       parity
           Set the picture field parity assumed for the input video. It must be one of the following values:

           0, tff
               assume top field first

           1, bff
               assume bottom field first

           Default value is bff.

       qp  Set per-block quantization parameter (QP) used by the internal encoder.

           Higher values should result in a smoother motion vector field but less optimal individual vectors.
           Default value is 1.

   mpdecimate
       Drop frames that do not differ greatly from the previous frame in order to reduce frame rate.

       The main use of this filter is for very-low-bitrate encoding (e.g. streaming over dialup modem), but it
       could in theory be used for fixing movies that were inverse-telecined incorrectly.

       A description of the accepted options follows.

       max Set the maximum number of consecutive frames which can be dropped (if positive), or the minimum
           interval between dropped frames (if negative). If the value is 0, the frame is dropped unregarding
           the number of previous sequentially dropped frames.

           Default value is 0.

       hi
       lo
       frac
           Set the dropping threshold values.

           Values for hi and lo are for 8x8 pixel blocks and represent actual pixel value differences, so a
           threshold of 64 corresponds to 1 unit of difference for each pixel, or the same spread out
           differently over the block.

           A frame is a candidate for dropping if no 8x8 blocks differ by more than a threshold of hi, and if no
           more than frac blocks (1 meaning the whole image) differ by more than a threshold of lo.

           Default value for hi is 64*12, default value for lo is 64*5, and default value for frac is 0.33.

   negate
       Negate input video.

       It accepts an integer in input; if non-zero it negates the alpha component (if available). The default
       value in input is 0.

   noformat
       Force libavfilter not to use any of the specified pixel formats for the input to the next filter.

       It accepts the following parameters:

       pix_fmts
           A '|'-separated list of pixel format names, such as apix_fmts=yuv420p|monow|rgb24".

       Examples

       •   Force libavfilter to use a format different from yuv420p for the input to the vflip filter:

                   noformat=pix_fmts=yuv420p,vflip

       •   Convert the input video to any of the formats not contained in the list:

                   noformat=yuv420p|yuv444p|yuv410p

   noise
       Add noise on video input frame.

       The filter accepts the following options:

       all_seed
       c0_seed
       c1_seed
       c2_seed
       c3_seed
           Set noise seed for specific pixel component or all pixel components in case of all_seed. Default
           value is 123457.

       all_strength, alls
       c0_strength, c0s
       c1_strength, c1s
       c2_strength, c2s
       c3_strength, c3s
           Set noise strength for specific pixel component or all pixel components in case all_strength. Default
           value is 0. Allowed range is [0, 100].

       all_flags, allf
       c0_flags, c0f
       c1_flags, c1f
       c2_flags, c2f
       c3_flags, c3f
           Set pixel component flags or set flags for all components if all_flags.  Available values for
           component flags are:

           a   averaged temporal noise (smoother)

           p   mix random noise with a (semi)regular pattern

           t   temporal noise (noise pattern changes between frames)

           u   uniform noise (gaussian otherwise)

       Examples

       Add temporal and uniform noise to input video:

               noise=alls=20:allf=t+u

   null
       Pass the video source unchanged to the output.

   ocv
       Apply a video transform using libopencv.

       To enable this filter, install the libopencv library and headers and configure FFmpeg with
       "--enable-libopencv".

       It accepts the following parameters:

       filter_name
           The name of the libopencv filter to apply.

       filter_params
           The parameters to pass to the libopencv filter. If not specified, the default values are assumed.

       Refer to the official libopencv documentation for more precise information:
       <http://docs.opencv.org/master/modules/imgproc/doc/filtering.html>

       Several libopencv filters are supported; see the following subsections.

       dilate

       Dilate an image by using a specific structuring element.  It corresponds to the libopencv function
       "cvDilate".

       It accepts the parameters: struct_el|nb_iterations.

       struct_el represents a structuring element, and has the syntax: colsxrows+anchor_xxanchor_y/shape

       cols and rows represent the number of columns and rows of the structuring element, anchor_x and anchor_y
       the anchor point, and shape the shape for the structuring element. shape must be "rect", "cross",
       "ellipse", or "custom".

       If the value for shape is "custom", it must be followed by a string of the form "=filename". The file
       with name filename is assumed to represent a binary image, with each printable character corresponding to
       a bright pixel. When a custom shape is used, cols and rows are ignored, the number or columns and rows of
       the read file are assumed instead.

       The default value for struct_el is "3x3+0x0/rect".

       nb_iterations specifies the number of times the transform is applied to the image, and defaults to 1.

       Some examples:

               # Use the default values
               ocv=dilate

               # Dilate using a structuring element with a 5x5 cross, iterating two times
               ocv=filter_name=dilate:filter_params=5x5+2x2/cross|2

               # Read the shape from the file diamond.shape, iterating two times.
               # The file diamond.shape may contain a pattern of characters like this
               #   *
               #  ***
               # *****
               #  ***
               #   *
               # The specified columns and rows are ignored
               # but the anchor point coordinates are not
               ocv=dilate:0x0+2x2/custom=diamond.shape|2

       erode

       Erode an image by using a specific structuring element.  It corresponds to the libopencv function
       "cvErode".

       It accepts the parameters: struct_el:nb_iterations, with the same syntax and semantics as the dilate
       filter.

       smooth

       Smooth the input video.

       The filter takes the following parameters: type|param1|param2|param3|param4.

       type is the type of smooth filter to apply, and must be one of the following values: "blur",
       "blur_no_scale", "median", "gaussian", or "bilateral". The default value is "gaussian".

       The meaning of param1, param2, param3, and param4 depend on the smooth type. param1 and param2 accept
       integer positive values or 0. param3 and param4 accept floating point values.

       The default value for param1 is 3. The default value for the other parameters is 0.

       These parameters correspond to the parameters assigned to the libopencv function "cvSmooth".

   overlay
       Overlay one video on top of another.

       It takes two inputs and has one output. The first input is the "main" video on which the second input is
       overlaid.

       It accepts the following parameters:

       A description of the accepted options follows.

       x
       y   Set the expression for the x and y coordinates of the overlaid video on the main video. Default value
           is "0" for both expressions. In case the expression is invalid, it is set to a huge value (meaning
           that the overlay will not be displayed within the output visible area).

       eof_action
           The action to take when EOF is encountered on the secondary input; it accepts one of the following
           values:

           repeat
               Repeat the last frame (the default).

           endall
               End both streams.

           pass
               Pass the main input through.

       eval
           Set when the expressions for x, and y are evaluated.

           It accepts the following values:

           init
               only evaluate expressions once during the filter initialization or when a command is processed

           frame
               evaluate expressions for each incoming frame

           Default value is frame.

       shortest
           If set to 1, force the output to terminate when the shortest input terminates. Default value is 0.

       format
           Set the format for the output video.

           It accepts the following values:

           yuv420
               force YUV420 output

           yuv422
               force YUV422 output

           yuv444
               force YUV444 output

           rgb force RGB output

           Default value is yuv420.

       rgb (deprecated)
           If set to 1, force the filter to accept inputs in the RGB color space. Default value is 0. This
           option is deprecated, use format instead.

       repeatlast
           If set to 1, force the filter to draw the last overlay frame over the main input until the end of the
           stream. A value of 0 disables this behavior. Default value is 1.

       The x, and y expressions can contain the following parameters.

       main_w, W
       main_h, H
           The main input width and height.

       overlay_w, w
       overlay_h, h
           The overlay input width and height.

       x
       y   The computed values for x and y. They are evaluated for each new frame.

       hsub
       vsub
           horizontal and vertical chroma subsample values of the output format. For example for the pixel
           format "yuv422p" hsub is 2 and vsub is 1.

       n   the number of input frame, starting from 0

       pos the position in the file of the input frame, NAN if unknown

       t   The timestamp, expressed in seconds. It's NAN if the input timestamp is unknown.

       Note that the n, pos, t variables are available only when evaluation is done per frame, and will evaluate
       to NAN when eval is set to init.

       Be aware that frames are taken from each input video in timestamp order, hence, if their initial
       timestamps differ, it is a good idea to pass the two inputs through a setpts=PTS-STARTPTS filter to have
       them begin in the same zero timestamp, as the example for the movie filter does.

       You can chain together more overlays but you should test the efficiency of such approach.

       Commands

       This filter supports the following commands:

       x
       y   Modify the x and y of the overlay input.  The command accepts the same syntax of the corresponding
           option.

           If the specified expression is not valid, it is kept at its current value.

       Examples

       •   Draw the overlay at 10 pixels from the bottom right corner of the main video:

                   overlay=main_w-overlay_w-10:main_h-overlay_h-10

           Using named options the example above becomes:

                   overlay=x=main_w-overlay_w-10:y=main_h-overlay_h-10

       •   Insert a transparent PNG logo in the bottom left corner of the input, using the ffmpeg tool with the
           "-filter_complex" option:

                   ffmpeg -i input -i logo -filter_complex 'overlay=10:main_h-overlay_h-10' output

       •   Insert 2 different transparent PNG logos (second logo on bottom right corner) using the ffmpeg tool:

                   ffmpeg -i input -i logo1 -i logo2 -filter_complex 'overlay=x=10:y=H-h-10,overlay=x=W-w-10:y=H-h-10' output

       •   Add a transparent color layer on top of the main video; "WxH" must specify the size of the main input
           to the overlay filter:

                   color=color=red@.3:size=WxH [over]; [in][over] overlay [out]

       •   Play an original video and a filtered version (here with the deshake filter) side by side using the
           ffplay tool:

                   ffplay input.avi -vf 'split[a][b]; [a]pad=iw*2:ih[src]; [b]deshake[filt]; [src][filt]overlay=w'

           The above command is the same as:

                   ffplay input.avi -vf 'split[b], pad=iw*2[src], [b]deshake, [src]overlay=w'

       •   Make a sliding overlay appearing from the left to the right top part of the screen starting since
           time 2:

                   overlay=x='if(gte(t,2), -w+(t-2)*20, NAN)':y=0

       •   Compose output by putting two input videos side to side:

                   ffmpeg -i left.avi -i right.avi -filter_complex "
                   nullsrc=size=200x100 [background];
                   [0:v] setpts=PTS-STARTPTS, scale=100x100 [left];
                   [1:v] setpts=PTS-STARTPTS, scale=100x100 [right];
                   [background][left]       overlay=shortest=1       [background+left];
                   [background+left][right] overlay=shortest=1:x=100 [left+right]
                   "

       •   Mask 10-20 seconds of a video by applying the delogo filter to a section

                   ffmpeg -i test.avi -codec:v:0 wmv2 -ar 11025 -b:v 9000k
                   -vf '[in]split[split_main][split_delogo];[split_delogo]trim=start=360:end=371,delogo=0:0:640:480[delogoed];[split_main][delogoed]overlay=eof_action=pass[out]'
                   masked.avi

       •   Chain several overlays in cascade:

                   nullsrc=s=200x200 [bg];
                   testsrc=s=100x100, split=4 [in0][in1][in2][in3];
                   [in0] lutrgb=r=0, [bg]   overlay=0:0     [mid0];
                   [in1] lutrgb=g=0, [mid0] overlay=100:0   [mid1];
                   [in2] lutrgb=b=0, [mid1] overlay=0:100   [mid2];
                   [in3] null,       [mid2] overlay=100:100 [out0]

   owdenoise
       Apply Overcomplete Wavelet denoiser.

       The filter accepts the following options:

       depth
           Set depth.

           Larger depth values will denoise lower frequency components more, but slow down filtering.

           Must be an int in the range 8-16, default is 8.

       luma_strength, ls
           Set luma strength.

           Must be a double value in the range 0-1000, default is 1.0.

       chroma_strength, cs
           Set chroma strength.

           Must be a double value in the range 0-1000, default is 1.0.

   pad
       Add paddings to the input image, and place the original input at the provided x, y coordinates.

       It accepts the following parameters:

       width, w
       height, h
           Specify an expression for the size of the output image with the paddings added. If the value for
           width or height is 0, the corresponding input size is used for the output.

           The width expression can reference the value set by the height expression, and vice versa.

           The default value of width and height is 0.

       x
       y   Specify the offsets to place the input image at within the padded area, with respect to the top/left
           border of the output image.

           The x expression can reference the value set by the y expression, and vice versa.

           The default value of x and y is 0.

       color
           Specify the color of the padded area. For the syntax of this option, check the "Color" section in the
           ffmpeg-utils manual.

           The default value of color is "black".

       The value for the width, height, x, and y options are expressions containing the following constants:

       in_w
       in_h
           The input video width and height.

       iw
       ih  These are the same as in_w and in_h.

       out_w
       out_h
           The output width and height (the size of the padded area), as specified by the width and height
           expressions.

       ow
       oh  These are the same as out_w and out_h.

       x
       y   The x and y offsets as specified by the x and y expressions, or NAN if not yet specified.

       a   same as iw / ih

       sar input sample aspect ratio

       dar input display aspect ratio, it is the same as (iw / ih) * sar

       hsub
       vsub
           The horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub
           is 2 and vsub is 1.

       Examples

       •   Add paddings with the color "violet" to the input video. The output video size is 640x480, and the
           top-left corner of the input video is placed at column 0, row 40

                   pad=640:480:0:40:violet

           The example above is equivalent to the following command:

                   pad=width=640:height=480:x=0:y=40:color=violet

       •   Pad the input to get an output with dimensions increased by 3/2, and put the input video at the
           center of the padded area:

                   pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"

       •   Pad the input to get a squared output with size equal to the maximum value between the input width
           and height, and put the input video at the center of the padded area:

                   pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"

       •   Pad the input to get a final w/h ratio of 16:9:

                   pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"

       •   In case of anamorphic video, in order to set the output display aspect correctly, it is necessary to
           use sar in the expression, according to the relation:

                   (ih * X / ih) * sar = output_dar
                   X = output_dar / sar

           Thus the previous example needs to be modified to:

                   pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"

       •   Double the output size and put the input video in the bottom-right corner of the output padded area:

                   pad="2*iw:2*ih:ow-iw:oh-ih"

   palettegen
       Generate one palette for a whole video stream.

       It accepts the following options:

       max_colors
           Set the maximum number of colors to quantize in the palette.  Note: the palette will still contain
           256 colors; the unused palette entries will be black.

       reserve_transparent
           Create a palette of 255 colors maximum and reserve the last one for transparency. Reserving the
           transparency color is useful for GIF optimization.  If not set, the maximum of colors in the palette
           will be 256. You probably want to disable this option for a standalone image.  Set by default.

       stats_mode
           Set statistics mode.

           It accepts the following values:

           full
               Compute full frame histograms.

           diff
               Compute histograms only for the part that differs from previous frame. This might be relevant to
               give more importance to the moving part of your input if the background is static.

           Default value is full.

       The filter also exports the frame metadata "lavfi.color_quant_ratio" ("nb_color_in / nb_color_out") which
       you can use to evaluate the degree of color quantization of the palette. This information is also visible
       at info logging level.

       Examples

       •   Generate a representative palette of a given video using ffmpeg:

                   ffmpeg -i input.mkv -vf palettegen palette.png

   paletteuse
       Use a palette to downsample an input video stream.

       The filter takes two inputs: one video stream and a palette. The palette must be a 256 pixels image.

       It accepts the following options:

       dither
           Select dithering mode. Available algorithms are:

           bayer
               Ordered 8x8 bayer dithering (deterministic)

           heckbert
               Dithering as defined by Paul Heckbert in 1982 (simple error diffusion).  Note: this dithering is
               sometimes considered "wrong" and is included as a reference.

           floyd_steinberg
               Floyd and Steingberg dithering (error diffusion)

           sierra2
               Frankie Sierra dithering v2 (error diffusion)

           sierra2_4a
               Frankie Sierra dithering v2 "Lite" (error diffusion)

           Default is sierra2_4a.

       bayer_scale
           When bayer dithering is selected, this option defines the scale of the pattern (how much the
           crosshatch pattern is visible). A low value means more visible pattern for less banding, and higher
           value means less visible pattern at the cost of more banding.

           The option must be an integer value in the range [0,5]. Default is 2.

       diff_mode
           If set, define the zone to process

           rectangle
               Only the changing rectangle will be reprocessed. This is similar to GIF cropping/offsetting
               compression mechanism. This option can be useful for speed if only a part of the image is
               changing, and has use cases such as limiting the scope of the error diffusal dither to the
               rectangle that bounds the moving scene (it leads to more deterministic output if the scene
               doesn't change much, and as a result less moving noise and better GIF compression).

           Default is none.

       Examples

       •   Use a palette (generated for example with palettegen) to encode a GIF using ffmpeg:

                   ffmpeg -i input.mkv -i palette.png -lavfi paletteuse output.gif

   perspective
       Correct perspective of video not recorded perpendicular to the screen.

       A description of the accepted parameters follows.

       x0
       y0
       x1
       y1
       x2
       y2
       x3
       y3  Set coordinates expression for top left, top right, bottom left and bottom right corners.  Default
           values are "0:0:W:0:0:H:W:H" with which perspective will remain unchanged.  If the "sense" option is
           set to "source", then the specified points will be sent to the corners of the destination. If the
           "sense" option is set to "destination", then the corners of the source will be sent to the specified
           coordinates.

           The expressions can use the following variables:

           W
           H   the width and height of video frame.

       interpolation
           Set interpolation for perspective correction.

           It accepts the following values:

           linear
           cubic

           Default value is linear.

       sense
           Set interpretation of coordinate options.

           It accepts the following values:

           0, source
               Send point in the source specified by the given coordinates to the corners of the destination.

           1, destination
               Send the corners of the source to the point in the destination specified by the given
               coordinates.

               Default value is source.

   phase
       Delay interlaced video by one field time so that the field order changes.

       The intended use is to fix PAL movies that have been captured with the opposite field order to the film-
       to-video transfer.

       A description of the accepted parameters follows.

       mode
           Set phase mode.

           It accepts the following values:

           t   Capture field order top-first, transfer bottom-first.  Filter will delay the bottom field.

           b   Capture field order bottom-first, transfer top-first.  Filter will delay the top field.

           p   Capture and transfer with the same field order. This mode only exists for the documentation of
               the other options to refer to, but if you actually select it, the filter will faithfully do
               nothing.

           a   Capture field order determined automatically by field flags, transfer opposite.  Filter selects
               among t and b modes on a frame by frame basis using field flags. If no field information is
               available, then this works just like u.

           u   Capture unknown or varying, transfer opposite.  Filter selects among t and b on a frame by frame
               basis by analyzing the images and selecting the alternative that produces best match between the
               fields.

           T   Capture top-first, transfer unknown or varying.  Filter selects among t and p using image
               analysis.

           B   Capture bottom-first, transfer unknown or varying.  Filter selects among b and p using image
               analysis.

           A   Capture determined by field flags, transfer unknown or varying.  Filter selects among t, b and p
               using field flags and image analysis. If no field information is available, then this works just
               like U. This is the default mode.

           U   Both capture and transfer unknown or varying.  Filter selects among t, b and p using image
               analysis only.

   pixdesctest
       Pixel format descriptor test filter, mainly useful for internal testing. The output video should be equal
       to the input video.

       For example:

               format=monow, pixdesctest

       can be used to test the monowhite pixel format descriptor definition.

   pp
       Enable the specified chain of postprocessing subfilters using libpostproc. This library should be
       automatically selected with a GPL build ("--enable-gpl").  Subfilters must be separated by '/' and can be
       disabled by prepending a '-'.  Each subfilter and some options have a short and a long name that can be
       used interchangeably, i.e. dr/dering are the same.

       The filters accept the following options:

       subfilters
           Set postprocessing subfilters string.

       All subfilters share common options to determine their scope:

       a/autoq
           Honor the quality commands for this subfilter.

       c/chrom
           Do chrominance filtering, too (default).

       y/nochrom
           Do luminance filtering only (no chrominance).

       n/noluma
           Do chrominance filtering only (no luminance).

       These options can be appended after the subfilter name, separated by a '|'.

       Available subfilters are:

       hb/hdeblock[|difference[|flatness]]
           Horizontal deblocking filter

           difference
               Difference factor where higher values mean more deblocking (default: 32).

           flatness
               Flatness threshold where lower values mean more deblocking (default: 39).

       vb/vdeblock[|difference[|flatness]]
           Vertical deblocking filter

           difference
               Difference factor where higher values mean more deblocking (default: 32).

           flatness
               Flatness threshold where lower values mean more deblocking (default: 39).

       ha/hadeblock[|difference[|flatness]]
           Accurate horizontal deblocking filter

           difference
               Difference factor where higher values mean more deblocking (default: 32).

           flatness
               Flatness threshold where lower values mean more deblocking (default: 39).

       va/vadeblock[|difference[|flatness]]
           Accurate vertical deblocking filter

           difference
               Difference factor where higher values mean more deblocking (default: 32).

           flatness
               Flatness threshold where lower values mean more deblocking (default: 39).

       The horizontal and vertical deblocking filters share the difference and flatness values so you cannot set
       different horizontal and vertical thresholds.

       h1/x1hdeblock
           Experimental horizontal deblocking filter

       v1/x1vdeblock
           Experimental vertical deblocking filter

       dr/dering
           Deringing filter

       tn/tmpnoise[|threshold1[|threshold2[|threshold3]]], temporal noise reducer
           threshold1
               larger -> stronger filtering

           threshold2
               larger -> stronger filtering

           threshold3
               larger -> stronger filtering

       al/autolevels[:f/fullyrange], automatic brightness / contrast correction
           f/fullyrange
               Stretch luminance to "0-255".

       lb/linblenddeint
           Linear blend deinterlacing filter that deinterlaces the given block by filtering all lines with a "(1
           2 1)" filter.

       li/linipoldeint
           Linear interpolating deinterlacing filter that deinterlaces the given block by linearly interpolating
           every second line.

       ci/cubicipoldeint
           Cubic interpolating deinterlacing filter deinterlaces the given block by cubically interpolating
           every second line.

       md/mediandeint
           Median deinterlacing filter that deinterlaces the given block by applying a median filter to every
           second line.

       fd/ffmpegdeint
           FFmpeg deinterlacing filter that deinterlaces the given block by filtering every second line with a
           "(-1 4 2 4 -1)" filter.

       l5/lowpass5
           Vertically applied FIR lowpass deinterlacing filter that deinterlaces the given block by filtering
           all lines with a "(-1 2 6 2 -1)" filter.

       fq/forceQuant[|quantizer]
           Overrides the quantizer table from the input with the constant quantizer you specify.

           quantizer
               Quantizer to use

       de/default
           Default pp filter combination ("hb|a,vb|a,dr|a")

       fa/fast
           Fast pp filter combination ("h1|a,v1|a,dr|a")

       ac  High quality pp filter combination ("ha|a|128|7,va|a,dr|a")

       Examples

       •   Apply horizontal and vertical deblocking, deringing and automatic brightness/contrast:

                   pp=hb/vb/dr/al

       •   Apply default filters without brightness/contrast correction:

                   pp=de/-al

       •   Apply default filters and temporal denoiser:

                   pp=default/tmpnoise|1|2|3

       •   Apply deblocking on luminance only, and switch vertical deblocking on or off automatically depending
           on available CPU time:

                   pp=hb|y/vb|a

   pp7
       Apply Postprocessing filter 7. It is variant of the spp filter, similar to spp = 6 with 7 point DCT,
       where only the center sample is used after IDCT.

       The filter accepts the following options:

       qp  Force a constant quantization parameter. It accepts an integer in range 0 to 63. If not set, the
           filter will use the QP from the video stream (if available).

       mode
           Set thresholding mode. Available modes are:

           hard
               Set hard thresholding.

           soft
               Set soft thresholding (better de-ringing effect, but likely blurrier).

           medium
               Set medium thresholding (good results, default).

   psnr
       Obtain the average, maximum and minimum PSNR (Peak Signal to Noise Ratio) between two input videos.

       This filter takes in input two input videos, the first input is considered the "main" source and is
       passed unchanged to the output. The second input is used as a "reference" video for computing the PSNR.

       Both video inputs must have the same resolution and pixel format for this filter to work correctly. Also
       it assumes that both inputs have the same number of frames, which are compared one by one.

       The obtained average PSNR is printed through the logging system.

       The filter stores the accumulated MSE (mean squared error) of each frame, and at the end of the
       processing it is averaged across all frames equally, and the following formula is applied to obtain the
       PSNR:

               PSNR = 10*log10(MAX^2/MSE)

       Where MAX is the average of the maximum values of each component of the image.

       The description of the accepted parameters follows.

       stats_file, f
           If specified the filter will use the named file to save the PSNR of each individual frame.

       The file printed if stats_file is selected, contains a sequence of key/value pairs of the form key:value
       for each compared couple of frames.

       A description of each shown parameter follows:

       n   sequential number of the input frame, starting from 1

       mse_avg
           Mean Square Error pixel-by-pixel average difference of the compared frames, averaged over all the
           image components.

       mse_y, mse_u, mse_v, mse_r, mse_g, mse_g, mse_a
           Mean Square Error pixel-by-pixel average difference of the compared frames for the component
           specified by the suffix.

       psnr_y, psnr_u, psnr_v, psnr_r, psnr_g, psnr_b, psnr_a
           Peak Signal to Noise ratio of the compared frames for the component specified by the suffix.

       For example:

               movie=ref_movie.mpg, setpts=PTS-STARTPTS [main];
               [main][ref] psnr="stats_file=stats.log" [out]

       On this example the input file being processed is compared with the reference file ref_movie.mpg. The
       PSNR of each individual frame is stored in stats.log.

   pullup
       Pulldown reversal (inverse telecine) filter, capable of handling mixed hard-telecine, 24000/1001 fps
       progressive, and 30000/1001 fps progressive content.

       The pullup filter is designed to take advantage of future context in making its decisions. This filter is
       stateless in the sense that it does not lock onto a pattern to follow, but it instead looks forward to
       the following fields in order to identify matches and rebuild progressive frames.

       To produce content with an even framerate, insert the fps filter after pullup, use "fps=24000/1001" if
       the input frame rate is 29.97fps, "fps=24" for 30fps and the (rare) telecined 25fps input.

       The filter accepts the following options:

       jl
       jr
       jt
       jb  These options set the amount of "junk" to ignore at the left, right, top, and bottom of the image,
           respectively. Left and right are in units of 8 pixels, while top and bottom are in units of 2 lines.
           The default is 8 pixels on each side.

       sb  Set the strict breaks. Setting this option to 1 will reduce the chances of filter generating an
           occasional mismatched frame, but it may also cause an excessive number of frames to be dropped during
           high motion sequences.  Conversely, setting it to -1 will make filter match fields more easily.  This
           may help processing of video where there is slight blurring between the fields, but may also cause
           there to be interlaced frames in the output.  Default value is 0.

       mp  Set the metric plane to use. It accepts the following values:

           l   Use luma plane.

           u   Use chroma blue plane.

           v   Use chroma red plane.

           This option may be set to use chroma plane instead of the default luma plane for doing filter's
           computations. This may improve accuracy on very clean source material, but more likely will decrease
           accuracy, especially if there is chroma noise (rainbow effect) or any grayscale video.  The main
           purpose of setting mp to a chroma plane is to reduce CPU load and make pullup usable in realtime on
           slow machines.

       For best results (without duplicated frames in the output file) it is necessary to change the output
       frame rate. For example, to inverse telecine NTSC input:

               ffmpeg -i input -vf pullup -r 24000/1001 ...

   qp
       Change video quantization parameters (QP).

       The filter accepts the following option:

       qp  Set expression for quantization parameter.

       The expression is evaluated through the eval API and can contain, among others, the following constants:

       known
           1 if index is not 129, 0 otherwise.

       qp  Sequentional index starting from -129 to 128.

       Examples

       •   Some equation like:

                   qp=2+2*sin(PI*qp)

   random
       Flush video frames from internal cache of frames into a random order.  No frame is discarded.  Inspired
       by frei0r nervous filter.

       frames
           Set size in number of frames of internal cache, in range from 2 to 512. Default is 30.

       seed
           Set seed for random number generator, must be an integer included between 0 and "UINT32_MAX". If not
           specified, or if explicitly set to less than 0, the filter will try to use a good random seed on a
           best effort basis.

   removegrain
       The removegrain filter is a spatial denoiser for progressive video.

       m0  Set mode for the first plane.

       m1  Set mode for the second plane.

       m2  Set mode for the third plane.

       m3  Set mode for the fourth plane.

       Range of mode is from 0 to 24. Description of each mode follows:

       0   Leave input plane unchanged. Default.

       1   Clips the pixel with the minimum and maximum of the 8 neighbour pixels.

       2   Clips the pixel with the second minimum and maximum of the 8 neighbour pixels.

       3   Clips the pixel with the third minimum and maximum of the 8 neighbour pixels.

       4   Clips the pixel with the fourth minimum and maximum of the 8 neighbour pixels.  This is equivalent to
           a median filter.

       5   Line-sensitive clipping giving the minimal change.

       6   Line-sensitive clipping, intermediate.

       7   Line-sensitive clipping, intermediate.

       8   Line-sensitive clipping, intermediate.

       9   Line-sensitive clipping on a line where the neighbours pixels are the closest.

       10  Replaces the target pixel with the closest neighbour.

       11  [1 2 1] horizontal and vertical kernel blur.

       12  Same as mode 11.

       13  Bob mode, interpolates top field from the line where the neighbours pixels are the closest.

       14  Bob mode, interpolates bottom field from the line where the neighbours pixels are the closest.

       15  Bob mode, interpolates top field. Same as 13 but with a more complicated interpolation formula.

       16  Bob mode, interpolates bottom field. Same as 14 but with a more complicated interpolation formula.

       17  Clips the pixel with the minimum and maximum of respectively the maximum and minimum of each pair of
           opposite neighbour pixels.

       18  Line-sensitive clipping using opposite neighbours whose greatest distance from the current pixel is
           minimal.

       19  Replaces the pixel with the average of its 8 neighbours.

       20  Averages the 9 pixels ([1 1 1] horizontal and vertical blur).

       21  Clips pixels using the averages of opposite neighbour.

       22  Same as mode 21 but simpler and faster.

       23  Small edge and halo removal, but reputed useless.

       24  Similar as 23.

   removelogo
       Suppress a TV station logo, using an image file to determine which pixels comprise the logo. It works by
       filling in the pixels that comprise the logo with neighboring pixels.

       The filter accepts the following options:

       filename, f
           Set the filter bitmap file, which can be any image format supported by libavformat. The width and
           height of the image file must match those of the video stream being processed.

       Pixels in the provided bitmap image with a value of zero are not considered part of the logo, non-zero
       pixels are considered part of the logo. If you use white (255) for the logo and black (0) for the rest,
       you will be safe. For making the filter bitmap, it is recommended to take a screen capture of a black
       frame with the logo visible, and then using a threshold filter followed by the erode filter once or
       twice.

       If needed, little splotches can be fixed manually. Remember that if logo pixels are not covered, the
       filter quality will be much reduced. Marking too many pixels as part of the logo does not hurt as much,
       but it will increase the amount of blurring needed to cover over the image and will destroy more
       information than necessary, and extra pixels will slow things down on a large logo.

   repeatfields
       This filter uses the repeat_field flag from the Video ES headers and hard repeats fields based on its
       value.

   reverse, areverse
       Reverse a clip.

       Warning: This filter requires memory to buffer the entire clip, so trimming is suggested.

       Examples

       •   Take the first 5 seconds of a clip, and reverse it.

                   trim=end=5,reverse

   rotate
       Rotate video by an arbitrary angle expressed in radians.

       The filter accepts the following options:

       A description of the optional parameters follows.

       angle, a
           Set an expression for the angle by which to rotate the input video clockwise, expressed as a number
           of radians. A negative value will result in a counter-clockwise rotation. By default it is set to
           "0".

           This expression is evaluated for each frame.

       out_w, ow
           Set the output width expression, default value is "iw".  This expression is evaluated just once
           during configuration.

       out_h, oh
           Set the output height expression, default value is "ih".  This expression is evaluated just once
           during configuration.

       bilinear
           Enable bilinear interpolation if set to 1, a value of 0 disables it. Default value is 1.

       fillcolor, c
           Set the color used to fill the output area not covered by the rotated image. For the general syntax
           of this option, check the "Color" section in the ffmpeg-utils manual. If the special value "none" is
           selected then no background is printed (useful for example if the background is never shown).

           Default value is "black".

       The expressions for the angle and the output size can contain the following constants and functions:

       n   sequential number of the input frame, starting from 0. It is always NAN before the first frame is
           filtered.

       t   time in seconds of the input frame, it is set to 0 when the filter is configured. It is always NAN
           before the first frame is filtered.

       hsub
       vsub
           horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is 2
           and vsub is 1.

       in_w, iw
       in_h, ih
           the input video width and height

       out_w, ow
       out_h, oh
           the output width and height, that is the size of the padded area as specified by the width and height
           expressions

       rotw(a)
       roth(a)
           the minimal width/height required for completely containing the input video rotated by a radians.

           These are only available when computing the out_w and out_h expressions.

       Examples

       •   Rotate the input by PI/6 radians clockwise:

                   rotate=PI/6

       •   Rotate the input by PI/6 radians counter-clockwise:

                   rotate=-PI/6

       •   Rotate the input by 45 degrees clockwise:

                   rotate=45*PI/180

       •   Apply a constant rotation with period T, starting from an angle of PI/3:

                   rotate=PI/3+2*PI*t/T

       •   Make the input video rotation oscillating with a period of T seconds and an amplitude of A radians:

                   rotate=A*sin(2*PI/T*t)

       •   Rotate the video, output size is chosen so that the whole rotating input video is always completely
           contained in the output:

                   rotate='2*PI*t:ow=hypot(iw,ih):oh=ow'

       •   Rotate the video, reduce the output size so that no background is ever shown:

                   rotate=2*PI*t:ow='min(iw,ih)/sqrt(2)':oh=ow:c=none

       Commands

       The filter supports the following commands:

       a, angle
           Set the angle expression.  The command accepts the same syntax of the corresponding option.

           If the specified expression is not valid, it is kept at its current value.

   sab
       Apply Shape Adaptive Blur.

       The filter accepts the following options:

       luma_radius, lr
           Set luma blur filter strength, must be a value in range 0.1-4.0, default value is 1.0. A greater
           value will result in a more blurred image, and in slower processing.

       luma_pre_filter_radius, lpfr
           Set luma pre-filter radius, must be a value in the 0.1-2.0 range, default value is 1.0.

       luma_strength, ls
           Set luma maximum difference between pixels to still be considered, must be a value in the 0.1-100.0
           range, default value is 1.0.

       chroma_radius, cr
           Set chroma blur filter strength, must be a value in range 0.1-4.0. A greater value will result in a
           more blurred image, and in slower processing.

       chroma_pre_filter_radius, cpfr
           Set chroma pre-filter radius, must be a value in the 0.1-2.0 range.

       chroma_strength, cs
           Set chroma maximum difference between pixels to still be considered, must be a value in the 0.1-100.0
           range.

       Each chroma option value, if not explicitly specified, is set to the corresponding luma option value.

   scale
       Scale (resize) the input video, using the libswscale library.

       The scale filter forces the output display aspect ratio to be the same of the input, by changing the
       output sample aspect ratio.

       If the input image format is different from the format requested by the next filter, the scale filter
       will convert the input to the requested format.

       Options

       The filter accepts the following options, or any of the options supported by the libswscale scaler.

       See the ffmpeg-scaler manual for the complete list of scaler options.

       width, w
       height, h
           Set the output video dimension expression. Default value is the input dimension.

           If the value is 0, the input width is used for the output.

           If one of the values is -1, the scale filter will use a value that maintains the aspect ratio of the
           input image, calculated from the other specified dimension. If both of them are -1, the input size is
           used

           If one of the values is -n with n > 1, the scale filter will also use a value that maintains the
           aspect ratio of the input image, calculated from the other specified dimension. After that it will,
           however, make sure that the calculated dimension is divisible by n and adjust the value if necessary.

           See below for the list of accepted constants for use in the dimension expression.

       interl
           Set the interlacing mode. It accepts the following values:

           1   Force interlaced aware scaling.

           0   Do not apply interlaced scaling.

           -1  Select interlaced aware scaling depending on whether the source frames are flagged as interlaced
               or not.

           Default value is 0.

       flags
           Set libswscale scaling flags. See the ffmpeg-scaler manual for the complete list of values. If not
           explicitly specified the filter applies the default flags.

       size, s
           Set the video size. For the syntax of this option, check the "Video size" section in the ffmpeg-utils
           manual.

       in_color_matrix
       out_color_matrix
           Set in/output YCbCr color space type.

           This allows the autodetected value to be overridden as well as allows forcing a specific value used
           for the output and encoder.

           If not specified, the color space type depends on the pixel format.

           Possible values:

           auto
               Choose automatically.

           bt709
               Format conforming to International Telecommunication Union (ITU) Recommendation BT.709.

           fcc Set color space conforming to the United States Federal Communications Commission (FCC) Code of
               Federal Regulations (CFR) Title 47 (2003) 73.682 (a).

           bt601
               Set color space conforming to:

               •   ITU Radiocommunication Sector (ITU-R) Recommendation BT.601

               •   ITU-R Rec. BT.470-6 (1998) Systems B, B1, and G

               •   Society of Motion Picture and Television Engineers (SMPTE) ST 170:2004

           smpte240m
               Set color space conforming to SMPTE ST 240:1999.

       in_range
       out_range
           Set in/output YCbCr sample range.

           This allows the autodetected value to be overridden as well as allows forcing a specific value used
           for the output and encoder. If not specified, the range depends on the pixel format. Possible values:

           auto
               Choose automatically.

           jpeg/full/pc
               Set full range (0-255 in case of 8-bit luma).

           mpeg/tv
               Set "MPEG" range (16-235 in case of 8-bit luma).

       force_original_aspect_ratio
           Enable decreasing or increasing output video width or height if necessary to keep the original aspect
           ratio. Possible values:

           disable
               Scale the video as specified and disable this feature.

           decrease
               The output video dimensions will automatically be decreased if needed.

           increase
               The output video dimensions will automatically be increased if needed.

           One useful instance of this option is that when you know a specific device's maximum allowed
           resolution, you can use this to limit the output video to that, while retaining the aspect ratio. For
           example, device A allows 1280x720 playback, and your video is 1920x800. Using this option (set it to
           decrease) and specifying 1280x720 to the command line makes the output 1280x533.

           Please note that this is a different thing than specifying -1 for w or h, you still need to specify
           the output resolution for this option to work.

       The values of the w and h options are expressions containing the following constants:

       in_w
       in_h
           The input width and height

       iw
       ih  These are the same as in_w and in_h.

       out_w
       out_h
           The output (scaled) width and height

       ow
       oh  These are the same as out_w and out_h

       a   The same as iw / ih

       sar input sample aspect ratio

       dar The input display aspect ratio. Calculated from "(iw / ih) * sar".

       hsub
       vsub
           horizontal and vertical input chroma subsample values. For example for the pixel format "yuv422p"
           hsub is 2 and vsub is 1.

       ohsub
       ovsub
           horizontal and vertical output chroma subsample values. For example for the pixel format "yuv422p"
           hsub is 2 and vsub is 1.

       Examples

       •   Scale the input video to a size of 200x100

                   scale=w=200:h=100

           This is equivalent to:

                   scale=200:100

           or:

                   scale=200x100

       •   Specify a size abbreviation for the output size:

                   scale=qcif

           which can also be written as:

                   scale=size=qcif

       •   Scale the input to 2x:

                   scale=w=2*iw:h=2*ih

       •   The above is the same as:

                   scale=2*in_w:2*in_h

       •   Scale the input to 2x with forced interlaced scaling:

                   scale=2*iw:2*ih:interl=1

       •   Scale the input to half size:

                   scale=w=iw/2:h=ih/2

       •   Increase the width, and set the height to the same size:

                   scale=3/2*iw:ow

       •   Seek Greek harmony:

                   scale=iw:1/PHI*iw
                   scale=ih*PHI:ih

       •   Increase the height, and set the width to 3/2 of the height:

                   scale=w=3/2*oh:h=3/5*ih

       •   Increase the size, making the size a multiple of the chroma subsample values:

                   scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"

       •   Increase the width to a maximum of 500 pixels, keeping the same aspect ratio as the input:

                   scale=w='min(500\, iw*3/2):h=-1'

       Commands

       This filter supports the following commands:

       width, w
       height, h
           Set the output video dimension expression.  The command accepts the same syntax of the corresponding
           option.

           If the specified expression is not valid, it is kept at its current value.

   scale2ref
       Scale (resize) the input video, based on a reference video.

       See the scale filter for available options, scale2ref supports the same but uses the reference video
       instead of the main input as basis.

       Examples

       •   Scale a subtitle stream (b) to match the main video (a) in size before overlaying

                   'scale2ref[b][a];[a][b]overlay'

   separatefields
       The "separatefields" takes a frame-based video input and splits each frame into its components fields,
       producing a new half height clip with twice the frame rate and twice the frame count.

       This filter use field-dominance information in frame to decide which of each pair of fields to place
       first in the output.  If it gets it wrong use setfield filter before "separatefields" filter.

   setdar, setsar
       The "setdar" filter sets the Display Aspect Ratio for the filter output video.

       This is done by changing the specified Sample (aka Pixel) Aspect Ratio, according to the following
       equation:

               <DAR> = <HORIZONTAL_RESOLUTION> / <VERTICAL_RESOLUTION> * <SAR>

       Keep in mind that the "setdar" filter does not modify the pixel dimensions of the video frame. Also, the
       display aspect ratio set by this filter may be changed by later filters in the filterchain, e.g. in case
       of scaling or if another "setdar" or a "setsar" filter is applied.

       The "setsar" filter sets the Sample (aka Pixel) Aspect Ratio for the filter output video.

       Note that as a consequence of the application of this filter, the output display aspect ratio will change
       according to the equation above.

       Keep in mind that the sample aspect ratio set by the "setsar" filter may be changed by later filters in
       the filterchain, e.g. if another "setsar" or a "setdar" filter is applied.

       It accepts the following parameters:

       r, ratio, dar ("setdar" only), sar ("setsar" only)
           Set the aspect ratio used by the filter.

           The parameter can be a floating point number string, an expression, or a string of the form num:den,
           where num and den are the numerator and denominator of the aspect ratio. If the parameter is not
           specified, it is assumed the value "0".  In case the form "num:den" is used, the ":" character should
           be escaped.

       max Set the maximum integer value to use for expressing numerator and denominator when reducing the
           expressed aspect ratio to a rational.  Default value is 100.

       The parameter sar is an expression containing the following constants:

       E, PI, PHI
           These are approximated values for the mathematical constants e (Euler's number), pi (Greek pi), and
           phi (the golden ratio).

       w, h
           The input width and height.

       a   These are the same as w / h.

       sar The input sample aspect ratio.

       dar The input display aspect ratio. It is the same as (w / h) * sar.

       hsub, vsub
           Horizontal and vertical chroma subsample values. For example, for the pixel format "yuv422p" hsub is
           2 and vsub is 1.

       Examples

       •   To change the display aspect ratio to 16:9, specify one of the following:

                   setdar=dar=1.77777
                   setdar=dar=16/9
                   setdar=dar=1.77777

       •   To change the sample aspect ratio to 10:11, specify:

                   setsar=sar=10/11

       •   To set a display aspect ratio of 16:9, and specify a maximum integer value of 1000 in the aspect
           ratio reduction, use the command:

                   setdar=ratio=16/9:max=1000

   setfield
       Force field for the output video frame.

       The "setfield" filter marks the interlace type field for the output frames. It does not change the input
       frame, but only sets the corresponding property, which affects how the frame is treated by following
       filters (e.g. "fieldorder" or "yadif").

       The filter accepts the following options:

       mode
           Available values are:

           auto
               Keep the same field property.

           bff Mark the frame as bottom-field-first.

           tff Mark the frame as top-field-first.

           prog
               Mark the frame as progressive.

   showinfo
       Show a line containing various information for each input video frame.  The input video is not modified.

       The shown line contains a sequence of key/value pairs of the form key:value.

       The following values are shown in the output:

       n   The (sequential) number of the input frame, starting from 0.

       pts The Presentation TimeStamp of the input frame, expressed as a number of time base units. The time
           base unit depends on the filter input pad.

       pts_time
           The Presentation TimeStamp of the input frame, expressed as a number of seconds.

       pos The position of the frame in the input stream, or -1 if this information is unavailable and/or
           meaningless (for example in case of synthetic video).

       fmt The pixel format name.

       sar The sample aspect ratio of the input frame, expressed in the form num/den.

       s   The size of the input frame. For the syntax of this option, check the "Video size" section in the
           ffmpeg-utils manual.

       i   The type of interlaced mode ("P" for "progressive", "T" for top field first, "B" for bottom field
           first).

       iskey
           This is 1 if the frame is a key frame, 0 otherwise.

       type
           The picture type of the input frame ("I" for an I-frame, "P" for a P-frame, "B" for a B-frame, or "?"
           for an unknown type).  Also refer to the documentation of the "AVPictureType" enum and of the
           "av_get_picture_type_char" function defined in libavutil/avutil.h.

       checksum
           The Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame.

       plane_checksum
           The Adler-32 checksum (printed in hexadecimal) of each plane of the input frame, expressed in the
           form "[c0 c1 c2 c3]".

   showpalette
       Displays the 256 colors palette of each frame. This filter is only relevant for pal8 pixel format frames.

       It accepts the following option:

       s   Set the size of the box used to represent one palette color entry. Default is 30 (for a "30x30" pixel
           box).

   shuffleplanes
       Reorder and/or duplicate video planes.

       It accepts the following parameters:

       map0
           The index of the input plane to be used as the first output plane.

       map1
           The index of the input plane to be used as the second output plane.

       map2
           The index of the input plane to be used as the third output plane.

       map3
           The index of the input plane to be used as the fourth output plane.

       The first plane has the index 0. The default is to keep the input unchanged.

       Swap the second and third planes of the input:

               ffmpeg -i INPUT -vf shuffleplanes=0:2:1:3 OUTPUT

   signalstats
       Evaluate various visual metrics that assist in determining issues associated with the digitization of
       analog video media.

       By default the filter will log these metadata values:

       YMIN
           Display the minimal Y value contained within the input frame. Expressed in range of [0-255].

       YLOW
           Display the Y value at the 10% percentile within the input frame. Expressed in range of [0-255].

       YAVG
           Display the average Y value within the input frame. Expressed in range of [0-255].

       YHIGH
           Display the Y value at the 90% percentile within the input frame. Expressed in range of [0-255].

       YMAX
           Display the maximum Y value contained within the input frame. Expressed in range of [0-255].

       UMIN
           Display the minimal U value contained within the input frame. Expressed in range of [0-255].

       ULOW
           Display the U value at the 10% percentile within the input frame. Expressed in range of [0-255].

       UAVG
           Display the average U value within the input frame. Expressed in range of [0-255].

       UHIGH
           Display the U value at the 90% percentile within the input frame. Expressed in range of [0-255].

       UMAX
           Display the maximum U value contained within the input frame. Expressed in range of [0-255].

       VMIN
           Display the minimal V value contained within the input frame. Expressed in range of [0-255].

       VLOW
           Display the V value at the 10% percentile within the input frame. Expressed in range of [0-255].

       VAVG
           Display the average V value within the input frame. Expressed in range of [0-255].

       VHIGH
           Display the V value at the 90% percentile within the input frame. Expressed in range of [0-255].

       VMAX
           Display the maximum V value contained within the input frame. Expressed in range of [0-255].

       SATMIN
           Display the minimal saturation value contained within the input frame.  Expressed in range of
           [0-~181.02].

       SATLOW
           Display the saturation value at the 10% percentile within the input frame.  Expressed in range of
           [0-~181.02].

       SATAVG
           Display the average saturation value within the input frame. Expressed in range of [0-~181.02].

       SATHIGH
           Display the saturation value at the 90% percentile within the input frame.  Expressed in range of
           [0-~181.02].

       SATMAX
           Display the maximum saturation value contained within the input frame.  Expressed in range of
           [0-~181.02].

       HUEMED
           Display the median value for hue within the input frame. Expressed in range of [0-360].

       HUEAVG
           Display the average value for hue within the input frame. Expressed in range of [0-360].

       YDIF
           Display the average of sample value difference between all values of the Y plane in the current frame
           and corresponding values of the previous input frame.  Expressed in range of [0-255].

       UDIF
           Display the average of sample value difference between all values of the U plane in the current frame
           and corresponding values of the previous input frame.  Expressed in range of [0-255].

       VDIF
           Display the average of sample value difference between all values of the V plane in the current frame
           and corresponding values of the previous input frame.  Expressed in range of [0-255].

       The filter accepts the following options:

       stat
       out stat specify an additional form of image analysis.  out output video with the specified type of pixel
           highlighted.

           Both options accept the following values:

           tout
               Identify temporal outliers pixels. A temporal outlier is a pixel unlike the neighboring pixels of
               the same field. Examples of temporal outliers include the results of video dropouts, head clogs,
               or tape tracking issues.

           vrep
               Identify vertical line repetition. Vertical line repetition includes similar rows of pixels
               within a frame. In born-digital video vertical line repetition is common, but this pattern is
               uncommon in video digitized from an analog source. When it occurs in video that results from the
               digitization of an analog source it can indicate concealment from a dropout compensator.

           brng
               Identify pixels that fall outside of legal broadcast range.

       color, c
           Set the highlight color for the out option. The default color is yellow.

       Examples

       •   Output data of various video metrics:

                   ffprobe -f lavfi movie=example.mov,signalstats="stat=tout+vrep+brng" -show_frames

       •   Output specific data about the minimum and maximum values of the Y plane per frame:

                   ffprobe -f lavfi movie=example.mov,signalstats -show_entries frame_tags=lavfi.signalstats.YMAX,lavfi.signalstats.YMIN

       •   Playback video while highlighting pixels that are outside of broadcast range in red.

                   ffplay example.mov -vf signalstats="out=brng:color=red"

       •   Playback video with signalstats metadata drawn over the frame.

                   ffplay example.mov -vf signalstats=stat=brng+vrep+tout,drawtext=fontfile=FreeSerif.ttf:textfile=signalstat_drawtext.txt

           The contents of signalstat_drawtext.txt used in the command are:

                   time %{pts:hms}
                   Y (%{metadata:lavfi.signalstats.YMIN}-%{metadata:lavfi.signalstats.YMAX})
                   U (%{metadata:lavfi.signalstats.UMIN}-%{metadata:lavfi.signalstats.UMAX})
                   V (%{metadata:lavfi.signalstats.VMIN}-%{metadata:lavfi.signalstats.VMAX})
                   saturation maximum: %{metadata:lavfi.signalstats.SATMAX}

   smartblur
       Blur the input video without impacting the outlines.

       It accepts the following options:

       luma_radius, lr
           Set the luma radius. The option value must be a float number in the range [0.1,5.0] that specifies
           the variance of the gaussian filter used to blur the image (slower if larger). Default value is 1.0.

       luma_strength, ls
           Set the luma strength. The option value must be a float number in the range [-1.0,1.0] that
           configures the blurring. A value included in [0.0,1.0] will blur the image whereas a value included
           in [-1.0,0.0] will sharpen the image. Default value is 1.0.

       luma_threshold, lt
           Set the luma threshold used as a coefficient to determine whether a pixel should be blurred or not.
           The option value must be an integer in the range [-30,30]. A value of 0 will filter all the image, a
           value included in [0,30] will filter flat areas and a value included in [-30,0] will filter edges.
           Default value is 0.

       chroma_radius, cr
           Set the chroma radius. The option value must be a float number in the range [0.1,5.0] that specifies
           the variance of the gaussian filter used to blur the image (slower if larger). Default value is 1.0.

       chroma_strength, cs
           Set the chroma strength. The option value must be a float number in the range [-1.0,1.0] that
           configures the blurring. A value included in [0.0,1.0] will blur the image whereas a value included
           in [-1.0,0.0] will sharpen the image. Default value is 1.0.

       chroma_threshold, ct
           Set the chroma threshold used as a coefficient to determine whether a pixel should be blurred or not.
           The option value must be an integer in the range [-30,30]. A value of 0 will filter all the image, a
           value included in [0,30] will filter flat areas and a value included in [-30,0] will filter edges.
           Default value is 0.

       If a chroma option is not explicitly set, the corresponding luma value is set.

   ssim
       Obtain the SSIM (Structural SImilarity Metric) between two input videos.

       This filter takes in input two input videos, the first input is considered the "main" source and is
       passed unchanged to the output. The second input is used as a "reference" video for computing the SSIM.

       Both video inputs must have the same resolution and pixel format for this filter to work correctly. Also
       it assumes that both inputs have the same number of frames, which are compared one by one.

       The filter stores the calculated SSIM of each frame.

       The description of the accepted parameters follows.

       stats_file, f
           If specified the filter will use the named file to save the SSIM of each individual frame.

       The file printed if stats_file is selected, contains a sequence of key/value pairs of the form key:value
       for each compared couple of frames.

       A description of each shown parameter follows:

       n   sequential number of the input frame, starting from 1

       Y, U, V, R, G, B
           SSIM of the compared frames for the component specified by the suffix.

       All SSIM of the compared frames for the whole frame.

       dB  Same as above but in dB representation.

       For example:

               movie=ref_movie.mpg, setpts=PTS-STARTPTS [main];
               [main][ref] ssim="stats_file=stats.log" [out]

       On this example the input file being processed is compared with the reference file ref_movie.mpg. The
       SSIM of each individual frame is stored in stats.log.

       Another example with both psnr and ssim at same time:

               ffmpeg -i main.mpg -i ref.mpg -lavfi  "ssim;[0:v][1:v]psnr" -f null -

   stereo3d
       Convert between different stereoscopic image formats.

       The filters accept the following options:

       in  Set stereoscopic image format of input.

           Available values for input image formats are:

           sbsl
               side by side parallel (left eye left, right eye right)

           sbsr
               side by side crosseye (right eye left, left eye right)

           sbs2l
               side by side parallel with half width resolution (left eye left, right eye right)

           sbs2r
               side by side crosseye with half width resolution (right eye left, left eye right)

           abl above-below (left eye above, right eye below)

           abr above-below (right eye above, left eye below)

           ab2l
               above-below with half height resolution (left eye above, right eye below)

           ab2r
               above-below with half height resolution (right eye above, left eye below)

           al  alternating frames (left eye first, right eye second)

           ar  alternating frames (right eye first, left eye second)

               Default value is sbsl.

       out Set stereoscopic image format of output.

           Available values for output image formats are all the input formats as well as:

           arbg
               anaglyph red/blue gray (red filter on left eye, blue filter on right eye)

           argg
               anaglyph red/green gray (red filter on left eye, green filter on right eye)

           arcg
               anaglyph red/cyan gray (red filter on left eye, cyan filter on right eye)

           arch
               anaglyph red/cyan half colored (red filter on left eye, cyan filter on right eye)

           arcc
               anaglyph red/cyan color (red filter on left eye, cyan filter on right eye)

           arcd
               anaglyph red/cyan color optimized with the least squares projection of dubois (red filter on left
               eye, cyan filter on right eye)

           agmg
               anaglyph green/magenta gray (green filter on left eye, magenta filter on right eye)

           agmh
               anaglyph green/magenta half colored (green filter on left eye, magenta filter on right eye)

           agmc
               anaglyph green/magenta colored (green filter on left eye, magenta filter on right eye)

           agmd
               anaglyph green/magenta color optimized with the least squares projection of dubois (green filter
               on left eye, magenta filter on right eye)

           aybg
               anaglyph yellow/blue gray (yellow filter on left eye, blue filter on right eye)

           aybh
               anaglyph yellow/blue half colored (yellow filter on left eye, blue filter on right eye)

           aybc
               anaglyph yellow/blue colored (yellow filter on left eye, blue filter on right eye)

           aybd
               anaglyph yellow/blue color optimized with the least squares projection of dubois (yellow filter
               on left eye, blue filter on right eye)

           irl interleaved rows (left eye has top row, right eye starts on next row)

           irr interleaved rows (right eye has top row, left eye starts on next row)

           ml  mono output (left eye only)

           mr  mono output (right eye only)

           Default value is arcd.

       Examples

       •   Convert input video from side by side parallel to anaglyph yellow/blue dubois:

                   stereo3d=sbsl:aybd

       •   Convert input video from above below (left eye above, right eye below) to side by side crosseye.

                   stereo3d=abl:sbsr

   spp
       Apply a simple postprocessing filter that compresses and decompresses the image at several (or - in the
       case of quality level 6 - all) shifts and average the results.

       The filter accepts the following options:

       quality
           Set quality. This option defines the number of levels for averaging. It accepts an integer in the
           range 0-6. If set to 0, the filter will have no effect. A value of 6 means the higher quality. For
           each increment of that value the speed drops by a factor of approximately 2.  Default value is 3.

       qp  Force a constant quantization parameter. If not set, the filter will use the QP from the video stream
           (if available).

       mode
           Set thresholding mode. Available modes are:

           hard
               Set hard thresholding (default).

           soft
               Set soft thresholding (better de-ringing effect, but likely blurrier).

       use_bframe_qp
           Enable the use of the QP from the B-Frames if set to 1. Using this option may cause flicker since the
           B-Frames have often larger QP. Default is 0 (not enabled).

   subtitles
       Draw subtitles on top of input video using the libass library.

       To enable compilation of this filter you need to configure FFmpeg with "--enable-libass". This filter
       also requires a build with libavcodec and libavformat to convert the passed subtitles file to ASS
       (Advanced Substation Alpha) subtitles format.

       The filter accepts the following options:

       filename, f
           Set the filename of the subtitle file to read. It must be specified.

       original_size
           Specify the size of the original video, the video for which the ASS file was composed. For the syntax
           of this option, check the "Video size" section in the ffmpeg-utils manual.  Due to a misdesign in ASS
           aspect ratio arithmetic, this is necessary to correctly scale the fonts if the aspect ratio has been
           changed.

       fontsdir
           Set a directory path containing fonts that can be used by the filter.  These fonts will be used in
           addition to whatever the font provider uses.

       charenc
           Set subtitles input character encoding. "subtitles" filter only. Only useful if not UTF-8.

       stream_index, si
           Set subtitles stream index. "subtitles" filter only.

       force_style
           Override default style or script info parameters of the subtitles. It accepts a string containing ASS
           style format "KEY=VALUE" couples separated by ",".

       If the first key is not specified, it is assumed that the first value specifies the filename.

       For example, to render the file sub.srt on top of the input video, use the command:

               subtitles=sub.srt

       which is equivalent to:

               subtitles=filename=sub.srt

       To render the default subtitles stream from file video.mkv, use:

               subtitles=video.mkv

       To render the second subtitles stream from that file, use:

               subtitles=video.mkv:si=1

       To make the subtitles stream from sub.srt appear in transparent green "DejaVu Serif", use:

               subtitles=sub.srt:force_style='FontName=DejaVu Serif,PrimaryColour=&HAA00FF00'

   super2xsai
       Scale the input by 2x and smooth using the Super2xSaI (Scale and Interpolate) pixel art scaling
       algorithm.

       Useful for enlarging pixel art images without reducing sharpness.

   swapuv
       Swap U & V plane.

   telecine
       Apply telecine process to the video.

       This filter accepts the following options:

       first_field
           top, t
               top field first

           bottom, b
               bottom field first The default value is "top".

       pattern
           A string of numbers representing the pulldown pattern you wish to apply.  The default value is 23.

               Some typical patterns:

               NTSC output (30i):
               27.5p: 32222
               24p: 23 (classic)
               24p: 2332 (preferred)
               20p: 33
               18p: 334
               16p: 3444

               PAL output (25i):
               27.5p: 12222
               24p: 222222222223 ("Euro pulldown")
               16.67p: 33
               16p: 33333334

   thumbnail
       Select the most representative frame in a given sequence of consecutive frames.

       The filter accepts the following options:

       n   Set the frames batch size to analyze; in a set of n frames, the filter will pick one of them, and
           then handle the next batch of n frames until the end. Default is 100.

       Since the filter keeps track of the whole frames sequence, a bigger n value will result in a higher
       memory usage, so a high value is not recommended.

       Examples

       •   Extract one picture each 50 frames:

                   thumbnail=50

       •   Complete example of a thumbnail creation with ffmpeg:

                   ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png

   tile
       Tile several successive frames together.

       The filter accepts the following options:

       layout
           Set the grid size (i.e. the number of lines and columns). For the syntax of this option, check the
           "Video size" section in the ffmpeg-utils manual.

       nb_frames
           Set the maximum number of frames to render in the given area. It must be less than or equal to wxh.
           The default value is 0, meaning all the area will be used.

       margin
           Set the outer border margin in pixels.

       padding
           Set the inner border thickness (i.e. the number of pixels between frames). For more advanced padding
           options (such as having different values for the edges), refer to the pad video filter.

       color
           Specify the color of the unused area. For the syntax of this option, check the "Color" section in the
           ffmpeg-utils manual. The default value of color is "black".

       Examples

       •   Produce 8x8 PNG tiles of all keyframes (-skip_frame nokey) in a movie:

                   ffmpeg -skip_frame nokey -i file.avi -vf 'scale=128:72,tile=8x8' -an -vsync 0 keyframes%03d.png

           The -vsync 0 is necessary to prevent ffmpeg from duplicating each output frame to accommodate the
           originally detected frame rate.

       •   Display 5 pictures in an area of "3x2" frames, with 7 pixels between them, and 2 pixels of initial
           margin, using mixed flat and named options:

                   tile=3x2:nb_frames=5:padding=7:margin=2

   tinterlace
       Perform various types of temporal field interlacing.

       Frames are counted starting from 1, so the first input frame is considered odd.

       The filter accepts the following options:

       mode
           Specify the mode of the interlacing. This option can also be specified as a value alone. See below
           for a list of values for this option.

           Available values are:

           merge, 0
               Move odd frames into the upper field, even into the lower field, generating a double height frame
               at half frame rate.

                        ------> time
                       Input:
                       Frame 1         Frame 2         Frame 3         Frame 4

                       11111           22222           33333           44444
                       11111           22222           33333           44444
                       11111           22222           33333           44444
                       11111           22222           33333           44444

                       Output:
                       11111                           33333
                       22222                           44444
                       11111                           33333
                       22222                           44444
                       11111                           33333
                       22222                           44444
                       11111                           33333
                       22222                           44444

           drop_odd, 1
               Only output even frames, odd frames are dropped, generating a frame with unchanged height at half
               frame rate.

                        ------> time
                       Input:
                       Frame 1         Frame 2         Frame 3         Frame 4

                       11111           22222           33333           44444
                       11111           22222           33333           44444
                       11111           22222           33333           44444
                       11111           22222           33333           44444

                       Output:
                                       22222                           44444
                                       22222                           44444
                                       22222                           44444
                                       22222                           44444

           drop_even, 2
               Only output odd frames, even frames are dropped, generating a frame with unchanged height at half
               frame rate.

                        ------> time
                       Input:
                       Frame 1         Frame 2         Frame 3         Frame 4

                       11111           22222           33333           44444
                       11111           22222           33333           44444
                       11111           22222           33333           44444
                       11111           22222           33333           44444

                       Output:
                       11111                           33333
                       11111                           33333
                       11111                           33333
                       11111                           33333

           pad, 3
               Expand each frame to full height, but pad alternate lines with black, generating a frame with
               double height at the same input frame rate.

                        ------> time
                       Input:
                       Frame 1         Frame 2         Frame 3         Frame 4

                       11111           22222           33333           44444
                       11111           22222           33333           44444
                       11111           22222           33333           44444
                       11111           22222           33333           44444

                       Output:
                       11111           .....           33333           .....
                       .....           22222           .....           44444
                       11111           .....           33333           .....
                       .....           22222           .....           44444
                       11111           .....           33333           .....
                       .....           22222           .....           44444
                       11111           .....           33333           .....
                       .....           22222           .....           44444

           interleave_top, 4
               Interleave the upper field from odd frames with the lower field from even frames, generating a
               frame with unchanged height at half frame rate.

                        ------> time
                       Input:
                       Frame 1         Frame 2         Frame 3         Frame 4

                       11111<-         22222           33333<-         44444
                       11111           22222<-         33333           44444<-
                       11111<-         22222           33333<-         44444
                       11111           22222<-         33333           44444<-

                       Output:
                       11111                           33333
                       22222                           44444
                       11111                           33333
                       22222                           44444

           interleave_bottom, 5
               Interleave the lower field from odd frames with the upper field from even frames, generating a
               frame with unchanged height at half frame rate.

                        ------> time
                       Input:
                       Frame 1         Frame 2         Frame 3         Frame 4

                       11111           22222<-         33333           44444<-
                       11111<-         22222           33333<-         44444
                       11111           22222<-         33333           44444<-
                       11111<-         22222           33333<-         44444

                       Output:
                       22222                           44444
                       11111                           33333
                       22222                           44444
                       11111                           33333

           interlacex2, 6
               Double frame rate with unchanged height. Frames are inserted each containing the second temporal
               field from the previous input frame and the first temporal field from the next input frame. This
               mode relies on the top_field_first flag. Useful for interlaced video displays with no field
               synchronisation.

                        ------> time
                       Input:
                       Frame 1         Frame 2         Frame 3         Frame 4

                       11111           22222           33333           44444
                        11111           22222           33333           44444
                       11111           22222           33333           44444
                        11111           22222           33333           44444

                       Output:
                       11111   22222   22222   33333   33333   44444   44444
                        11111   11111   22222   22222   33333   33333   44444
                       11111   22222   22222   33333   33333   44444   44444
                        11111   11111   22222   22222   33333   33333   44444

           Numeric values are deprecated but are accepted for backward compatibility reasons.

           Default mode is "merge".

       flags
           Specify flags influencing the filter process.

           Available value for flags is:

           low_pass_filter, vlfp
               Enable vertical low-pass filtering in the filter.  Vertical low-pass filtering is required when
               creating an interlaced destination from a progressive source which contains high-frequency
               vertical detail. Filtering will reduce interlace 'twitter' and Moire patterning.

               Vertical low-pass filtering can only be enabled for mode interleave_top and interleave_bottom.

   transpose
       Transpose rows with columns in the input video and optionally flip it.

       It accepts the following parameters:

       dir Specify the transposition direction.

           Can assume the following values:

           0, 4, cclock_flip
               Rotate by 90 degrees counterclockwise and vertically flip (default), that is:

                       L.R     L.l
                       . . ->  . .
                       l.r     R.r

           1, 5, clock
               Rotate by 90 degrees clockwise, that is:

                       L.R     l.L
                       . . ->  . .
                       l.r     r.R

           2, 6, cclock
               Rotate by 90 degrees counterclockwise, that is:

                       L.R     R.r
                       . . ->  . .
                       l.r     L.l

           3, 7, clock_flip
               Rotate by 90 degrees clockwise and vertically flip, that is:

                       L.R     r.R
                       . . ->  . .
                       l.r     l.L

           For values between 4-7, the transposition is only done if the input video geometry is portrait and
           not landscape. These values are deprecated, the "passthrough" option should be used instead.

           Numerical values are deprecated, and should be dropped in favor of symbolic constants.

       passthrough
           Do not apply the transposition if the input geometry matches the one specified by the specified
           value. It accepts the following values:

           none
               Always apply transposition.

           portrait
               Preserve portrait geometry (when height >= width).

           landscape
               Preserve landscape geometry (when width >= height).

           Default value is "none".

       For example to rotate by 90 degrees clockwise and preserve portrait layout:

               transpose=dir=1:passthrough=portrait

       The command above can also be specified as:

               transpose=1:portrait

   trim
       Trim the input so that the output contains one continuous subpart of the input.

       It accepts the following parameters:

       start
           Specify the time of the start of the kept section, i.e. the frame with the timestamp start will be
           the first frame in the output.

       end Specify the time of the first frame that will be dropped, i.e. the frame immediately preceding the
           one with the timestamp end will be the last frame in the output.

       start_pts
           This is the same as start, except this option sets the start timestamp in timebase units instead of
           seconds.

       end_pts
           This is the same as end, except this option sets the end timestamp in timebase units instead of
           seconds.

       duration
           The maximum duration of the output in seconds.

       start_frame
           The number of the first frame that should be passed to the output.

       end_frame
           The number of the first frame that should be dropped.

       start, end, and duration are expressed as time duration specifications; see the Time duration section in
       the ffmpeg-utils(1) manual for the accepted syntax.

       Note that the first two sets of the start/end options and the duration option look at the frame
       timestamp, while the _frame variants simply count the frames that pass through the filter. Also note that
       this filter does not modify the timestamps. If you wish for the output timestamps to start at zero,
       insert a setpts filter after the trim filter.

       If multiple start or end options are set, this filter tries to be greedy and keep all the frames that
       match at least one of the specified constraints. To keep only the part that matches all the constraints
       at once, chain multiple trim filters.

       The defaults are such that all the input is kept. So it is possible to set e.g.  just the end values to
       keep everything before the specified time.

       Examples:

       •   Drop everything except the second minute of input:

                   ffmpeg -i INPUT -vf trim=60:120

       •   Keep only the first second:

                   ffmpeg -i INPUT -vf trim=duration=1

   unsharp
       Sharpen or blur the input video.

       It accepts the following parameters:

       luma_msize_x, lx
           Set the luma matrix horizontal size. It must be an odd integer between 3 and 63. The default value is
           5.

       luma_msize_y, ly
           Set the luma matrix vertical size. It must be an odd integer between 3 and 63. The default value is
           5.

       luma_amount, la
           Set the luma effect strength. It must be a floating point number, reasonable values lay between -1.5
           and 1.5.

           Negative values will blur the input video, while positive values will sharpen it, a value of zero
           will disable the effect.

           Default value is 1.0.

       chroma_msize_x, cx
           Set the chroma matrix horizontal size. It must be an odd integer between 3 and 63. The default value
           is 5.

       chroma_msize_y, cy
           Set the chroma matrix vertical size. It must be an odd integer between 3 and 63. The default value is
           5.

       chroma_amount, ca
           Set the chroma effect strength. It must be a floating point number, reasonable values lay between
           -1.5 and 1.5.

           Negative values will blur the input video, while positive values will sharpen it, a value of zero
           will disable the effect.

           Default value is 0.0.

       opencl
           If set to 1, specify using OpenCL capabilities, only available if FFmpeg was configured with
           "--enable-opencl". Default value is 0.

       All parameters are optional and default to the equivalent of the string '5:5:1.0:5:5:0.0'.

       Examples

       •   Apply strong luma sharpen effect:

                   unsharp=luma_msize_x=7:luma_msize_y=7:luma_amount=2.5

       •   Apply a strong blur of both luma and chroma parameters:

                   unsharp=7:7:-2:7:7:-2

   uspp
       Apply ultra slow/simple postprocessing filter that compresses and decompresses the image at several (or -
       in the case of quality level 8 - all) shifts and average the results.

       The way this differs from the behavior of spp is that uspp actually encodes & decodes each case with
       libavcodec Snow, whereas spp uses a simplified intra only 8x8 DCT similar to MJPEG.

       The filter accepts the following options:

       quality
           Set quality. This option defines the number of levels for averaging. It accepts an integer in the
           range 0-8. If set to 0, the filter will have no effect. A value of 8 means the higher quality. For
           each increment of that value the speed drops by a factor of approximately 2.  Default value is 3.

       qp  Force a constant quantization parameter. If not set, the filter will use the QP from the video stream
           (if available).

   vectorscope
       Display 2 color component values in the two dimensional graph (which is called a vectorscope).

       This filter accepts the following options:

       mode, m
           Set vectorscope mode.

           It accepts the following values:

           gray
               Gray values are displayed on graph, higher brightness means more pixels have same component color
               value on location in graph. This is the default mode.

           color
               Gray values are displayed on graph. Surrounding pixels values which are not present in video
               frame are drawn in gradient of 2 color components which are set by option "x" and "y".

           color2
               Actual color components values present in video frame are displayed on graph.

           color3
               Similar as color2 but higher frequency of same values "x" and "y" on graph increases value of
               another color component, which is luminance by default values of "x" and "y".

           color4
               Actual colors present in video frame are displayed on graph. If two different colors map to same
               position on graph then color with higher value of component not present in graph is picked.

       x   Set which color component will be represented on X-axis. Default is 1.

       y   Set which color component will be represented on Y-axis. Default is 2.

       intensity, i
           Set intensity, used by modes: gray, color and color3 for increasing brightness of color component
           which represents frequency of (X, Y) location in graph.

       envelope, e
           none
               No envelope, this is default.

           instant
               Instant envelope, even darkest single pixel will be clearly highlighted.

           peak
               Hold maximum and minimum values presented in graph over time. This way you can still spot out of
               range values without constantly looking at vectorscope.

           peak+instant
               Peak and instant envelope combined together.

   vidstabdetect
       Analyze video stabilization/deshaking. Perform pass 1 of 2, see vidstabtransform for pass 2.

       This filter generates a file with relative translation and rotation transform information about
       subsequent frames, which is then used by the vidstabtransform filter.

       To enable compilation of this filter you need to configure FFmpeg with "--enable-libvidstab".

       This filter accepts the following options:

       result
           Set the path to the file used to write the transforms information.  Default value is transforms.trf.

       shakiness
           Set how shaky the video is and how quick the camera is. It accepts an integer in the range 1-10, a
           value of 1 means little shakiness, a value of 10 means strong shakiness. Default value is 5.

       accuracy
           Set the accuracy of the detection process. It must be a value in the range 1-15. A value of 1 means
           low accuracy, a value of 15 means high accuracy. Default value is 15.

       stepsize
           Set stepsize of the search process. The region around minimum is scanned with 1 pixel resolution.
           Default value is 6.

       mincontrast
           Set minimum contrast. Below this value a local measurement field is discarded. Must be a floating
           point value in the range 0-1. Default value is 0.3.

       tripod
           Set reference frame number for tripod mode.

           If enabled, the motion of the frames is compared to a reference frame in the filtered stream,
           identified by the specified number. The idea is to compensate all movements in a more-or-less static
           scene and keep the camera view absolutely still.

           If set to 0, it is disabled. The frames are counted starting from 1.

       show
           Show fields and transforms in the resulting frames. It accepts an integer in the range 0-2. Default
           value is 0, which disables any visualization.

       Examples

       •   Use default values:

                   vidstabdetect

       •   Analyze strongly shaky movie and put the results in file mytransforms.trf:

                   vidstabdetect=shakiness=10:accuracy=15:result="mytransforms.trf"

       •   Visualize the result of internal transformations in the resulting video:

                   vidstabdetect=show=1

       •   Analyze a video with medium shakiness using ffmpeg:

                   ffmpeg -i input -vf vidstabdetect=shakiness=5:show=1 dummy.avi

   vidstabtransform
       Video stabilization/deshaking: pass 2 of 2, see vidstabdetect for pass 1.

       Read a file with transform information for each frame and apply/compensate them. Together with the
       vidstabdetect filter this can be used to deshake videos. See also <http://public.hronopik.de/vid.stab>.
       It is important to also use the unsharp filter, see below.

       To enable compilation of this filter you need to configure FFmpeg with "--enable-libvidstab".

       Options

       input
           Set path to the file used to read the transforms. Default value is transforms.trf.

       smoothing
           Set the number of frames (value*2 + 1) used for lowpass filtering the camera movements. Default value
           is 10.

           For example a number of 10 means that 21 frames are used (10 in the past and 10 in the future) to
           smoothen the motion in the video. A larger value leads to a smoother video, but limits the
           acceleration of the camera (pan/tilt movements). 0 is a special case where a static camera is
           simulated.

       optalgo
           Set the camera path optimization algorithm.

           Accepted values are:

           gauss
               gaussian kernel low-pass filter on camera motion (default)

           avg averaging on transformations

       maxshift
           Set maximal number of pixels to translate frames. Default value is -1, meaning no limit.

       maxangle
           Set maximal angle in radians (degree*PI/180) to rotate frames. Default value is -1, meaning no limit.

       crop
           Specify how to deal with borders that may be visible due to movement compensation.

           Available values are:

           keep
               keep image information from previous frame (default)

           black
               fill the border black

       invert
           Invert transforms if set to 1. Default value is 0.

       relative
           Consider transforms as relative to previous frame if set to 1, absolute if set to 0. Default value is
           0.

       zoom
           Set percentage to zoom. A positive value will result in a zoom-in effect, a negative value in a zoom-
           out effect. Default value is 0 (no zoom).

       optzoom
           Set optimal zooming to avoid borders.

           Accepted values are:

           0   disabled

           1   optimal static zoom value is determined (only very strong movements will lead to visible borders)
               (default)

           2   optimal adaptive zoom value is determined (no borders will be visible), see zoomspeed

           Note that the value given at zoom is added to the one calculated here.

       zoomspeed
           Set percent to zoom maximally each frame (enabled when optzoom is set to 2). Range is from 0 to 5,
           default value is 0.25.

       interpol
           Specify type of interpolation.

           Available values are:

           no  no interpolation

           linear
               linear only horizontal

           bilinear
               linear in both directions (default)

           bicubic
               cubic in both directions (slow)

       tripod
           Enable virtual tripod mode if set to 1, which is equivalent to "relative=0:smoothing=0". Default
           value is 0.

           Use also "tripod" option of vidstabdetect.

       debug
           Increase log verbosity if set to 1. Also the detected global motions are written to the temporary
           file global_motions.trf. Default value is 0.

       Examples

       •   Use ffmpeg for a typical stabilization with default values:

                   ffmpeg -i inp.mpeg -vf vidstabtransform,unsharp=5:5:0.8:3:3:0.4 inp_stabilized.mpeg

           Note the use of the unsharp filter which is always recommended.

       •   Zoom in a bit more and load transform data from a given file:

                   vidstabtransform=zoom=5:input="mytransforms.trf"

       •   Smoothen the video even more:

                   vidstabtransform=smoothing=30

   vflip
       Flip the input video vertically.

       For example, to vertically flip a video with ffmpeg:

               ffmpeg -i in.avi -vf "vflip" out.avi

   vignette
       Make or reverse a natural vignetting effect.

       The filter accepts the following options:

       angle, a
           Set lens angle expression as a number of radians.

           The value is clipped in the "[0,PI/2]" range.

           Default value: "PI/5"

       x0
       y0  Set center coordinates expressions. Respectively "w/2" and "h/2" by default.

       mode
           Set forward/backward mode.

           Available modes are:

           forward
               The larger the distance from the central point, the darker the image becomes.

           backward
               The larger the distance from the central point, the brighter the image becomes.  This can be used
               to reverse a vignette effect, though there is no automatic detection to extract the lens angle
               and other settings (yet). It can also be used to create a burning effect.

           Default value is forward.

       eval
           Set evaluation mode for the expressions (angle, x0, y0).

           It accepts the following values:

           init
               Evaluate expressions only once during the filter initialization.

           frame
               Evaluate expressions for each incoming frame. This is way slower than the init mode since it
               requires all the scalers to be re-computed, but it allows advanced dynamic expressions.

           Default value is init.

       dither
           Set dithering to reduce the circular banding effects. Default is 1 (enabled).

       aspect
           Set vignette aspect. This setting allows one to adjust the shape of the vignette.  Setting this value
           to the SAR of the input will make a rectangular vignetting following the dimensions of the video.

           Default is "1/1".

       Expressions

       The alpha, x0 and y0 expressions can contain the following parameters.

       w
       h   input width and height

       n   the number of input frame, starting from 0

       pts the PTS (Presentation TimeStamp) time of the filtered video frame, expressed in TB units, NAN if
           undefined

       r   frame rate of the input video, NAN if the input frame rate is unknown

       t   the PTS (Presentation TimeStamp) of the filtered video frame, expressed in seconds, NAN if undefined

       tb  time base of the input video

       Examples

       •   Apply simple strong vignetting effect:

                   vignette=PI/4

       •   Make a flickering vignetting:

                   vignette='PI/4+random(1)*PI/50':eval=frame

   vstack
       Stack input videos vertically.

       All streams must be of same pixel format and of same width.

       Note that this filter is faster than using overlay and pad filter to create same output.

       The filter accept the following option:

       nb_inputs
           Set number of input streams. Default is 2.

   w3fdif
       Deinterlace the input video ("w3fdif" stands for "Weston 3 Field Deinterlacing Filter").

       Based on the process described by Martin Weston for BBC R&D, and implemented based on the de-interlace
       algorithm written by Jim Easterbrook for BBC R&D, the Weston 3 field deinterlacing filter uses filter
       coefficients calculated by BBC R&D.

       There are two sets of filter coefficients, so called "simple": and "complex". Which set of filter
       coefficients is used can be set by passing an optional parameter:

       filter
           Set the interlacing filter coefficients. Accepts one of the following values:

           simple
               Simple filter coefficient set.

           complex
               More-complex filter coefficient set.

           Default value is complex.

       deint
           Specify which frames to deinterlace. Accept one of the following values:

           all Deinterlace all frames,

           interlaced
               Only deinterlace frames marked as interlaced.

           Default value is all.

   waveform
       Video waveform monitor.

       The waveform monitor plots color component intensity. By default luminance only. Each column of the
       waveform corresponds to a column of pixels in the source video.

       It accepts the following options:

       mode, m
           Can be either "row", or "column". Default is "column".  In row mode, the graph on the left side
           represents color component value 0 and the right side represents value = 255. In column mode, the top
           side represents color component value = 0 and bottom side represents value = 255.

       intensity, i
           Set intensity. Smaller values are useful to find out how many values of the same luminance are
           distributed across input rows/columns.  Default value is 0.04. Allowed range is [0, 1].

       mirror, r
           Set mirroring mode. 0 means unmirrored, 1 means mirrored.  In mirrored mode, higher values will be
           represented on the left side for "row" mode and at the top for "column" mode. Default is 1
           (mirrored).

       display, d
           Set display mode.  It accepts the following values:

           overlay
               Presents information identical to that in the "parade", except that the graphs representing color
               components are superimposed directly over one another.

               This display mode makes it easier to spot relative differences or similarities in overlapping
               areas of the color components that are supposed to be identical, such as neutral whites, grays,
               or blacks.

           parade
               Display separate graph for the color components side by side in "row" mode or one below the other
               in "column" mode.

               Using this display mode makes it easy to spot color casts in the highlights and shadows of an
               image, by comparing the contours of the top and the bottom graphs of each waveform. Since whites,
               grays, and blacks are characterized by exactly equal amounts of red, green, and blue, neutral
               areas of the picture should display three waveforms of roughly equal width/height. If not, the
               correction is easy to perform by making level adjustments the three waveforms.

           Default is "parade".

       components, c
           Set which color components to display. Default is 1, which means only luminance or red color
           component if input is in RGB colorspace. If is set for example to 7 it will display all 3 (if)
           available color components.

       envelope, e
           none
               No envelope, this is default.

           instant
               Instant envelope, minimum and maximum values presented in graph will be easily visible even with
               small "step" value.

           peak
               Hold minimum and maximum values presented in graph across time. This way you can still spot out
               of range values without constantly looking at waveforms.

           peak+instant
               Peak and instant envelope combined together.

       filter, f
           lowpass
               No filtering, this is default.

           flat
               Luma and chroma combined together.

           aflat
               Similar as above, but shows difference between blue and red chroma.

           chroma
               Displays only chroma.

           achroma
               Similar as above, but shows difference between blue and red chroma.

           color
               Displays actual color value on waveform.

   xbr
       Apply the xBR high-quality magnification filter which is designed for pixel art. It follows a set of
       edge-detection rules, see <http://www.libretro.com/forums/viewtopic.php?f=6&t=134>.

       It accepts the following option:

       n   Set the scaling dimension: 2 for "2xBR", 3 for "3xBR" and 4 for "4xBR".  Default is 3.

   yadif
       Deinterlace the input video ("yadif" means "yet another deinterlacing filter").

       It accepts the following parameters:

       mode
           The interlacing mode to adopt. It accepts one of the following values:

           0, send_frame
               Output one frame for each frame.

           1, send_field
               Output one frame for each field.

           2, send_frame_nospatial
               Like "send_frame", but it skips the spatial interlacing check.

           3, send_field_nospatial
               Like "send_field", but it skips the spatial interlacing check.

           The default value is "send_frame".

       parity
           The picture field parity assumed for the input interlaced video. It accepts one of the following
           values:

           0, tff
               Assume the top field is first.

           1, bff
               Assume the bottom field is first.

           -1, auto
               Enable automatic detection of field parity.

           The default value is "auto".  If the interlacing is unknown or the decoder does not export this
           information, top field first will be assumed.

       deint
           Specify which frames to deinterlace. Accept one of the following values:

           0, all
               Deinterlace all frames.

           1, interlaced
               Only deinterlace frames marked as interlaced.

           The default value is "all".

   zoompan
       Apply Zoom & Pan effect.

       This filter accepts the following options:

       zoom, z
           Set the zoom expression. Default is 1.

       x
       y   Set the x and y expression. Default is 0.

       d   Set the duration expression in number of frames.  This sets for how many number of frames effect will
           last for single input image.

       s   Set the output image size, default is 'hd720'.

       Each expression can contain the following constants:

       in_w, iw
           Input width.

       in_h, ih
           Input height.

       out_w, ow
           Output width.

       out_h, oh
           Output height.

       in  Input frame count.

       on  Output frame count.

       x
       y   Last calculated 'x' and 'y' position from 'x' and 'y' expression for current input frame.

       px
       py  'x' and 'y' of last output frame of previous input frame or 0 when there was not yet such frame
           (first input frame).

       zoom
           Last calculated zoom from 'z' expression for current input frame.

       pzoom
           Last calculated zoom of last output frame of previous input frame.

       duration
           Number of output frames for current input frame. Calculated from 'd' expression for each input frame.

       pduration
           number of output frames created for previous input frame

       a   Rational number: input width / input height

       sar sample aspect ratio

       dar display aspect ratio

       Examples

       •   Zoom-in up to 1.5 and pan at same time to some spot near center of picture:

                   zoompan=z='min(zoom+0.0015,1.5)':d=700:x='if(gte(zoom,1.5),x,x+1/a)':y='if(gte(zoom,1.5),y,y+1)':s=640x360

       •   Zoom-in up to 1.5 and pan always at center of picture:

                   zoompan=z='min(zoom+0.0015,1.5)':d=700:x='iw/2-(iw/zoom/2)':y='ih/2-(ih/zoom/2)'

VIDEO SOURCES

       Below is a description of the currently available video sources.

   buffer
       Buffer video frames, and make them available to the filter chain.

       This source is mainly intended for a programmatic use, in particular through the interface defined in
       libavfilter/vsrc_buffer.h.

       It accepts the following parameters:

       video_size
           Specify the size (width and height) of the buffered video frames. For the syntax of this option,
           check the "Video size" section in the ffmpeg-utils manual.

       width
           The input video width.

       height
           The input video height.

       pix_fmt
           A string representing the pixel format of the buffered video frames.  It may be a number
           corresponding to a pixel format, or a pixel format name.

       time_base
           Specify the timebase assumed by the timestamps of the buffered frames.

       frame_rate
           Specify the frame rate expected for the video stream.

       pixel_aspect, sar
           The sample (pixel) aspect ratio of the input video.

       sws_param
           Specify the optional parameters to be used for the scale filter which is automatically inserted when
           an input change is detected in the input size or format.

       For example:

               buffer=width=320:height=240:pix_fmt=yuv410p:time_base=1/24:sar=1

       will instruct the source to accept video frames with size 320x240 and with format "yuv410p", assuming
       1/24 as the timestamps timebase and square pixels (1:1 sample aspect ratio).  Since the pixel format with
       name "yuv410p" corresponds to the number 6 (check the enum AVPixelFormat definition in
       libavutil/pixfmt.h), this example corresponds to:

               buffer=size=320x240:pixfmt=6:time_base=1/24:pixel_aspect=1/1

       Alternatively, the options can be specified as a flat string, but this syntax is deprecated:

       width:height:pix_fmt:time_base.num:time_base.den:pixel_aspect.num:pixel_aspect.den[:sws_param]

   cellauto
       Create a pattern generated by an elementary cellular automaton.

       The initial state of the cellular automaton can be defined through the filename, and pattern options. If
       such options are not specified an initial state is created randomly.

       At each new frame a new row in the video is filled with the result of the cellular automaton next
       generation. The behavior when the whole frame is filled is defined by the scroll option.

       This source accepts the following options:

       filename, f
           Read the initial cellular automaton state, i.e. the starting row, from the specified file.  In the
           file, each non-whitespace character is considered an alive cell, a newline will terminate the row,
           and further characters in the file will be ignored.

       pattern, p
           Read the initial cellular automaton state, i.e. the starting row, from the specified string.

           Each non-whitespace character in the string is considered an alive cell, a newline will terminate the
           row, and further characters in the string will be ignored.

       rate, r
           Set the video rate, that is the number of frames generated per second.  Default is 25.

       random_fill_ratio, ratio
           Set the random fill ratio for the initial cellular automaton row. It is a floating point number value
           ranging from 0 to 1, defaults to 1/PHI.

           This option is ignored when a file or a pattern is specified.

       random_seed, seed
           Set the seed for filling randomly the initial row, must be an integer included between 0 and
           UINT32_MAX. If not specified, or if explicitly set to -1, the filter will try to use a good random
           seed on a best effort basis.

       rule
           Set the cellular automaton rule, it is a number ranging from 0 to 255.  Default value is 110.

       size, s
           Set the size of the output video. For the syntax of this option, check the "Video size" section in
           the ffmpeg-utils manual.

           If filename or pattern is specified, the size is set by default to the width of the specified initial
           state row, and the height is set to width * PHI.

           If size is set, it must contain the width of the specified pattern string, and the specified pattern
           will be centered in the larger row.

           If a filename or a pattern string is not specified, the size value defaults to "320x518" (used for a
           randomly generated initial state).

       scroll
           If set to 1, scroll the output upward when all the rows in the output have been already filled. If
           set to 0, the new generated row will be written over the top row just after the bottom row is filled.
           Defaults to 1.

       start_full, full
           If set to 1, completely fill the output with generated rows before outputting the first frame.  This
           is the default behavior, for disabling set the value to 0.

       stitch
           If set to 1, stitch the left and right row edges together.  This is the default behavior, for
           disabling set the value to 0.

       Examples

       •   Read the initial state from pattern, and specify an output of size 200x400.

                   cellauto=f=pattern:s=200x400

       •   Generate a random initial row with a width of 200 cells, with a fill ratio of 2/3:

                   cellauto=ratio=2/3:s=200x200

       •   Create a pattern generated by rule 18 starting by a single alive cell centered on an initial row with
           width 100:

                   cellauto=p=@s=100x400:full=0:rule=18

       •   Specify a more elaborated initial pattern:

                   cellauto=p='@@ @ @@':s=100x400:full=0:rule=18

   mandelbrot
       Generate a Mandelbrot set fractal, and progressively zoom towards the point specified with start_x and
       start_y.

       This source accepts the following options:

       end_pts
           Set the terminal pts value. Default value is 400.

       end_scale
           Set the terminal scale value.  Must be a floating point value. Default value is 0.3.

       inner
           Set the inner coloring mode, that is the algorithm used to draw the Mandelbrot fractal internal
           region.

           It shall assume one of the following values:

           black
               Set black mode.

           convergence
               Show time until convergence.

           mincol
               Set color based on point closest to the origin of the iterations.

           period
               Set period mode.

           Default value is mincol.

       bailout
           Set the bailout value. Default value is 10.0.

       maxiter
           Set the maximum of iterations performed by the rendering algorithm. Default value is 7189.

       outer
           Set outer coloring mode.  It shall assume one of following values:

           iteration_count
               Set iteration cound mode.

           normalized_iteration_count
               set normalized iteration count mode.

           Default value is normalized_iteration_count.

       rate, r
           Set frame rate, expressed as number of frames per second. Default value is "25".

       size, s
           Set frame size. For the syntax of this option, check the "Video size" section in the ffmpeg-utils
           manual. Default value is "640x480".

       start_scale
           Set the initial scale value. Default value is 3.0.

       start_x
           Set the initial x position. Must be a floating point value between -100 and 100. Default value is
           -0.743643887037158704752191506114774.

       start_y
           Set the initial y position. Must be a floating point value between -100 and 100. Default value is
           -0.131825904205311970493132056385139.

   mptestsrc
       Generate various test patterns, as generated by the MPlayer test filter.

       The size of the generated video is fixed, and is 256x256.  This source is useful in particular for
       testing encoding features.

       This source accepts the following options:

       rate, r
           Specify the frame rate of the sourced video, as the number of frames generated per second. It has to
           be a string in the format frame_rate_num/frame_rate_den, an integer number, a floating point number
           or a valid video frame rate abbreviation. The default value is "25".

       duration, d
           Set the duration of the sourced video. See the Time duration section in the ffmpeg-utils(1) manual
           for the accepted syntax.

           If not specified, or the expressed duration is negative, the video is supposed to be generated
           forever.

       test, t
           Set the number or the name of the test to perform. Supported tests are:

           dc_luma
           dc_chroma
           freq_luma
           freq_chroma
           amp_luma
           amp_chroma
           cbp
           mv
           ring1
           ring2
           all

           Default value is "all", which will cycle through the list of all tests.

       Some examples:

               mptestsrc=t=dc_luma

       will generate a "dc_luma" test pattern.

   frei0r_src
       Provide a frei0r source.

       To enable compilation of this filter you need to install the frei0r header and configure FFmpeg with
       "--enable-frei0r".

       This source accepts the following parameters:

       size
           The size of the video to generate. For the syntax of this option, check the "Video size" section in
           the ffmpeg-utils manual.

       framerate
           The framerate of the generated video. It may be a string of the form num/den or a frame rate
           abbreviation.

       filter_name
           The name to the frei0r source to load. For more information regarding frei0r and how to set the
           parameters, read the frei0r section in the video filters documentation.

       filter_params
           A '|'-separated list of parameters to pass to the frei0r source.

       For example, to generate a frei0r partik0l source with size 200x200 and frame rate 10 which is overlaid
       on the overlay filter main input:

               frei0r_src=size=200x200:framerate=10:filter_name=partik0l:filter_params=1234 [overlay]; [in][overlay] overlay

   life
       Generate a life pattern.

       This source is based on a generalization of John Conway's life game.

       The sourced input represents a life grid, each pixel represents a cell which can be in one of two
       possible states, alive or dead. Every cell interacts with its eight neighbours, which are the cells that
       are horizontally, vertically, or diagonally adjacent.

       At each interaction the grid evolves according to the adopted rule, which specifies the number of
       neighbor alive cells which will make a cell stay alive or born. The rule option allows one to specify the
       rule to adopt.

       This source accepts the following options:

       filename, f
           Set the file from which to read the initial grid state. In the file, each non-whitespace character is
           considered an alive cell, and newline is used to delimit the end of each row.

           If this option is not specified, the initial grid is generated randomly.

       rate, r
           Set the video rate, that is the number of frames generated per second.  Default is 25.

       random_fill_ratio, ratio
           Set the random fill ratio for the initial random grid. It is a floating point number value ranging
           from 0 to 1, defaults to 1/PHI.  It is ignored when a file is specified.

       random_seed, seed
           Set the seed for filling the initial random grid, must be an integer included between 0 and
           UINT32_MAX. If not specified, or if explicitly set to -1, the filter will try to use a good random
           seed on a best effort basis.

       rule
           Set the life rule.

           A rule can be specified with a code of the kind "SNS/BNB", where NS and NB are sequences of numbers
           in the range 0-8, NS specifies the number of alive neighbor cells which make a live cell stay alive,
           and NB the number of alive neighbor cells which make a dead cell to become alive (i.e. to "born").
           "s" and "b" can be used in place of "S" and "B", respectively.

           Alternatively a rule can be specified by an 18-bits integer. The 9 high order bits are used to encode
           the next cell state if it is alive for each number of neighbor alive cells, the low order bits
           specify the rule for "borning" new cells. Higher order bits encode for an higher number of neighbor
           cells.  For example the number 6153 = "(12<<9)+9" specifies a stay alive rule of 12 and a born rule
           of 9, which corresponds to "S23/B03".

           Default value is "S23/B3", which is the original Conway's game of life rule, and will keep a cell
           alive if it has 2 or 3 neighbor alive cells, and will born a new cell if there are three alive cells
           around a dead cell.

       size, s
           Set the size of the output video. For the syntax of this option, check the "Video size" section in
           the ffmpeg-utils manual.

           If filename is specified, the size is set by default to the same size of the input file. If size is
           set, it must contain the size specified in the input file, and the initial grid defined in that file
           is centered in the larger resulting area.

           If a filename is not specified, the size value defaults to "320x240" (used for a randomly generated
           initial grid).

       stitch
           If set to 1, stitch the left and right grid edges together, and the top and bottom edges also.
           Defaults to 1.

       mold
           Set cell mold speed. If set, a dead cell will go from death_color to mold_color with a step of mold.
           mold can have a value from 0 to 255.

       life_color
           Set the color of living (or new born) cells.

       death_color
           Set the color of dead cells. If mold is set, this is the first color used to represent a dead cell.

       mold_color
           Set mold color, for definitely dead and moldy cells.

           For the syntax of these 3 color options, check the "Color" section in the ffmpeg-utils manual.

       Examples

       •   Read a grid from pattern, and center it on a grid of size 300x300 pixels:

                   life=f=pattern:s=300x300

       •   Generate a random grid of size 200x200, with a fill ratio of 2/3:

                   life=ratio=2/3:s=200x200

       •   Specify a custom rule for evolving a randomly generated grid:

                   life=rule=S14/B34

       •   Full example with slow death effect (mold) using ffplay:

                   ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16

   allrgb, allyuv, color, haldclutsrc, nullsrc, rgbtestsrc, smptebars, smptehdbars, testsrc
       The "allrgb" source returns frames of size 4096x4096 of all rgb colors.

       The "allyuv" source returns frames of size 4096x4096 of all yuv colors.

       The "color" source provides an uniformly colored input.

       The "haldclutsrc" source provides an identity Hald CLUT. See also haldclut filter.

       The "nullsrc" source returns unprocessed video frames. It is mainly useful to be employed in analysis /
       debugging tools, or as the source for filters which ignore the input data.

       The "rgbtestsrc" source generates an RGB test pattern useful for detecting RGB vs BGR issues. You should
       see a red, green and blue stripe from top to bottom.

       The "smptebars" source generates a color bars pattern, based on the SMPTE Engineering Guideline EG
       1-1990.

       The "smptehdbars" source generates a color bars pattern, based on the SMPTE RP 219-2002.

       The "testsrc" source generates a test video pattern, showing a color pattern, a scrolling gradient and a
       timestamp. This is mainly intended for testing purposes.

       The sources accept the following parameters:

       color, c
           Specify the color of the source, only available in the "color" source. For the syntax of this option,
           check the "Color" section in the ffmpeg-utils manual.

       level
           Specify the level of the Hald CLUT, only available in the "haldclutsrc" source. A level of "N"
           generates a picture of "N*N*N" by "N*N*N" pixels to be used as identity matrix for 3D lookup tables.
           Each component is coded on a "1/(N*N)" scale.

       size, s
           Specify the size of the sourced video. For the syntax of this option, check the "Video size" section
           in the ffmpeg-utils manual.  The default value is "320x240".

           This option is not available with the "haldclutsrc" filter.

       rate, r
           Specify the frame rate of the sourced video, as the number of frames generated per second. It has to
           be a string in the format frame_rate_num/frame_rate_den, an integer number, a floating point number
           or a valid video frame rate abbreviation. The default value is "25".

       sar Set the sample aspect ratio of the sourced video.

       duration, d
           Set the duration of the sourced video. See the Time duration section in the ffmpeg-utils(1) manual
           for the accepted syntax.

           If not specified, or the expressed duration is negative, the video is supposed to be generated
           forever.

       decimals, n
           Set the number of decimals to show in the timestamp, only available in the "testsrc" source.

           The displayed timestamp value will correspond to the original timestamp value multiplied by the power
           of 10 of the specified value. Default value is 0.

       For example the following:

               testsrc=duration=5.3:size=qcif:rate=10

       will generate a video with a duration of 5.3 seconds, with size 176x144 and a frame rate of 10 frames per
       second.

       The following graph description will generate a red source with an opacity of 0.2, with size "qcif" and a
       frame rate of 10 frames per second.

               color=c=red@0.2:s=qcif:r=10

       If the input content is to be ignored, "nullsrc" can be used. The following command generates noise in
       the luminance plane by employing the "geq" filter:

               nullsrc=s=256x256, geq=random(1)*255:128:128

       Commands

       The "color" source supports the following commands:

       c, color
           Set the color of the created image. Accepts the same syntax of the corresponding color option.

VIDEO SINKS

       Below is a description of the currently available video sinks.

   buffersink
       Buffer video frames, and make them available to the end of the filter graph.

       This sink is mainly intended for programmatic use, in particular through the interface defined in
       libavfilter/buffersink.h or the options system.

       It accepts a pointer to an AVBufferSinkContext structure, which defines the incoming buffers' formats, to
       be passed as the opaque parameter to "avfilter_init_filter" for initialization.

   nullsink
       Null video sink: do absolutely nothing with the input video. It is mainly useful as a template and for
       use in analysis / debugging tools.

MULTIMEDIA FILTERS

       Below is a description of the currently available multimedia filters.

   aphasemeter
       Convert input audio to a video output, displaying the audio phase.

       The filter accepts the following options:

       rate, r
           Set the output frame rate. Default value is 25.

       size, s
           Set the video size for the output. For the syntax of this option, check the "Video size" section in
           the ffmpeg-utils manual.  Default value is "800x400".

       rc
       gc
       bc  Specify the red, green, blue contrast. Default values are 2, 7 and 1.  Allowed range is "[0, 255]".

       mpc Set color which will be used for drawing median phase. If color is "none" which is default, no median
           phase value will be drawn.

       The filter also exports the frame metadata "lavfi.aphasemeter.phase" which represents mean phase of
       current audio frame. Value is in range "[-1, 1]".  The "-1" means left and right channels are completely
       out of phase and 1 means channels are in phase.

   avectorscope
       Convert input audio to a video output, representing the audio vector scope.

       The filter is used to measure the difference between channels of stereo audio stream. A monoaural signal,
       consisting of identical left and right signal, results in straight vertical line. Any stereo separation
       is visible as a deviation from this line, creating a Lissajous figure.  If the straight (or deviation
       from it) but horizontal line appears this indicates that the left and right channels are out of phase.

       The filter accepts the following options:

       mode, m
           Set the vectorscope mode.

           Available values are:

           lissajous
               Lissajous rotated by 45 degrees.

           lissajous_xy
               Same as above but not rotated.

           polar
               Shape resembling half of circle.

           Default value is lissajous.

       size, s
           Set the video size for the output. For the syntax of this option, check the "Video size" section in
           the ffmpeg-utils manual.  Default value is "400x400".

       rate, r
           Set the output frame rate. Default value is 25.

       rc
       gc
       bc
       ac  Specify the red, green, blue and alpha contrast. Default values are 40, 160, 80 and 255.  Allowed
           range is "[0, 255]".

       rf
       gf
       bf
       af  Specify the red, green, blue and alpha fade. Default values are 15, 10, 5 and 5.  Allowed range is
           "[0, 255]".

       zoom
           Set the zoom factor. Default value is 1. Allowed range is "[1, 10]".

       Examples

       •   Complete example using ffplay:

                   ffplay -f lavfi 'amovie=input.mp3, asplit [a][out1];
                                [a] avectorscope=zoom=1.3:rc=2:gc=200:bc=10:rf=1:gf=8:bf=7 [out0]'

   concat
       Concatenate audio and video streams, joining them together one after the other.

       The filter works on segments of synchronized video and audio streams. All segments must have the same
       number of streams of each type, and that will also be the number of streams at output.

       The filter accepts the following options:

       n   Set the number of segments. Default is 2.

       v   Set the number of output video streams, that is also the number of video streams in each segment.
           Default is 1.

       a   Set the number of output audio streams, that is also the number of audio streams in each segment.
           Default is 0.

       unsafe
           Activate unsafe mode: do not fail if segments have a different format.

       The filter has v+a outputs: first v video outputs, then a audio outputs.

       There are nx(v+a) inputs: first the inputs for the first segment, in the same order as the outputs, then
       the inputs for the second segment, etc.

       Related streams do not always have exactly the same duration, for various reasons including codec frame
       size or sloppy authoring. For that reason, related synchronized streams (e.g. a video and its audio
       track) should be concatenated at once. The concat filter will use the duration of the longest stream in
       each segment (except the last one), and if necessary pad shorter audio streams with silence.

       For this filter to work correctly, all segments must start at timestamp 0.

       All corresponding streams must have the same parameters in all segments; the filtering system will
       automatically select a common pixel format for video streams, and a common sample format, sample rate and
       channel layout for audio streams, but other settings, such as resolution, must be converted explicitly by
       the user.

       Different frame rates are acceptable but will result in variable frame rate at output; be sure to
       configure the output file to handle it.

       Examples

       •   Concatenate an opening, an episode and an ending, all in bilingual version (video in stream 0, audio
           in streams 1 and 2):

                   ffmpeg -i opening.mkv -i episode.mkv -i ending.mkv -filter_complex \
                     '[0:0] [0:1] [0:2] [1:0] [1:1] [1:2] [2:0] [2:1] [2:2]
                      concat=n=3:v=1:a=2 [v] [a1] [a2]' \
                     -map '[v]' -map '[a1]' -map '[a2]' output.mkv

       •   Concatenate two parts, handling audio and video separately, using the (a)movie sources, and adjusting
           the resolution:

                   movie=part1.mp4, scale=512:288 [v1] ; amovie=part1.mp4 [a1] ;
                   movie=part2.mp4, scale=512:288 [v2] ; amovie=part2.mp4 [a2] ;
                   [v1] [v2] concat [outv] ; [a1] [a2] concat=v=0:a=1 [outa]

           Note that a desync will happen at the stitch if the audio and video streams do not have exactly the
           same duration in the first file.

   ebur128
       EBU R128 scanner filter. This filter takes an audio stream as input and outputs it unchanged. By default,
       it logs a message at a frequency of 10Hz with the Momentary loudness (identified by "M"), Short-term
       loudness ("S"), Integrated loudness ("I") and Loudness Range ("LRA").

       The filter also has a video output (see the video option) with a real time graph to observe the loudness
       evolution. The graphic contains the logged message mentioned above, so it is not printed anymore when
       this option is set, unless the verbose logging is set. The main graphing area contains the short-term
       loudness (3 seconds of analysis), and the gauge on the right is for the momentary loudness (400
       milliseconds).

       More information about the Loudness Recommendation EBU R128 on <http://tech.ebu.ch/loudness>.

       The filter accepts the following options:

       video
           Activate the video output. The audio stream is passed unchanged whether this option is set or no. The
           video stream will be the first output stream if activated. Default is 0.

       size
           Set the video size. This option is for video only. For the syntax of this option, check the "Video
           size" section in the ffmpeg-utils manual.  Default and minimum resolution is "640x480".

       meter
           Set the EBU scale meter. Default is 9. Common values are 9 and 18, respectively for EBU scale meter
           +9 and EBU scale meter +18. Any other integer value between this range is allowed.

       metadata
           Set metadata injection. If set to 1, the audio input will be segmented into 100ms output frames, each
           of them containing various loudness information in metadata.  All the metadata keys are prefixed with
           "lavfi.r128.".

           Default is 0.

       framelog
           Force the frame logging level.

           Available values are:

           info
               information logging level

           verbose
               verbose logging level

           By default, the logging level is set to info. If the video or the metadata options are set, it
           switches to verbose.

       peak
           Set peak mode(s).

           Available modes can be cumulated (the option is a "flag" type). Possible values are:

           none
               Disable any peak mode (default).

           sample
               Enable sample-peak mode.

               Simple peak mode looking for the higher sample value. It logs a message for sample-peak
               (identified by "SPK").

           true
               Enable true-peak mode.

               If enabled, the peak lookup is done on an over-sampled version of the input stream for better
               peak accuracy. It logs a message for true-peak.  (identified by "TPK") and true-peak per frame
               (identified by "FTPK").  This mode requires a build with "libswresample".

       Examples

       •   Real-time graph using ffplay, with a EBU scale meter +18:

                   ffplay -f lavfi -i "amovie=input.mp3,ebur128=video=1:meter=18 [out0][out1]"

       •   Run an analysis with ffmpeg:

                   ffmpeg -nostats -i input.mp3 -filter_complex ebur128 -f null -

   interleave, ainterleave
       Temporally interleave frames from several inputs.

       "interleave" works with video inputs, "ainterleave" with audio.

       These filters read frames from several inputs and send the oldest queued frame to the output.

       Input streams must have a well defined, monotonically increasing frame timestamp values.

       In order to submit one frame to output, these filters need to enqueue at least one frame for each input,
       so they cannot work in case one input is not yet terminated and will not receive incoming frames.

       For example consider the case when one input is a "select" filter which always drop input frames. The
       "interleave" filter will keep reading from that input, but it will never be able to send new frames to
       output until the input will send an end-of-stream signal.

       Also, depending on inputs synchronization, the filters will drop frames in case one input receives more
       frames than the other ones, and the queue is already filled.

       These filters accept the following options:

       nb_inputs, n
           Set the number of different inputs, it is 2 by default.

       Examples

       •   Interleave frames belonging to different streams using ffmpeg:

                   ffmpeg -i bambi.avi -i pr0n.mkv -filter_complex "[0:v][1:v] interleave" out.avi

       •   Add flickering blur effect:

                   select='if(gt(random(0), 0.2), 1, 2)':n=2 [tmp], boxblur=2:2, [tmp] interleave

   perms, aperms
       Set read/write permissions for the output frames.

       These filters are mainly aimed at developers to test direct path in the following filter in the
       filtergraph.

       The filters accept the following options:

       mode
           Select the permissions mode.

           It accepts the following values:

           none
               Do nothing. This is the default.

           ro  Set all the output frames read-only.

           rw  Set all the output frames directly writable.

           toggle
               Make the frame read-only if writable, and writable if read-only.

           random
               Set each output frame read-only or writable randomly.

       seed
           Set the seed for the random mode, must be an integer included between 0 and "UINT32_MAX". If not
           specified, or if explicitly set to "-1", the filter will try to use a good random seed on a best
           effort basis.

       Note: in case of auto-inserted filter between the permission filter and the following one, the permission
       might not be received as expected in that following filter. Inserting a format or aformat filter before
       the perms/aperms filter can avoid this problem.

   select, aselect
       Select frames to pass in output.

       This filter accepts the following options:

       expr, e
           Set expression, which is evaluated for each input frame.

           If the expression is evaluated to zero, the frame is discarded.

           If the evaluation result is negative or NaN, the frame is sent to the first output; otherwise it is
           sent to the output with index "ceil(val)-1", assuming that the input index starts from 0.

           For example a value of 1.2 corresponds to the output with index "ceil(1.2)-1 = 2-1 = 1", that is the
           second output.

       outputs, n
           Set the number of outputs. The output to which to send the selected frame is based on the result of
           the evaluation. Default value is 1.

       The expression can contain the following constants:

       n   The (sequential) number of the filtered frame, starting from 0.

       selected_n
           The (sequential) number of the selected frame, starting from 0.

       prev_selected_n
           The sequential number of the last selected frame. It's NAN if undefined.

       TB  The timebase of the input timestamps.

       pts The PTS (Presentation TimeStamp) of the filtered video frame, expressed in TB units. It's NAN if
           undefined.

       t   The PTS of the filtered video frame, expressed in seconds. It's NAN if undefined.

       prev_pts
           The PTS of the previously filtered video frame. It's NAN if undefined.

       prev_selected_pts
           The PTS of the last previously filtered video frame. It's NAN if undefined.

       prev_selected_t
           The PTS of the last previously selected video frame. It's NAN if undefined.

       start_pts
           The PTS of the first video frame in the video. It's NAN if undefined.

       start_t
           The time of the first video frame in the video. It's NAN if undefined.

       pict_type (video only)
           The type of the filtered frame. It can assume one of the following values:

           I
           P
           B
           S
           SI
           SP
           BI
       interlace_type (video only)
           The frame interlace type. It can assume one of the following values:

           PROGRESSIVE
               The frame is progressive (not interlaced).

           TOPFIRST
               The frame is top-field-first.

           BOTTOMFIRST
               The frame is bottom-field-first.

       consumed_sample_n (audio only)
           the number of selected samples before the current frame

       samples_n (audio only)
           the number of samples in the current frame

       sample_rate (audio only)
           the input sample rate

       key This is 1 if the filtered frame is a key-frame, 0 otherwise.

       pos the position in the file of the filtered frame, -1 if the information is not available (e.g. for
           synthetic video)

       scene (video only)
           value between 0 and 1 to indicate a new scene; a low value reflects a low probability for the current
           frame to introduce a new scene, while a higher value means the current frame is more likely to be one
           (see the example below)

       The default value of the select expression is "1".

       Examples

       •   Select all frames in input:

                   select

           The example above is the same as:

                   select=1

       •   Skip all frames:

                   select=0

       •   Select only I-frames:

                   select='eq(pict_type\,I)'

       •   Select one frame every 100:

                   select='not(mod(n\,100))'

       •   Select only frames contained in the 10-20 time interval:

                   select=between(t\,10\,20)

       •   Select only I frames contained in the 10-20 time interval:

                   select=between(t\,10\,20)*eq(pict_type\,I)

       •   Select frames with a minimum distance of 10 seconds:

                   select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'

       •   Use aselect to select only audio frames with samples number > 100:

                   aselect='gt(samples_n\,100)'

       •   Create a mosaic of the first scenes:

                   ffmpeg -i video.avi -vf select='gt(scene\,0.4)',scale=160:120,tile -frames:v 1 preview.png

           Comparing scene against a value between 0.3 and 0.5 is generally a sane choice.

       •   Send even and odd frames to separate outputs, and compose them:

                   select=n=2:e='mod(n, 2)+1' [odd][even]; [odd] pad=h=2*ih [tmp]; [tmp][even] overlay=y=h

   sendcmd, asendcmd
       Send commands to filters in the filtergraph.

       These filters read commands to be sent to other filters in the filtergraph.

       "sendcmd" must be inserted between two video filters, "asendcmd" must be inserted between two audio
       filters, but apart from that they act the same way.

       The specification of commands can be provided in the filter arguments with the commands option, or in a
       file specified by the filename option.

       These filters accept the following options:

       commands, c
           Set the commands to be read and sent to the other filters.

       filename, f
           Set the filename of the commands to be read and sent to the other filters.

       Commands syntax

       A commands description consists of a sequence of interval specifications, comprising a list of commands
       to be executed when a particular event related to that interval occurs. The occurring event is typically
       the current frame time entering or leaving a given time interval.

       An interval is specified by the following syntax:

               <START>[-<END>] <COMMANDS>;

       The time interval is specified by the START and END times.  END is optional and defaults to the maximum
       time.

       The current frame time is considered within the specified interval if it is included in the interval
       [START, END), that is when the time is greater or equal to START and is lesser than END.

       COMMANDS consists of a sequence of one or more command specifications, separated by ",", relating to that
       interval.  The syntax of a command specification is given by:

               [<FLAGS>] <TARGET> <COMMAND> <ARG>

       FLAGS is optional and specifies the type of events relating to the time interval which enable sending the
       specified command, and must be a non-null sequence of identifier flags separated by "+" or "|" and
       enclosed between "[" and "]".

       The following flags are recognized:

       enter
           The command is sent when the current frame timestamp enters the specified interval. In other words,
           the command is sent when the previous frame timestamp was not in the given interval, and the current
           is.

       leave
           The command is sent when the current frame timestamp leaves the specified interval. In other words,
           the command is sent when the previous frame timestamp was in the given interval, and the current is
           not.

       If FLAGS is not specified, a default value of "[enter]" is assumed.

       TARGET specifies the target of the command, usually the name of the filter class or a specific filter
       instance name.

       COMMAND specifies the name of the command for the target filter.

       ARG is optional and specifies the optional list of argument for the given COMMAND.

       Between one interval specification and another, whitespaces, or sequences of characters starting with "#"
       until the end of line, are ignored and can be used to annotate comments.

       A simplified BNF description of the commands specification syntax follows:

               <COMMAND_FLAG>  ::= "enter" | "leave"
               <COMMAND_FLAGS> ::= <COMMAND_FLAG> [(+|"|")<COMMAND_FLAG>]
               <COMMAND>       ::= ["[" <COMMAND_FLAGS> "]"] <TARGET> <COMMAND> [<ARG>]
               <COMMANDS>      ::= <COMMAND> [,<COMMANDS>]
               <INTERVAL>      ::= <START>[-<END>] <COMMANDS>
               <INTERVALS>     ::= <INTERVAL>[;<INTERVALS>]

       Examples

       •   Specify audio tempo change at second 4:

                   asendcmd=c='4.0 atempo tempo 1.5',atempo

       •   Specify a list of drawtext and hue commands in a file.

                   # show text in the interval 5-10
                   5.0-10.0 [enter] drawtext reinit 'fontfile=FreeSerif.ttf:text=hello world',
                            [leave] drawtext reinit 'fontfile=FreeSerif.ttf:text=';

                   # desaturate the image in the interval 15-20
                   15.0-20.0 [enter] hue s 0,
                             [enter] drawtext reinit 'fontfile=FreeSerif.ttf:text=nocolor',
                             [leave] hue s 1,
                             [leave] drawtext reinit 'fontfile=FreeSerif.ttf:text=color';

                   # apply an exponential saturation fade-out effect, starting from time 25
                   25 [enter] hue s exp(25-t)

           A filtergraph allowing to read and process the above command list stored in a file test.cmd, can be
           specified with:

                   sendcmd=f=test.cmd,drawtext=fontfile=FreeSerif.ttf:text='',hue

   setpts, asetpts
       Change the PTS (presentation timestamp) of the input frames.

       "setpts" works on video frames, "asetpts" on audio frames.

       This filter accepts the following options:

       expr
           The expression which is evaluated for each frame to construct its timestamp.

       The expression is evaluated through the eval API and can contain the following constants:

       FRAME_RATE
           frame rate, only defined for constant frame-rate video

       PTS The presentation timestamp in input

       N   The count of the input frame for video or the number of consumed samples, not including the current
           frame for audio, starting from 0.

       NB_CONSUMED_SAMPLES
           The number of consumed samples, not including the current frame (only audio)

       NB_SAMPLES, S
           The number of samples in the current frame (only audio)

       SAMPLE_RATE, SR
           The audio sample rate.

       STARTPTS
           The PTS of the first frame.

       STARTT
           the time in seconds of the first frame

       INTERLACED
           State whether the current frame is interlaced.

       T   the time in seconds of the current frame

       POS original position in the file of the frame, or undefined if undefined for the current frame

       PREV_INPTS
           The previous input PTS.

       PREV_INT
           previous input time in seconds

       PREV_OUTPTS
           The previous output PTS.

       PREV_OUTT
           previous output time in seconds

       RTCTIME
           The wallclock (RTC) time in microseconds. This is deprecated, use time(0) instead.

       RTCSTART
           The wallclock (RTC) time at the start of the movie in microseconds.

       TB  The timebase of the input timestamps.

       Examples

       •   Start counting PTS from zero

                   setpts=PTS-STARTPTS

       •   Apply fast motion effect:

                   setpts=0.5*PTS

       •   Apply slow motion effect:

                   setpts=2.0*PTS

       •   Set fixed rate of 25 frames per second:

                   setpts=N/(25*TB)

       •   Set fixed rate 25 fps with some jitter:

                   setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'

       •   Apply an offset of 10 seconds to the input PTS:

                   setpts=PTS+10/TB

       •   Generate timestamps from a "live source" and rebase onto the current timebase:

                   setpts='(RTCTIME - RTCSTART) / (TB * 1000000)'

       •   Generate timestamps by counting samples:

                   asetpts=N/SR/TB

   settb, asettb
       Set the timebase to use for the output frames timestamps.  It is mainly useful for testing timebase
       configuration.

       It accepts the following parameters:

       expr, tb
           The expression which is evaluated into the output timebase.

       The value for tb is an arithmetic expression representing a rational. The expression can contain the
       constants "AVTB" (the default timebase), "intb" (the input timebase) and "sr" (the sample rate, audio
       only). Default value is "intb".

       Examples

       •   Set the timebase to 1/25:

                   settb=expr=1/25

       •   Set the timebase to 1/10:

                   settb=expr=0.1

       •   Set the timebase to 1001/1000:

                   settb=1+0.001

       •   Set the timebase to 2*intb:

                   settb=2*intb

       •   Set the default timebase value:

                   settb=AVTB

   showcqt
       Convert input audio to a video output representing frequency spectrum logarithmically (using constant Q
       transform with Brown-Puckette algorithm), with musical tone scale, from E0 to D#10 (10 octaves).

       The filter accepts the following options:

       volume
           Specify transform volume (multiplier) expression. The expression can contain variables:

           frequency, freq, f
               the frequency where transform is evaluated

           timeclamp, tc
               value of timeclamp option

           and functions:

           a_weighting(f)
               A-weighting of equal loudness

           b_weighting(f)
               B-weighting of equal loudness

           c_weighting(f)
               C-weighting of equal loudness

           Default value is 16.

       tlength
           Specify transform length expression. The expression can contain variables:

           frequency, freq, f
               the frequency where transform is evaluated

           timeclamp, tc
               value of timeclamp option

           Default value is "384/f*tc/(384/f+tc)".

       timeclamp
           Specify the transform timeclamp. At low frequency, there is trade-off between accuracy in time domain
           and frequency domain. If timeclamp is lower, event in time domain is represented more accurately
           (such as fast bass drum), otherwise event in frequency domain is represented more accurately (such as
           bass guitar). Acceptable value is [0.1, 1.0]. Default value is 0.17.

       coeffclamp
           Specify the transform coeffclamp. If coeffclamp is lower, transform is more accurate, otherwise
           transform is faster. Acceptable value is [0.1, 10.0].  Default value is 1.0.

       gamma
           Specify gamma. Lower gamma makes the spectrum more contrast, higher gamma makes the spectrum having
           more range. Acceptable value is [1.0, 7.0].  Default value is 3.0.

       gamma2
           Specify gamma of bargraph. Acceptable value is [1.0, 7.0].  Default value is 1.0.

       fontfile
           Specify font file for use with freetype. If not specified, use embedded font.

       fontcolor
           Specify font color expression. This is arithmetic expression that should return integer value
           0xRRGGBB. The expression can contain variables:

           frequency, freq, f
               the frequency where transform is evaluated

           timeclamp, tc
               value of timeclamp option

           and functions:

           midi(f)
               midi number of frequency f, some midi numbers: E0(16), C1(24), C2(36), A4(69)

           r(x), g(x), b(x)
               red, green, and blue value of intensity x

           Default value is "st(0, (midi(f)-59.5)/12); st(1, if(between(ld(0),0,1), 0.5-0.5*cos(2*PI*ld(0)),
           0)); r(1-ld(1)) + b(ld(1))"

       fullhd
           If set to 1 (the default), the video size is 1920x1080 (full HD), if set to 0, the video size is
           960x540. Use this option to make CPU usage lower.

       fps Specify video fps. Default value is 25.

       count
           Specify number of transform per frame, so there are fps*count transforms per second. Note that audio
           data rate must be divisible by fps*count.  Default value is 6.

       Examples

       •   Playing audio while showing the spectrum:

                   ffplay -f lavfi 'amovie=a.mp3, asplit [a][out1]; [a] showcqt [out0]'

       •   Same as above, but with frame rate 30 fps:

                   ffplay -f lavfi 'amovie=a.mp3, asplit [a][out1]; [a] showcqt=fps=30:count=5 [out0]'

       •   Playing at 960x540 and lower CPU usage:

                   ffplay -f lavfi 'amovie=a.mp3, asplit [a][out1]; [a] showcqt=fullhd=0:count=3 [out0]'

       •   A1 and its harmonics: A1, A2, (near)E3, A3:

                   ffplay -f lavfi 'aevalsrc=0.1*sin(2*PI*55*t)+0.1*sin(4*PI*55*t)+0.1*sin(6*PI*55*t)+0.1*sin(8*PI*55*t),
                                    asplit[a][out1]; [a] showcqt [out0]'

       •   Same as above, but with more accuracy in frequency domain (and slower):

                   ffplay -f lavfi 'aevalsrc=0.1*sin(2*PI*55*t)+0.1*sin(4*PI*55*t)+0.1*sin(6*PI*55*t)+0.1*sin(8*PI*55*t),
                                    asplit[a][out1]; [a] showcqt=timeclamp=0.5 [out0]'

       •   B-weighting of equal loudness

                   volume=16*b_weighting(f)

       •   Lower Q factor

                   tlength=100/f*tc/(100/f+tc)

       •   Custom fontcolor, C-note is colored green, others are colored blue

                   fontcolor='if(mod(floor(midi(f)+0.5),12), 0x0000FF, g(1))'

       •   Custom gamma, now spectrum is linear to the amplitude.

                   gamma=2:gamma2=2

   showfreqs
       Convert input audio to video output representing the audio power spectrum.  Audio amplitude is on Y-axis
       while frequency is on X-axis.

       The filter accepts the following options:

       size, s
           Specify size of video. For the syntax of this option, check the "Video size" section in the ffmpeg-
           utils manual.  Default is "1024x512".

       mode
           Set display mode.  This set how each frequency bin will be represented.

           It accepts the following values:

           line
           bar
           dot

           Default is "bar".

       ascale
           Set amplitude scale.

           It accepts the following values:

           lin Linear scale.

           sqrt
               Square root scale.

           cbrt
               Cubic root scale.

           log Logarithmic scale.

           Default is "log".

       fscale
           Set frequency scale.

           It accepts the following values:

           lin Linear scale.

           log Logarithmic scale.

           rlog
               Reverse logarithmic scale.

           Default is "lin".

       win_size
           Set window size.

           It accepts the following values:

           w16
           w32
           w64
           w128
           w256
           w512
           w1024
           w2048
           w4096
           w8192
           w16384
           w32768
           w65536

           Default is "w2048"

       win_func
           Set windowing function.

           It accepts the following values:

           rect
           bartlett
           hanning
           hamming
           blackman
           welch
           flattop
           bharris
           bnuttall
           bhann
           sine
           nuttall

           Default is "hanning".

       overlap
           Set window overlap. In range "[0, 1]". Default is 1, which means optimal overlap for selected window
           function will be picked.

       averaging
           Set time averaging. Setting this to 0 will display current maximal peaks.  Default is 1, which means
           time averaging is disabled.

       color
           Specify list of colors separated by space or by '|' which will be used to draw channel frequencies.
           Unrecognized or missing colors will be replaced by white color.

   showspectrum
       Convert input audio to a video output, representing the audio frequency spectrum.

       The filter accepts the following options:

       size, s
           Specify the video size for the output. For the syntax of this option, check the "Video size" section
           in the ffmpeg-utils manual.  Default value is "640x512".

       slide
           Specify how the spectrum should slide along the window.

           It accepts the following values:

           replace
               the samples start again on the left when they reach the right

           scroll
               the samples scroll from right to left

           fullframe
               frames are only produced when the samples reach the right

           Default value is "replace".

       mode
           Specify display mode.

           It accepts the following values:

           combined
               all channels are displayed in the same row

           separate
               all channels are displayed in separate rows

           Default value is combined.

       color
           Specify display color mode.

           It accepts the following values:

           channel
               each channel is displayed in a separate color

           intensity
               each channel is is displayed using the same color scheme

           Default value is channel.

       scale
           Specify scale used for calculating intensity color values.

           It accepts the following values:

           lin linear

           sqrt
               square root, default

           cbrt
               cubic root

           log logarithmic

           Default value is sqrt.

       saturation
           Set saturation modifier for displayed colors. Negative values provide alternative color scheme. 0 is
           no saturation at all.  Saturation must be in [-10.0, 10.0] range.  Default value is 1.

       win_func
           Set window function.

           It accepts the following values:

           none
               No samples pre-processing (do not expect this to be faster)

           hann
               Hann window

           hamming
               Hamming window

           blackman
               Blackman window

           Default value is "hann".

       The usage is very similar to the showwaves filter; see the examples in that section.

       Examples

       •   Large window with logarithmic color scaling:

                   showspectrum=s=1280x480:scale=log

       •   Complete example for a colored and sliding spectrum per channel using ffplay:

                   ffplay -f lavfi 'amovie=input.mp3, asplit [a][out1];
                                [a] showspectrum=mode=separate:color=intensity:slide=1:scale=cbrt [out0]'

   showvolume
       Convert input audio volume to a video output.

       The filter accepts the following options:

       rate, r
           Set video rate.

       b   Set border width, allowed range is [0, 5]. Default is 1.

       w   Set channel width, allowed range is [40, 1080]. Default is 400.

       h   Set channel height, allowed range is [1, 100]. Default is 20.

       f   Set fade, allowed range is [1, 255]. Default is 20.

       c   Set volume color expression.

           The expression can use the following variables:

           VOLUME
               Current max volume of channel in dB.

           CHANNEL
               Current channel number, starting from 0.

       t   If set, displays channel names. Default is enabled.

   showwaves
       Convert input audio to a video output, representing the samples waves.

       The filter accepts the following options:

       size, s
           Specify the video size for the output. For the syntax of this option, check the "Video size" section
           in the ffmpeg-utils manual.  Default value is "600x240".

       mode
           Set display mode.

           Available values are:

           point
               Draw a point for each sample.

           line
               Draw a vertical line for each sample.

           p2p Draw a point for each sample and a line between them.

           cline
               Draw a centered vertical line for each sample.

           Default value is "point".

       n   Set the number of samples which are printed on the same column. A larger value will decrease the
           frame rate. Must be a positive integer. This option can be set only if the value for rate is not
           explicitly specified.

       rate, r
           Set the (approximate) output frame rate. This is done by setting the option n. Default value is "25".

       split_channels
           Set if channels should be drawn separately or overlap. Default value is 0.

       Examples

       •   Output the input file audio and the corresponding video representation at the same time:

                   amovie=a.mp3,asplit[out0],showwaves[out1]

       •   Create a synthetic signal and show it with showwaves, forcing a frame rate of 30 frames per second:

                   aevalsrc=sin(1*2*PI*t)*sin(880*2*PI*t):cos(2*PI*200*t),asplit[out0],showwaves=r=30[out1]

   showwavespic
       Convert input audio to a single video frame, representing the samples waves.

       The filter accepts the following options:

       size, s
           Specify the video size for the output. For the syntax of this option, check the "Video size" section
           in the ffmpeg-utils manual.  Default value is "600x240".

       split_channels
           Set if channels should be drawn separately or overlap. Default value is 0.

       Examples

       •   Extract a channel split representation of the wave form of a whole audio track in a 1024x800 picture
           using ffmpeg:

                   ffmpeg -i audio.flac -lavfi showwavespic=split_channels=1:s=1024x800 waveform.png

   split, asplit
       Split input into several identical outputs.

       "asplit" works with audio input, "split" with video.

       The filter accepts a single parameter which specifies the number of outputs. If unspecified, it defaults
       to 2.

       Examples

       •   Create two separate outputs from the same input:

                   [in] split [out0][out1]

       •   To create 3 or more outputs, you need to specify the number of outputs, like in:

                   [in] asplit=3 [out0][out1][out2]

       •   Create two separate outputs from the same input, one cropped and one padded:

                   [in] split [splitout1][splitout2];
                   [splitout1] crop=100:100:0:0    [cropout];
                   [splitout2] pad=200:200:100:100 [padout];

       •   Create 5 copies of the input audio with ffmpeg:

                   ffmpeg -i INPUT -filter_complex asplit=5 OUTPUT

   zmq, azmq
       Receive commands sent through a libzmq client, and forward them to filters in the filtergraph.

       "zmq" and "azmq" work as a pass-through filters. "zmq" must be inserted between two video filters, "azmq"
       between two audio filters.

       To enable these filters you need to install the libzmq library and headers and configure FFmpeg with
       "--enable-libzmq".

       For more information about libzmq see: <http://www.zeromq.org/>

       The "zmq" and "azmq" filters work as a libzmq server, which receives messages sent through a network
       interface defined by the bind_address option.

       The received message must be in the form:

               <TARGET> <COMMAND> [<ARG>]

       TARGET specifies the target of the command, usually the name of the filter class or a specific filter
       instance name.

       COMMAND specifies the name of the command for the target filter.

       ARG is optional and specifies the optional argument list for the given COMMAND.

       Upon reception, the message is processed and the corresponding command is injected into the filtergraph.
       Depending on the result, the filter will send a reply to the client, adopting the format:

               <ERROR_CODE> <ERROR_REASON>
               <MESSAGE>

       MESSAGE is optional.

       Examples

       Look at tools/zmqsend for an example of a zmq client which can be used to send commands processed by
       these filters.

       Consider the following filtergraph generated by ffplay

               ffplay -dumpgraph 1 -f lavfi "
               color=s=100x100:c=red  [l];
               color=s=100x100:c=blue [r];
               nullsrc=s=200x100, zmq [bg];
               [bg][l]   overlay      [bg+l];
               [bg+l][r] overlay=x=100 "

       To change the color of the left side of the video, the following command can be used:

               echo Parsed_color_0 c yellow | tools/zmqsend

       To change the right side:

               echo Parsed_color_1 c pink | tools/zmqsend

MULTIMEDIA SOURCES

       Below is a description of the currently available multimedia sources.

   amovie
       This is the same as movie source, except it selects an audio stream by default.

   movie
       Read audio and/or video stream(s) from a movie container.

       It accepts the following parameters:

       filename
           The name of the resource to read (not necessarily a file; it can also be a device or a stream
           accessed through some protocol).

       format_name, f
           Specifies the format assumed for the movie to read, and can be either the name of a container or an
           input device. If not specified, the format is guessed from movie_name or by probing.

       seek_point, sp
           Specifies the seek point in seconds. The frames will be output starting from this seek point. The
           parameter is evaluated with "av_strtod", so the numerical value may be suffixed by an IS postfix. The
           default value is "0".

       streams, s
           Specifies the streams to read. Several streams can be specified, separated by "+". The source will
           then have as many outputs, in the same order. The syntax is explained in the ``Stream specifiers''
           section in the ffmpeg manual. Two special names, "dv" and "da" specify respectively the default (best
           suited) video and audio stream. Default is "dv", or "da" if the filter is called as "amovie".

       stream_index, si
           Specifies the index of the video stream to read. If the value is -1, the most suitable video stream
           will be automatically selected. The default value is "-1". Deprecated. If the filter is called
           "amovie", it will select audio instead of video.

       loop
           Specifies how many times to read the stream in sequence.  If the value is less than 1, the stream
           will be read again and again.  Default value is "1".

           Note that when the movie is looped the source timestamps are not changed, so it will generate non
           monotonically increasing timestamps.

       It allows overlaying a second video on top of the main input of a filtergraph, as shown in this graph:

               input -----------> deltapts0 --> overlay --> output
                                                   ^
                                                   |
               movie --> scale--> deltapts1 -------+

       Examples

       •   Skip 3.2 seconds from the start of the AVI file in.avi, and overlay it on top of the input labelled
           "in":

                   movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [over];
                   [in] setpts=PTS-STARTPTS [main];
                   [main][over] overlay=16:16 [out]

       •   Read from a video4linux2 device, and overlay it on top of the input labelled "in":

                   movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [over];
                   [in] setpts=PTS-STARTPTS [main];
                   [main][over] overlay=16:16 [out]

       •   Read the first video stream and the audio stream with id 0x81 from dvd.vob; the video is connected to
           the pad named "video" and the audio is connected to the pad named "audio":

                   movie=dvd.vob:s=v:0+#0x81 [video] [audio]

SEE ALSO

       ffplay(1), ffmpeg(1), ffprobe(1), ffserver(1), ffmpeg-utils(1), ffmpeg-scaler(1), ffmpeg-resampler(1),
       ffmpeg-codecs(1), ffmpeg-bitstream-filters(1), ffmpeg-formats(1), ffmpeg-devices(1), ffmpeg-protocols(1),
       ffmpeg-filters(1)

AUTHORS

       The FFmpeg developers.

       For details about the authorship, see the Git history of the project (git://source.ffmpeg.org/ffmpeg),
       e.g. by typing the command git log in the FFmpeg source directory, or browsing the online repository at
       <http://source.ffmpeg.org>.

       Maintainers for the specific components are listed in the file MAINTAINERS in the source code tree.

                                                                                                   FFPLAY-ALL(1)