Provided by: manpages-fr_4.18.1-1_all
NOM
socket – Interface Linux aux sockets
SYNOPSIS
#include <sys/socket.h> sockfd = socket(int famille_socket, int type_socket, int protocole);
DESCRIPTION
Cette page de manuel documente l'interface utilisateur de l'implémentation Linux des sockets réseau. Les sockets compatibles BSD représentent l'interface uniforme entre le processus utilisateur et les piles de protocoles réseau dans le noyau. Les modules des protocoles sont regroupés en familles de protocoles tels que AF_INET, AF_IPX et AF_PACKET, et en types de sockets comme SOCK_STREAM ou SOCK_DGRAM. Consultez socket(2) pour plus d'informations sur les familles et les types de sockets. Fonctions du niveau socket These functions are used by the user process to send or receive packets and to do other socket operations. For more information, see their respective manual pages. socket(2) crée un socket, connect(2) connecte un socket à une adresse de socket distant, la fonction bind(2) attache un socket à une adresse locale, listen(2) indique au socket que de nouvelles connexions doivent être acceptées et accept(2) est utilisé pour obtenir un nouveau socket avec une nouvelle connexion entrante. socketpair(2) renvoie deux sockets anonymes connectés (seulement implémentée pour quelques familles locales comme AF_UNIX). send(2), sendto(2) et sendmsg(2) envoient des données sur un socket, et recv(2), recvfrom(2) et recvmsg(2) reçoivent les données d’un socket. poll(2) et select(2) attendent que des données arrivent ou que l'émission soit possible. De plus, les opérations d'entrée-sortie standard comme write(2), writev(2), sendfile(2), read(2) et readv(2) peuvent être utilisées pour la lecture et l'écriture des données. getsockname(2) renvoie l'adresse du socket local et getpeername(2) renvoie l'adresse du socket distant. getsockopt(2) et setsockopt(2) servent à définir et à obtenir les options de la couche socket ou du protocole. ioctl(2) peut être utilisée pour lire et écrire d'autres options. close(2) sert à fermer un socket. shutdown(2) ferme une partie des connexions d'un duplex intégral de socket. La recherche ou l'utilisation de pread(2) ou pwrite(2) avec une position différente de zéro n'est pas possible sur les sockets. Des opérations d'entrée-sortie non bloquantes sur les sockets sont possibles en définissant l'attribut O_NONBLOCK du descripteur de fichier du socket avec fcntl(2). Toutes les opérations qui devraient normalement bloquer se terminent alors avec l'erreur EAGAIN (l'opération devra être retentée ultérieurement). connect(2) renverra l'erreur EINPROGRESS. L'utilisateur peut alors attendre divers événements avec poll(2) ou select(2). ┌─────────────────────────────────────────────────────────────────────────────────────────┐ │ Événements E/S │ ├─────────────┬───────────────────┬───────────────────────────────────────────────────────┤ │Évènement │ Indicateur d’état │ Occurrence │ ├─────────────┼───────────────────┼───────────────────────────────────────────────────────┤ │Lecture │ POLLIN │ Arrivée de nouvelles données. │ ├─────────────┼───────────────────┼───────────────────────────────────────────────────────┤ │Lecture │ POLLIN │ Une connexion a été réalisée (pour les sockets │ │ │ │ orientés connexion) │ ├─────────────┼───────────────────┼───────────────────────────────────────────────────────┤ │Lecture │ POLLHUP │ Une demande de déconnexion a été initiée par l'autre │ │ │ │ extrémité. │ ├─────────────┼───────────────────┼───────────────────────────────────────────────────────┤ │Lecture │ POLLHUP │ Une connexion est rompue (seulement pour les │ │ │ │ protocoles orientés connexion). Lorsque le socket est │ │ │ │ écrit, SIGPIPE est aussi envoyé. │ ├─────────────┼───────────────────┼───────────────────────────────────────────────────────┤ │Écriture │ POLLOUT │ Le socket a assez de place dans le tampon d'émission │ │ │ │ pour écrire de nouvelles données. │ ├─────────────┼───────────────────┼───────────────────────────────────────────────────────┤ │Lect./Écrit. │ POLLIN | │ Un connect(2) sortant a terminé. │ │ │ POLLOUT │ │ ├─────────────┼───────────────────┼───────────────────────────────────────────────────────┤ │Lect./Écrit. │ POLLERR │ Une erreur asynchrone s'est produite. │ ├─────────────┼───────────────────┼───────────────────────────────────────────────────────┤ │Lect./Écrit. │ POLLHUP │ Le correspondant a clos un sens de communication. │ ├─────────────┼───────────────────┼───────────────────────────────────────────────────────┤ │Exception │ POLLPRI │ Arrivée de données urgentes. SIGURG est alors envoyé. │ └─────────────┴───────────────────┴───────────────────────────────────────────────────────┘ Une alternative à poll(2) et select(2) est de laisser le noyau informer l'application des événements par l'intermédiaire d'un signal SIGIO. Pour cela, l'attribut O_ASYNC doit être défini sur un descripteur de fichier du socket à l’aide de fcntl(2) et un gestionnaire de signal valable pour SIGIO doit être installé avec sigaction(2). Consultez les remarques sur les Signaux ci-dessous. Structures d'adresses de socket Chaque domaine de socket a son propre format pour les adresses de socket, avec une structure d'adresse propre. Chacune de ces structures commence par un champ d’entier « family » (famille), de type sa_family_t, qui indique le type de structure d'adresse. Cela permet aux appels système génériques à tous les domaines de socket (par exemple connect(2), bind(2), accept(2), getsockname(2), getpeername(2)) de déterminer le domaine d'une adresse de socket donnée. Le type struct sockaddr est défini afin de pouvoir passer n'importe quel type d'adresse de socket aux interfaces dans l'API des sockets. Le but de ce type est purement d'autoriser la conversion de types d'adresse de socket propres à un domaine vers le type « générique », afin d'éviter les avertissements du compilateur au sujet de la non correspondance de type dans les appels de l'API des sockets. De plus, l'API des sockets fournit le type de données struct sockaddr_storage. Ce type est fait pour contenir toute structure d'adresse de socket spécifique à un domaine. Il est suffisamment grand et est aligné correctement (en particulier, il est assez grand pour contenir des adresses de socket IPv6). Cette structure contient le champ suivant, qui peut être utilisé pour identifier le type d'adresse de socket effectivement stockée dans la structure : sa_family_t ss_family; La structure sockaddr_storage est utile dans les programmes qui doivent prendre en charge les adresses de socket de manière générique (par exemple les programmes qui doivent gérer à la fois des adresses de socket IPv4 et IPv6). Options de socket Les options de socket présentées ci-dessous peuvent être définies en utilisant setsockopt(2) et lues avec getsockopt(2) avec le niveau de socket positionné à SOL_SOCKET pour tous les sockets. Sauf mention contraire, optval est un pointeur vers un int. SO_ACCEPTCONN Renvoyer une valeur indiquant si le socket a été déclaré comme acceptant ou non les connexions à l'aide de listen(2). La valeur 0 indique que le socket n'est pas à l’écoute et la valeur 1 indique que le socket l’est. Cette option de socket peut être seulement lue. SO_ATTACH_FILTER (depuis Linux 2.2), SO_ATTACH_BPF (depuis Linux 3.19) Attacher un programme BPF classique (SO_ATTACH_FILTER) ou un programme BPF étendu (SO_ATTACH_BPF) au socket pour une utilisation comme filtre dans les paquets entrants. Un paquet sera abandonné si le programme de filtrage renvoie zéro. Si le programme de filtrage renvoie une valeur différente de zéro qui est moindre que la taille des données du paquet, celui-ci sera tronqué à la taille renvoyée. Si la valeur renvoyée par le filtre est supérieure ou égale à la taille des données du paquet, le paquet est autorisé à continuer non modifié. L’argument pour SO_ATTACH_FILTER est une structure sock_fprog, définie dans <linux/filter.h> : struct sock_fprog { unsigned short len; struct sock_filter *filter; }; L’argument pour SO_ATTACH_BPF est un descripteur de fichier renvoyé par l’appel système bpf(2) et doit référer à un programme de type BPF_PROG_TYPE_SOCKET_FILTER. Ces options peuvent être définies plusieurs fois pour un socket donné, remplaçant à chaque fois le programme de filtre précédent. Les versions classiques et étendues peuvent être appelées sur le même socket, mais le filtre précédent sera toujours remplacé de telle façon qu’un socket n’aura jamais plus d’un filtre défini. Les versions BPF classique et étendue sont expliquées dans le fichier source du noyau, Documentation/networking/filter.txt SO_ATTACH_REUSEPORT_CBPF, SO_ATTACH_REUSEPORT_EBPF Pour une utilisation avec l’option SO_REUSEPORT, ces options permettent à l’utilisateur de définir un programme BPF classique (SO_ATTACH_REUSEPORT_CBPF) ou étendu (SO_ATTACH_REUSEPORT_EBPF) qui précise comment les paquets sont assignés aux sockets dans le groupe de réutilisation de port (c’est-à-dire tous les sockets qui ont SO_REUSEPORT activé et qui utilisent la même adresse locale pour recevoir des paquets). Le programme BPF doit renvoyer un indice entre 0 et N-1 représentant le socket qui doit recevoir le paquet (où N est le nombre de sockets dans le groupe). Si le programme BPF renvoie un indice non valable, la sélection du socket reviendra au mécanisme strict SO_REUSEPORT. Les sockets sont numérotés dans l’ordre dont ils sont ajoutés dans le groupe (c’est-à-dire l’ordre des appels bind(2) pour les sockets UDP ou l’ordre des appels listen(2) pour les sockets TCP). Les nouveaux sockets ajoutés à un groupe de réutilisation de port hériteront du programme BPF. Quand un socket est supprimé d’un groupe de réutilisation (à l’aide de close(2)), le dernier socket sera déplacé dans la position du socket fermé. Ces options peuvent être définies à plusieurs reprises n’importe quand sur n’importe quel socket dans le groupe pour remplacer le programme BPF en cours utilisé par tous les sockets du groupe. SO_ATTACH_REUSEPORT_CBPF prend le même type d’argument que SO_ATTACH_FILTER et SO_ATTACH_REUSEPORT_EBPF prend le même argument type que SO_ATTACH_BPF. La prise en charge d’UDP pour cette fonctionnalité est disponible depuis Linux 4.5. La prise en charge de TCP est disponible depuis Linux 4.6. SO_BINDTODEVICE Bind this socket to a particular device like “eth0”, as specified in the passed interface name. If the name is an empty string or the option length is zero, the socket device binding is removed. The passed option is a variable-length null-terminated interface name string with the maximum size of IFNAMSIZ. If a socket is bound to an interface, only packets received from that particular interface are processed by the socket. Note that this works only for some socket types, particularly AF_INET sockets. It is not supported for packet sockets (use normal bind(2) there). Avant Linux 3.8, cette option de socket pouvait être configurée, sans pouvoir être lue par getsockopt(2). Depuis Linux 3.8, elle est lisible. Le paramètre optlen doit contenir la taille du tampon destiné à recevoir le nom du périphérique et il est recommandé d'être de IFNAMSZ octets. La véritable longueur du nom du périphérique est renvoyée dans le paramètre optlen. SO_BROADCAST Définir ou lire l'attribut de diffusion. Une fois activé, les sockets de datagrammes sont autorisés à envoyer des paquets à une adresse de diffusion. Cette option n'a aucun effet sur les sockets orientés flux. SO_BSDCOMPAT Activer la compatibilité BSD bogue-à-bogue. Cela est utilisé par le module du protocole UDP de Linux 2.0 et 2.2. Si cette compatibilité est activée, les erreurs ICMP reçues pour un socket UDP ne seront pas transmises au programme utilisateur. Dans les versions récentes du noyau, la gestion de cette option a été abandonnée progressivement : Linux 2.4 l'ignore silencieusement et Linux 2.6 génère une alerte noyau (printk()) si le programme utilise cette option. Linux 2.0 activait également les options de compatibilité BSD bogue-à-bogue (modification aléatoire des en-têtes, non prise en compte de l'attribut de diffusion) pour les sockets bruts ayant cette option, mais cela a été éliminé dans Linux 2.2. SO_DEBUG Activer le débogage de socket. Cela n'est autorisé que pour les processus ayant la capacité CAP_NET_ADMIN ou un identifiant d'utilisateur effectif égal à 0. SO_DETACH_FILTER (depuis Linux 2.2), SO_DETACH_BPF (depuis Linux 3.19) Ces deux options, qui sont synonymes, peuvent être utilisées pour retirer le programme BPF classique ou étendu attaché à un socket avec soit SO_ATTACH_FILTER soit SO_ATTACH_BPF. La valeur d’option est ignorée. SO_DOMAIN (depuis Linux 2.6.32) Récupérer le domaine de socket sous forme d’entier, en renvoyant une valeur telle que AF_INET6. Consultez socket(2) pour plus de détails. Cette option de socket peut être seulement lue. SO_ERROR Lire et effacer l'erreur en cours sur le socket. Cette option de socket peut être seulement lue. Un entier est attendu. SO_DONTROUTE Ne pas émettre par l'intermédiaire d'une passerelle, n'envoyer qu'aux hôtes directement connectés. Le même effet peut être obtenu avec l'attribut MSG_DONTROUTE durant une opération send(2) sur le socket. Un attribut entier booléen est attendu. SO_INCOMING_CPU (récupérable depuis Linux 3.19, modifiable depuis Linux 4.4) Définir ou obtenir l’affinité CPU d’un socket. Un attribut entier est attendu. int cpu = 1; setsockopt(fd, SOL_SOCKET, SO_INCOMING_CPU, &cpu, sizeof(cpu)); Parce que tous les paquets d’un flux unique (c’est-à-dire tous les paquets pour le même 4-tuple) arrivent sur une file d’attente RX unique qui est associée avec un CPU particulier, le cas d’utilisation classique est d’employer un processus d’écoute par file RX, avec le flux entrant géré par un écouteur sur le même CPU gérant la file RX. Cela fournit un comportement NUMA optimal et conserve les caches de CPU prêts. SO_INCOMING_NAPI_ID (récupérable depuis Linux 4.12) Renvoyer un ID unique au niveau système, appelé ID NAPI qui est associé avec une file RX dans laquelle le dernier paquet associé à ce socket est reçu. Cela peut être utilisé par une application qui sépare les flux entrants entre les threads d’exécution (worker) en se basant sur la file RX sur laquelle les paquets associés avec les flux sont reçus. Cela permet à chaque thread d’exécution d’être associé à une file de réception HW de NIC et de servir toutes les requêtes de connexion reçues sur cette file RX. Ce mappage entre un thread d’application et une file HW de NIC rationalise le flux de données du NIC vers l’application. SO_KEEPALIVE Activer l'émission de messages périodiques gardant le socket ouvert pour les sockets orientés connexion. Un attribut entier booléen est attendu. SO_LINGER Définir ou lire l'option SO_LINGER. L’argument est une structure linger. struct linger { int l_onoff; /* attente activée */ int l_linger; /* durée d'attente en secondes */ }; Lorsque ce paramètre est actif, un appel à close(2) ou shutdown(2) ne se terminera pas avant que tous les messages en attente pour le socket aient été correctement émis ou que le délai d'attente soit écoulé. Sinon, l'appel se termine immédiatement et la fermeture est effectuée en arrière-plan. Lorsque le socket est fermé au cours d'un exit(2), il attend toujours en arrière-plan. SO_LOCK_FILTER Lorsqu'elle est établie cette option empêchera la modification des filtres associés au socket. Ces filtres incluent tous les ensembles issus des options de socket SO_ATTACH_FILTER, SO_ATTACH_BPF, SO_ATTACH_REUSEPORT_CBPF et SO_ATTACH_REUSEPORT_EBPF. Le cas d’utilisation typique est celui d’un processus privilégié pour définir un socket brut (une opération nécessitant la capacité CAP_NET_RAW), appliquer un filtre restrictif, régler l’option SO_LOCK_FILTER et alors soit abandonner ses privilèges soit passer le descripteur de fichier du socket à un processus non privilégié à l’aide d’un socket de domaine UNIX. Une fois que l’option SO_LOCK_FILTER a été activée, essayer de modifier ou de supprimer le filtre attaché à un socket, ou désactiver l’option SO_LOCK_FILTER échouera avec l’erreur EPERM. SO_MARK (depuis Linux 2.6.25) Positionner la marque pour chaque paquet envoyé au travers de ce socket (similaire à la cible MARK de netfilter, mais pour les sockets). Le changement de marque peut être utilisé pour un routage par marques sans netfilter ou pour le filtrage de paquets. Utiliser cette option nécessite la capacité CAP_NET_ADMIN. SO_OOBINLINE Si cette option est activée, les données hors bande sont placées directement dans le flux des données reçues. Sinon, elles ne sont transmises que si l'attribut MSG_OOB est défini durant la réception. SO_PASSCRED Enable or disable the receiving of the SCM_CREDENTIALS control message. For more information, see unix(7). SO_PASSSEC Enable or disable the receiving of the SCM_SECURITY control message. For more information, see unix(7). SO_PEEK_OFF (depuis Linux 3.4) Cette option, qui n'est à ce jour prise en charge que pour les sockets unix(7), définit la valeur de la première « position de lecture » (« peek offset ») pour l'appel système recv(2) lorsqu'il est invoqué avec l'attribut MSG_PEEK. Lorsque cette option reçoit une valeur négative (elle est initialisée à -1 pour tout nouveau socket), elle se comporte classiquement : recv(2), avec l'attribut MSG_PEEK, lit les données au début de la file. Lorsque l'option reçoit une valeur supérieure ou égale à zéro, alors la lecture suivante des données en file d’attente dans le socket est réalisée à la position précisée par la valeur de l'option. Dans le même temps, la « position de lecture » est incrémentée du nombre d'octets lus dans la file, de façon à ce que la prochaine lecture renvoie la donnée suivante dans la file. Si des données sont retirées de la tête de la file par la fonction recv(2) (ou équivalent) sans l'attribut MSG_PEEK, alors la « position de lecture » est diminuée du nombre d'octets supprimés. Autrement dit, l'acquisition de données sans avoir recours à l'attribut MSG_PEEK a pour effet de modifier la « position de lecture », de sorte que la prochaine lecture renvoie les données qui auraient été renvoyées si aucune donnée n'avait été supprimée. Pour les sockets de datagrammes, si la « position de lecture » pointe à l'intérieur d'un paquet, alors les données renvoyées seront marquées avec l'attribut MSG_TRUNC. L'exemple suivant illustre l'usage de SO_PEEK_OFF. Imaginons un socket de flux contenant les données suivantes dans sa file : aabbccddeeff La séquence suivante d'appels à recv(2) aura l'effet décrit dans les commentaires : int ov = 4; // réglage à 4 de la position de lecture setsockopt(fd, SOL_SOCKET, SO_PEEK_OFF, &ov, sizeof(ov)); recv(fd, buf, 2, MSG_PEEK); // Lit "cc"; position réglée à 6 recv(fd, buf, 2, MSG_PEEK); // Lit "dd"; position réglée à 8 recv(fd, buf, 2, 0); // Lit "aa"; position réglée à 6 recv(fd, buf, 2, MSG_PEEK); // Lit "ee"; position réglée à 8 SO_PEERCRED Renvoyer les accréditations du processus pair connecté à ce socket. Pour plus de détails, consultez unix(7). SO_PEERSEC (depuis Linux 2.6.2) Renvoyer le contexte de sécurité du socket pair connecté à ce socket. Pour plus de détails, consultez unix(7) et ip(7). SO_PRIORITY Définir la priorité définie par le protocole pour tous les paquets envoyés sur ce socket. Linux utilise cette valeur pour trier les files réseau : les paquets avec une priorité élevée peuvent être traités d'abord, en fonction de la gestion des files sur le périphérique sélectionné. Établir une priorité en dehors de l'intervalle allant de 0 à 6 nécessite la capacité CAP_NET_ADMIN. SO_PROTOCOL (depuis Linux 2.6.32) Récupérer le protocole de socket sous forme d’entier, en renvoyant une valeur telle que IPPROTO_SCTP. Consultez socket(2) pour plus de détails. Cette option de socket peut être seulement lue et pas modifiée. SO_RCVBUF Définir ou lire la taille maximale en octets du tampon de réception. Le noyau double cette valeur (pour prévoir de l'espace pour les opérations de service) lorsque la valeur est définie avec setsockopt(2) et cette valeur doublée est retournée par getsockopt(2). La valeur par défaut est définie par le fichier /proc/sys/net/core/rmem_default et la valeur maximale autorisée est définie par le fichier /proc/sys/net/core/rmem_max. La valeur (doublée) minimale pour cette option est 256. SO_RCVBUFFORCE (depuis Linux 2.6.14) En utilisant cette option de socket, un processus privilégié (CAP_NET_ADMIN) peut exécuter la même tâche que SO_RCVBUF, mais la limite rmem_max peut être remplacée. SO_RCVLOWAT et SO_SNDLOWAT Indiquer le nombre minimal d'octets dans le tampon pour que la couche socket passe les données au protocole (SO_SNDLOWAT) ou à l'utilisateur en réception (SO_RCVLOWAT). Ces deux valeurs sont initialisées à 1. SO_SNDLOWAT n'est pas modifiable sur Linux (setsockopt(2) échoue avec l'erreur ENOPROTOOPT). SO_RCVLOWAT est modifiable seulement depuis Linux 2.4. Avant Linux 2.6.28, select(2), poll(2) et epoll(7) ne respectaient pas le réglage SO_RCVLOWAT sur Linux et indiquaient un socket comme lisible même si un seul octet était disponible. Une prochaine lecture du socket bloquerait alors jusqu’à ce que SO_RCVLOWAT octets soient disponibles. Depuis Linux 2.6.28, select(2), poll(2) et epoll(7) indiquent qu’un socket est lisible uniquement si au moins SO_RCVLOWAT octets sont disponibles. SO_RCVTIMEO et SO_SNDTIMEO Specify the receiving or sending timeouts until reporting an error. The argument is a struct timeval. If an input or output function blocks for this period of time, and data has been sent or received, the return value of that function will be the amount of data transferred; if no data has been transferred and the timeout has been reached, then -1 is returned with errno set to EAGAIN or EWOULDBLOCK, or EINPROGRESS (for connect(2)) just as if the socket was specified to be nonblocking. If the timeout is set to zero (the default), then the operation will never timeout. Timeouts only have effect for system calls that perform socket I/O (e.g., accept(2), connect(2), read(2), recvmsg(2), send(2), sendmsg(2)); timeouts have no effect for select(2), poll(2), epoll_wait(2), and so on. SO_REUSEADDR Indiquer que les règles utilisées pour la validation des adresses fournies dans un appel à bind(2) doivent autoriser la réutilisation des adresses locales. Pour les sockets AF_INET, cela signifie que le socket peut être attaché à n'importe quelle adresse sauf lorsqu'un socket actif en écoute y est liée. Lorsque le socket en écoute est attaché à INADDR_ANY avec un port spécifique, il n'est pas possible de s'attacher à ce port quelle que soit l'adresse locale. L'argument est un attribut booléen entier. SO_REUSEPORT (depuis Linux 3.9) Autoriser plusieurs sockets AF_INET ou AF_INET6 à être liés à une adresse identique de socket. Cette option doit être déclarée sur chaque socket (y compris le premier socket) avant d’appeler bind(2) sur le socket. Pour prévenir le détournement de port, tous les processus reliés à la même adresse doivent avoir le même UID effectif. Cette option peut être employée avec les sockets TCP et UDP. Pour les sockets TCP, cette option autorise la répartition des charges accept(2) dans un serveur multithread pour être renforcée en utilisant un socket d’écoute pour chaque thread. Cela améliore la répartition des charges par rapport aux techniques traditionnelles telles qu’un unique thread accept(2)ant qui répartit les connexions ou d’avoir plusieurs threads qui rivalisent pour accept(2) à partir du même socket. Pour les sockets UDP, l’utilisation de cette option peut procurer une meilleure répartition des datagrammes entrants vers plusieurs processus (ou threads) par rapport aux techniques traditionnelles d’avoir plusieurs processus rivalisant pour recevoir des datagrammes sur le même socket. SO_RXQ_OVFL (depuis Linux 2.6.33) Indiquer qu'un message auxiliaire (cmsg) sous la forme d'une valeur non signée et codée sur 32 bits doit être joint aux tampons de socket (skb — socket buffer), indiquant le nombre de paquets perdus par le socket depuis sa création. SO_SELECT_ERR_QUEUE (depuis Linux 3.10) Quand cette option est activée sur un socket, une condition d’erreur sur un socket entraîne une notification pas seulement à l’aide de l’ensemble exceptfds de select(2). De la même façon, poll(2) renvoie aussi POLLPRI a chaque fois qu’un évènement POLLERR est renvoyé. Contexte : cette option a été ajoutée depuis que le réveil sur une condition d’erreur se produisait seulement au travers des ensembles readfds et writefds de select(2). Cette option a été ajoutée pour permettre la supervision des conditions d’erreur à l’aide de l’argument exceptfds sans avoir simultanément à recevoir des notifications (à l’aide de readfds) pour des données régulières pouvant être lues à partir du socket. Après les changements dans Linux 4.16, l’utilisation de cet indicateur n’est plus nécessaire. Cette option est néanmoins conservée pour la rétrocompatibilité. SO_SNDBUF Définir ou lire la taille maximale en octets du tampon d'émission. Le noyau double cette valeur (pour prévoir de l'espace pour les opérations de service) lorsque la valeur est définie avec setsockopt(2), et cette valeur doublée est retournée par getsockopt(2). La valeur par défaut est définie par le fichier /proc/sys/net/core/wmem_default et la valeur maximale autorisée est définie par le fichier /proc/sys/net/core/wmem_max. La valeur (doublée) minimale pour cette option est 2048. SO_SNDBUFFORCE (depuis Linux 2.6.14) En utilisant cette option de socket, un processus privilégié (CAP_NET_ADMIN) peut exécuter la même tâche que SO_SNDBUF, mais la limite wmem_max peut être remplacée. SO_TIMESTAMP Activer ou désactiver la réception des messages de contrôle SO_TIMESTAMP. Le message de contrôle d'horodatage est envoyé avec le niveau SOL_SOCKET et un cmsg_type de SCM_TIMESTAMP. Le champ cmsg_data est une structure timeval indiquant la date de réception du dernier paquet fourni à l'utilisateur dans cet appel. Consultez cmsg(3) pour plus de détails sur les messages de contrôle. SO_TIMESTAMPNS (depuis Linux 2.6.22) Activer ou désactiver la réception des messages de contrôle SO_TIMESTAMPNS. Le message de contrôle d'horodatage est envoyé avec le niveau SOL_SOCKET et un cmsg_type de SCM_TIMESTAMPNS. Le champ cmsg_data est une structure timespec indiquant la date de réception du dernier paquet fourni à l'utilisateur dans cet appel. L’horloge utilisée pour l’horodatage est CLOCK_REALTIME. Consultez cmsg(3) pour plus de détails sur les messages de contrôle. Un socket ne peut pas mélanger SO_TIMESTAMP et SO_TIMESTAMPNS, les deux modes sont mutuellement exclusifs. SO_TYPE Lire le type de socket, sous forme d'entier (par exemple, SOCK_STREAM). Cette option de socket peut être seulement lue, et pas modifiée. SO_BUSY_POLL (depuis Linux 3.11) Définir la durée approximative, en milliseconde, d’attente active de réception bloquante en absence de données. CAP_NET_ADMIN est nécessaire pour augmenter cette valeur. La valeur par défaut pour cette option est contrôlée par le fichier /proc/sys/net/core/busy_read. La valeur dans le fichier /proc/sys/net/core/busy_poll détermine la durée pendant laquelle select(2) et poll(2) seront en attente active lors d’une opération sur des sockets avec SO_BUSY_POLL défini et qu’aucun événement à signaler n’est trouvé. Dans les deux cas, l’attente active ne sera réalisée que lorsque les dernières données reçues par le socket proviennent d’un périphérique réseau qui prend en charge cette option. Bien que l’attente active peut améliorer la latence de quelques applications, une attention particulière doit être portée à son utilisation puisque cela augmentera à la fois l’utilisation du processeur et la consommation de puissance. Signaux Lors de l'écriture sur un socket orienté connexion qui a été fermé (localement ou à l'autre extrémité), le signal SIGPIPE est envoyé au processus qui écrivait et EPIPE est renvoyé. Le signal n'est pas envoyé lorsque l'appel d'écriture indiqué contenait l'attribut MSG_NOSIGNAL. Lorsque demandé avec l'option FIOSETOWN de fcntl(2) ou l'option SIOCSPGRP de ioctl(2), le signal SIGIO est envoyé quand un événement d'entrée-sortie a lieu. Il est possible d'utiliser poll(2) ou select(2) dans le gestionnaire de signal pour savoir sur quel socket l'événement s'est produit. Une alternative (sous Linux 2.2) est de définir un signal en temps réel avec le fnctl(2) F_SETSIG. Le gestionnaire du signal en temps réel sera appelé avec le descripteur de fichier dans le champ si_fd de son siginfo_t. Consultez fcntl(2) pour plus d'informations. Dans certains cas (par exemple, différents processus accédant au même socket), la condition ayant déclenché le signal SIGIO peut avoir déjà disparu quand le processus réagit au signal. Si cela se produit, le processus devrait attendre à nouveau, car Linux renverra ce signal ultérieurement. Interfaces /proc Les paramètres réseau de base des sockets sont accessibles en utilisant les fichiers du répertoire /proc/sys/net/core/. rmem_default contient la taille en octets par défaut du tampon de réception du socket. rmem_max contient la taille maximale en octets du tampon de réception qu'un utilisateur peut définir avec l'option SO_RCVBUF du socket. wmem_default contient la taille en octets par défaut du tampon d'émission du socket. wmem_max contient la taille maximale en octets du tampon d'émission qu'un utilisateur peut définir avec l'option SO_SNDBUF du socket. message_cost et message_burst configurent le filtrage par seau à jetons (token bucket) utilisé pour limiter la charge des messages d'avertissement dus aux événements réseau extérieurs. netdev_max_backlog contient le nombre maximal de paquets dans la file d'entrée globale. optmem_max contient la taille maximale par socket des données auxiliaires et des données de contrôle utilisateur comme les « iovec ». Ioctls Ces opérations sont accessibles en utilisant ioctl(2) : error = ioctl(ip_socket, type_ioctl, &valeur_résultat); SIOCGSTAMP Renvoyer une structure timeval avec la date de réception du dernier paquet transmis à l'utilisateur. Cela est utile pour des mesures précises du temps de cheminement. Consultez setitimer(2) pour une description de la structure timeval. L'ioctl ne doit être utilisé que si les options SO_TIMESTAMP et SO_TIMESTAMPNS du socket ne sont pas définies. Sinon, la date du dernier paquet reçu quand SO_TIMESTAMP et SO_TIMESTAMPNS n'étaient pas définies est renvoyée, ou un échec est constaté si de tels paquets ne sont pas reçus (c'est-à-dire que ioctl(2) renvoie -1 avec un errno défini à ENOENT). SIOCSPGRP Définir le processus ou le groupe de processus qui doivent recevoir les signaux SIGIO ou SIGURG quand les E/S deviennent possibles ou que des données urgentes sont disponibles. L’argument est un pointeur vers un pid_t. Pour d’autres détails, consultez la description de F_SETOWN dans fcntl(2). FIOASYNC Changer l'attribut O_ASYNC pour activer ou désactiver le mode d'entrée-sortie asynchrone du socket. Un mode d'entrée-sortie asynchrone signifie que le signal SIGIO ou le signal défini avec F_SETSIG est envoyé quand un événement d'entrée-sortie se produit. Le paramètre est un entier booléen. (Cette opération est synonyme de l'utilisation de fcntl(2) pour définir l'attribut O_ASYNC). SIOCGPGRP Lire le processus ou le groupe de processus en cours auquel les signaux SIGIO ou SIGURG sont envoyés. Zéro est obtenu quand aucun n'est défini. Opérations fcntl(2) valables : FIOGETOWN Identique à l'ioctl(2) SIOCGPGRP. FIOSETOWN Identique à l'ioctl(2) SIOCSPGRP.
VERSIONS
SO_BINDTODEVICE a été introduit dans Linux 2.0.30. SO_PASSCRED est une nouveauté de Linux 2.2. Les interfaces /proc ont été introduites dans Linux 2.2. SO_RCVTIMEO et SO_SNDTIMEO sont gérés depuis Linux 2.3.41. Auparavant, les délais d'attente étaient définis selon un réglage spécifique aux protocoles et ne pouvaient être ni lus ni modifiés.
NOTES
Linux suppose que la moitié du tampon d'émission/réception est utilisé pour les structures internes du noyau. Ainsi les valeurs dans les fichiers /proc correspondants sont deux fois plus grandes que ce que l'on peut observer directement sur le câble. Linux ne permettra la réutilisation des ports qu'avec l'option SO_REUSEADDR lorsque celle-ci sera définie à la fois par le précédent programme qui a effectué un bind(2) sur le port et par le programme qui veut réutiliser ce port. Cela diffère de certaines implémentations (par exemple, sur FreeBSD) où seul le dernier programme doit définir l'option SO_REUSEADDR. Habituellement, cette différence est invisible, puisque, par exemple, un programme serveur est conçu pour toujours définir cette option.
VOIR AUSSI
wireshark(1), bpf(2), connect(2), getsockopt(2), setsockopt(2), socket(2), pcap(3), address_families(7), capabilities(7), ddp(7), ip(7), ipv6(7), packet(7), tcp(7), udp(7), unix(7), tcpdump(8)
TRADUCTION
La traduction française de cette page de manuel a été créée par Christophe Blaess <https://www.blaess.fr/christophe/>, Stéphan Rafin <stephan.rafin@laposte.net>, Thierry Vignaud <tvignaud@mandriva.com>, François Micaux, Alain Portal <aportal@univ-montp2.fr>, Jean-Philippe Guérard <fevrier@tigreraye.org>, Jean-Luc Coulon (f5ibh) <jean- luc.coulon@wanadoo.fr>, Julien Cristau <jcristau@debian.org>, Thomas Huriaux <thomas.huriaux@gmail.com>, Nicolas François <nicolas.francois@centraliens.net>, Florentin Duneau <fduneau@gmail.com>, Simon Paillard <simon.paillard@resel.enst-bretagne.fr>, Denis Barbier <barbier@debian.org>, David Prévot <david@tilapin.org>, Cédric Boutillier <cedric.boutillier@gmail.com>, Frédéric Hantrais <fhantrais@gmail.com> et Jean-Paul Guillonneau <guillonneau.jeanpaul@free.fr> Cette traduction est une documentation libre ; veuillez vous reporter à la GNU General Public License version 3 ⟨https://www.gnu.org/licenses/gpl-3.0.html⟩ concernant les conditions de copie et de distribution. Il n'y a aucune RESPONSABILITÉ LÉGALE. Si vous découvrez un bogue dans la traduction de cette page de manuel, veuillez envoyer un message à ⟨debian-l10n-french@lists.debian.org⟩.